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Post correspondence problem (Post, 1946)

Input

Every domino contains two strings, one on each side; e.g. a
ab

An input to the problem is a collection of dominoes; e.g.
{

b
ca , a

ab , ca
a , abc

c

}

Match
A match a is a list of these dominoes (repetitions permitted) so that the string on the

top is the same as the string on the bottom; e.g. a
ab

b
ca

ca
a

a
ab

abc
c

Problem
Find an algorithm which determines whether for a given collection of dominoes there
exists a match.
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Hilbert’s tenth problem (1900)

Original statement (translated from German)
Given a Diophantine equation with any number of unknown quantities and with rational
integral numerical coefficients: To devise a process according to which it can be
determined in a finite number of operations whether the equation is solvable in rational
integers.

Reformulation
Find an algorithm which for a given multi-variable polynomial with rational coefficients
has integral root.

Example of an instance of the problem

Is there an intergral solution of equation 6x3yz2 + 3xy2 − x3 − 10 = 0?
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Halting problem

Halting problem
Is there an algorithm which for a given program and its input determines whether the
program on that input terminates?

Example of a program
int main(int argc, char *argv[]) {
int n, total, x, y, z;
scanf("%d", &n);
total=3;
for(;;) {
for(x=1; x<=total-2; ++x) {
for(y=1; y<=total-x-1; ++y) {
z=total-x-y;
if(exp(x,n)+exp(y,n)==exp(z,n))

return 0;
}

}
++total;

}
}
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Random access machine

Components
Memory divided into cells

Cells are indexed by (positive) integers
Every cell can store a integer

Program composed of instructions
Arithmetical instructions: additions, subtraction, multiplication, division, modulo
Logical instructions: conjunction, disjunction, shift
Control instructions: conditional and unconditional jump, halt

Input and output
Special instruction for reading and writing, or
storing in memory in pre-defined cells

Special registers (e.g. program counter)

Arguments of instructions and memory indexing
Integer, e.g. 3

Direct addressing, e.g. [4]

Indirect addressing, e.g. [[5]]

Example of instruction: [[5]] := 3 + [4]

Variables can be used to improve readability
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Random access machine

Example: Factorial
Calculate factorial of the input stored at [1] and save the results in [2].

[2] := 1
loop:
[2] := [1] * [2]
[1] := [1] - 1
jump_if_positive [1], loop
halt

Variants of Random access machines
Memory potentially infinite only in one direction

Cells with bounded number of bits

More instructions, e.g. function calls

More indirections in memory accessing

Etc.
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Memory without random access (Source: Wikipedia)

Video Home System Compact Cassette

Memory access
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Turing machine (Alan Turing, 1936)

Definition
Turing machine is a quintuple (Q,Σ, δ, q0,F ) where

Q is a finite set of states (internal memory)
Σ is a finite tape alphabet

i.e. every cell store one value from Σ
λ ∈ Σ represents an empty cell

δ : Q × Σ→ Q × Σ× {R,N, L} ∪ {⊥} is a transition function which for every state
of Q and every value in the current cell determines:

new state of internal memory,
new value to be stored in the current cell,
whether the head determining the current cell should be moved to right (R), left (L) or
stay (N)
⊥ represents termination

q0 ∈ Q is the initial state

F ⊆ Q is the set of accepting states
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Turing machine

Configuration captures the full state of computation of a Turing machine
A configuration is triple (q,m, h) where

q ∈ Q is the current state,

m ∈ ΣZ are symbols in all cells of the tape and

h ∈ Z is the index of the current cell (the position of head).

Initial configuration

The initial configuration is (q0,m, 0) where

q0 is the initial state and

m contains the input word surrounded by λ.
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Turing machine

Single step of computation

Assume that the current configuration is (q,m, h) and δ(q,mh) = (q′, s, d) is result of
the transition function. The new configuration after a single step of computation is
(q′,m′, h′) where

m′i =

{
mi if i 6= h
s if i = h

h′ =


h + 1 if d = R
h − 1 if d = L
h if d = N

Termination
The computation terminates if δ(q,mh) = ⊥. The input word is accepted if q ∈ F ;
otherwise, the word is rejected.
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Turing machine

Possible results of computations
For every Turing machine and its every input word, exactly one of the following
statements holds:

Computation terminates and uses finitely many cells of the type.

Computation loops on finitely many configurations and finitely many cells are used.

Computation never terminates, never reaches the same configuration twice and
uses infinitely many cells.

Variants of Turing machine
Tape potentially infinite only in one direction

Multiple tapes

Multiple heads on tapes

Non-deterministic Turing machines

All variants are equivalent to the basic model.
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Turing machine → Random access machine

Theorem
For every Turing machine there exists an equivalent RAM.

Proof
For simplicity, consider one directional memory and tape

Represent states Q and tape alphabet Σ by integers
Memory of RAM is organized as follows:

[0] : Position of head
[1] : State q
[2] and more : Content of the tape

Rewrite the transition function δ into instructions using “if-then-else” statements

Simulate the Turing machine on RAM
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Random access machine → Turing machine

Theorem
For every Random access machine (RAM) there exists an equivalent Turing machine
(TM).

Proof
We construct 4-tape TM:

Input tape: Sequence of numbers passed to RAM as the inpun written in binary
and separated with #

Output tape: TM writes here the numbers output by RAM
Memory of RAM: Content of memory of RAM

The tape symbols are Σ = {0, 1,#, |, λ}
If the currently used cells are c1, c2, . . . , cm then the tape contains string:
c1|[c1]#c2|[c2]# · · ·#cm|[cm]

Auxiliary tape: For computing addition, subtraction, indirect indices, copying part
of the memory tape, etc

TM simulates every instruction of RAM as follows: 1

Copy arguments from the memory tape to the auxiliary tape

Evaluate the instruction on the auxiliary tape

Copy results to the memory tape
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1 Program of a RAM consists of finitely many instructions and arguments (indices of
memory cells) are bounded numbers. Therefore, the program can be “stored” in a
transition functions δ and a program counter can be stored as a part of state space
Q.
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Words and languages

Terminology
Alphabet Σ is a finite set of characters (symbols)

Word is a finite sequece of characters over alphabet Σ

Σ? denotes the set of all words

Language L ⊆ Σ? is a set of words over alphabet Σ

Decision problem
A decision problem is formalized as a question whether given word belongs to the
language.

Note
Every language contains countably many words. The set of all decision problems is
uncountable.
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Turing decidable languages

Terminology
TM accept a word w ∈ Σ?, if computation of TM with input w terminates in an
accepting state

RAM accept a word w ∈ Σ?, if computation of RAM with input w outputs 1 and
terminates

TM reject a word w ∈ Σ?, if computation of TM with input w terminates in an
non-accepting state

RAM reject a word w ∈ Σ?, if computation of RAM with input w outputs 0
terminates

The set of words accepted by TM M is a language denoted by L(M)

We denote the fact that computation of TM M on w terminates as M(w)↓
(computation converges)

We denote the fact that computation of TM M on w does not terminate as M(w)↑
(computation diverges)

Language L is partially (Turing) decidable (also recursively enumerable), if there is
a TM M such that L = L(M)

Language L is (Turing) decidable (also recursive), if there is a TM M which always
terminates and L = L(M)
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Numbering Turing machines

Numbering Random access machines
Every program in C is a word over alpabet {0, 1}, i.e. represented by an integer

Similarly, every RAM can be represented by an integer

Encode a Turing machine (Q,Σ, δ,q0,F ) as a word over a small alphabet Γ

Consider an alphabet Γ = {0, 1, L,N,R, |,#}
Encode every state Q and symbol Σ by a binary string

The set F is encoded as a concatenation of all states of F separated by |
Instruction δ(q, s) = (q′, s′, d) is encoded as word q|s|q′|s′|d over {0, 1, |}
Function δ is encoded as a concatenation of all instructions separated with #

TU (Q,Σ, δ, q0,F ) is encoded as concatenation of q0, F and δ separated with #

Gödel number
Encode every symbol of Γ by 3 bits (a word over {0, 1})
Replace the word over Γ encoding TU by a word over {0, 1}
Precede the word over {0, 1} by the character 1 and read it as a binary integer

The resulting integer is called Gödel number of a given Turing machine
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Existence of an undecidable problems

Notes
1 Some integers may not encode a valid Turing machine
2 If M ∈ N is not a valid Turing machine, M(w) rejects every input w
3 Integer representing a Turing machine is not unique
4 For every decidable problem there exist infinitely many Turing machines deciding it
5 There are only countably many Turing machines
6 There are only countably many decidable languages

Corollary
There exists an undecidable language.
Furthermore, there are uncountably many undecidable languages.
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Universal Turing machine

Goal
Create a Turing machine which for a given pair (M,w) computes the output of a Turing
machine M called on input w . 1

Universal TM has three memory types
1st tape contains input, i.e. pair (M,w)

2nd tape contains binary encoded tape of M separated by |
3rd tape contains binary encoded current state of M

Computation of Universal Turing machine
Copy the input word w on the working (2nd) tape and set the initial state of M on
the 3rd tape
Simulates steps of M

Find the transition δ(q, s) = (q′, s′, d) on the 1st tape where q is the current state of M
stored on 3rd tape and s is the current symbol of M encoded on the current position on
2nd tape
Store results q′ and s′ on the 3rd and 2nd tape and move 2nd head in direction d

Jirka Fink Introduction to Complexity and Computability 22



1 We already proved that for every for every Random access machine R we can
construct a Turing machine M which gives the same output for every input. Now,
we create one Turing machine which simulates any TM/RAM.
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Diagonalization (Cantor, 1873)

Observation

Let M be a set and 2M the set of all subsets of M (called a power set). Then, there is
no surjection from M to 2M .

Proof

For a sake of contradiction, assume that there exists a surjection f : M → 2M

Let Z = {a ∈ M; a 6∈ f (a)}
There exists x ∈ M such that f (x) = Z since f is a surjection
Does x belong to Z? The following statements are equivalent:

x ∈ Z
x 6∈ f (x) by definition of Z
x 6∈ Z since f (x) = Z

Hence x ∈ Z ⇔ x 6∈ Z which is a contradition!
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Halting problem

Theorem
Let HALT be the set of all pairs (M,w) such that Turing machine M terminates on its
input w . The language HALT is partially decidable but it is not decidable.

Proof (undecidability)
For sake of a contradiction, assume that there exists a Turing machine
halting solver(M, w) which for a Turing machine M and an input w determines
whether M terminates on input w . 1 Consider the following adversary Turing
machine.

1 Program adversary(w)
2 if halting solver(w,w) returns “Yes, it terminates” then
3 Loop forever
4 else
5 Halt

The following statements are equivalent.

adversary(adversary) terminates

halting solver(adversary, adversary) returns “Yes, it terminates” 2

adversary(adversary) loops forever 3

This is a contradiction!
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1 Keep in mind that inputs are represented as integers (or binary strings). Similarly,
Turing machines are encoded as integers. Hence, integers represents inputs and
also Turing machines and we can use an input as a Turing machine and vice
versa. For example, compilers expect programs as their inputs.

2 By definition of Turing machine halting solver.
3 By definition of Turing machine adversary.
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Undecidability of acceptance

Theorem
Let ACCEPT be the set of all pairs (M,w) such that Turing machine M terminates and
accepts its input w . The language ACCEPT is partially decidable but it is not decidable.

Proof (undecidability)
For sake of a contradiction, assume that there exists a Turing machine
accept solver(M, w) which for a Turing machine M and an input w determines
whether M terminates and accepts input w . Consider the following adversary Turing
machine.

1 Program adversary(w)
2 if accept solver(w,w) accepts then
3 return reject
4 else
5 return accept

The following statements are equivalent.

adversary(adversary) accepts

accept solver(adversary, adversary) accepts

adversary(adversary) rejects

This is a contradiction!
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Undecidability of empty languages

Theorem
Let EMPTY be the set of all Turing machines which does not accept any input. The
language EMPTY undecidable.

Proof (undecidability)
For sake of a contradiction, assume that there exists a Turing machine
empty solver(M) which for a Turing machine M determines whether accept some
input. We construct Turing machine accept solver which is a contradiction.

1 Program accept solver(M, w)
2 Program helper M (w)
3 if w = M then
4 return M(w)
5 else
6 return reject

7 if empty solver(helper M) accepts then
8 return reject
9 else

10 return accept
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We prove that our accept solver works properly. First, consider a Turing machine M
which accept an input w which implies the following statements

helper M (M) accepts by definition of helper

L(helper M ) is non-empty is Turing machine helper M accepts input M

empty solver (helper M ) rejects

accept solver(M,w) accepts

Next, consider a Turing machine M which does not accept an input w which implies the
following statements

helper M does not accept any input

L(helper M ) is empty

empty solver (helper M ) accept

accept solver(M, w) rejects

Jirka Fink Introduction to Complexity and Computability 26



Complement of languages

Definition

The complement of a language L ⊆ Σ? is the language L̄ = Σ? \ L.

Observation

A language L is decidable if and only if the complement L̄ is decidable.

Theorem (Post)

Language L is decidable if and only if languages L and L̄ are partially decidable.

Corollary

Languages ACCEPT, HALT and EMPTY are not partially decidable.

Observation
If L1 and L2 are (partially) decidable languages, then the following languages are also
(partially) decidable.

L1 ∪ L2 1

L1 ∩ L2

L1 · L2 = {ab; a ∈ L1, b ∈ L2}, i.e. concatenation of words
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1 If we have finitely many (partially) decidable languages L1, . . . , Lk , is the union
L1 ∪ · · · ∪ Lk (partially) decidable?
If we have countably many (partially) decidable languages Li for i ∈ N, is the union⋃

i∈N Li (partially) decidable?
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Turing computable functions

Terminology
If a Turing machine M terminates on an input w then the output (content of the
tape after computation) is denoted by fM (w).

Each Turing machine M with tape alphabet Σ computes some partial function
fM : Σ∗ 7→ Σ∗.

Function f : Σ∗ 7→ Σ∗ is Turing computable, if there is a Turing machine M which
computes it.

To each Turing computable function there is infinitely many Turing machines
computing it!

Notes
A program M (RAM/TM) which for an input x outputs y can be considered as a
function fM : Σ∗ 7→ Σ∗ such that fM (x) = y .

A function f : N→ N composed from some elementary (Turing computable)
operations is a program which for an integer (word) x computes f (x).

Decidability of a language L ⊆ Σ? is a question whether the function
f : Σ? → {0, 1} is Turing computable where f (w) = 1 if and only w ∈ L.
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Universal Turing machine, function, language

Universal Turing machine
Universal Turing machine computes for a given pair (M,w) the output of a Turing
machine M called on input w .

Universal function
A universal function Ψ satisfies Ψ(f , x) = f (x) for every partially computable function f
and every argument of x of the domain of f .

Universal language

A universal language Lu is the set of pairs (M,w) such that Turing machine M accepts
w .

Observation
Universal function Ψ is partially computable but it is not computable.
Universal language Lu is partially decidable but it is not decidable.

Proof
Use universal Turing machine . . .
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Church-Turing thesis

Intuitively
An algorithm is a finite sequence of simple instructions which leads to a solution of
given problem.

Church-Turing thesis
To every algorithm in intuitive sense we can construct a Turing machine which
implements it.

Equivalent computation models
According to Church-Turing thesis, intuitive notion of algorithm is also equivalent with

description of a Turing machine,

program for RAM,

derivation of a partial recursive function,

derivation of a function in λ-calculus,

program in a programming language C, Pascal, Java, Basic, Lisp, Haskell etc.,

In all these models we can compute the same functions and solve the same problems.
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Strings ordering

Defintion
Let Σ be an alphabet and let us assume that < is a strict order over characters in Σ. Let
u, v ∈ Σ? be two different strings. We say that u is lexicographically smaller than v if

u is shorter than v , or

u and v have the same length and if i is the first index with u[i] 6= v [i], then
u[i] < v [i].

This fact is denoted with u ≺ v . As usual we extend this notation to u � v , u � v and
u � v .

Note
Let u, v be words over {0, 1} and u′, v ′ ∈ N be the corresponding intergers (preceded
by “1”). Then u ≺ v if and only u′ < v ′.
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Enumerator

Definition
An enumerator for a language L is a Turing machine E which

ignores its input,

during its computation writes words of L to a special output tape separated with
‘#′, and

each string w ∈ L is eventually written by E .

If L is infinite, then E never stops.

Theorem
1 A language L is partially decidable if and only if there is an enumerator E for L.
2 An infinite language L is decidable if and only if there is an enumerator E for L

which outputs elements of L in lexicographic order.
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Ideas of proofs:

Enumerator E for L⇒ L is partially decidable: Run the computation of enumerator
E and if it outputs a given word, then accept.

E enumerates in lexicographic order⇒ L is decidable: Run the computation of
enumerator E and if it outputs a given word w , then accept. If E outputs a word
lexicographically larger than w , then reject.

L is decidable⇒ E enumerates in lexicographic order: Decide all words one by
one in lexicographic order.

L is partially decidable⇒ enumerator E for L: Decide all words “in parallel”.
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Reducibility

Definition
A language A ⊆ Σ? is m-reducible to a language B ⊆ Σ? if there exists a
computable function f : Σ? → Σ? such that w ∈ A⇔ f (w) ∈ B for every w ∈ Σ?.

A language A ⊆ Σ? is 1-reducible to a language B ⊆ Σ? if there exists a
computable injection f : Σ? → Σ? such that w ∈ A⇔ f (w) ∈ B for every w ∈ Σ?.

A language B is m-complete (1-complete) if B is partially decidable and any
partially decidable language A is m-reducible (1-reducible) to B.

Example (ACCEPT is m-reducible to HALT)
For a Turing machine M and its input w , let f (M) be a Turing machine which calls M(w)
and if M accepts w , then f (M) accepts w , otherwise M loops forever. 1

Theorem

If language A is m-reducible to a decidable language B, then A is decidable. 2

Example
Since ACCEPT is reducible to HALT and ACCEPT is undecidable, HALT is also
undecidable.
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1 Informally, f is a program which obtains a source code of M and returns a source
code f (M) which differs from M by adding one if-then-else statement. Therefore, f
only trivially modify input source codes and it always terminates. The program
f (M) loops if M loops or rejects. Since f is an injection, this is an example of
1-reducibility.

2 For a given w ∈ Σ?, we compute f (w) and then use a Turing machine recognizing
B to determine whether f (w) ∈ B.
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S-m-n lemma

s-m-n lemma (computable function)
For any two natural numbers m, n ≥ 1 there is a 1-1 total computable function
sm

n : Nm+1 7→ N such that for every x , y1, y2, . . . , ym, z1, . . . , zn ∈ Σ∗b :

ϕ
(n)

sm
n (x,y1,y2,...,ym)

(z1, . . . , zn) ' ϕ(m+n)
x (y1, . . . , ym, z1, . . . , zn)

s-m-n lemma (Informally)
For all m, n ∈ N and every Turing machine M expecting input of length m + n and every
input y1, . . . , ym there exists a Turing machine M ′ expecting input of length n such that
for every input z1, . . . , zn computations M(y1, . . . , ym, z1, . . . , zn) and M ′(z1, . . . , zn) give
the same output. Furthermore, there exists a Turing machine SMN which for every M
and y1, . . . , ym computes M ′.

Pseudocode of SMN

1 Program SMN(M, y1, . . . , ym)
2 Program M’(z1, . . . , zn)
3 return M(y1, . . . , ym, z1, . . . , zn)

4 return M ′
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Reducibility

Observations
The relation of m-reducibility is reflexive and transitive.

If m-complete language A is m-reducible to a partially decidable language B, then
B is m-complete.

Theorem
The following languages are m-complete.

ACCEPT = {(M,w); M accepts w}
HALT = {(M,w); M terminates on input w}
DIAG = {M; Turing machine M terminates input word M}

Proof (ACCEPT is m-complete)
ACCEPT is a partially decidable language

We have to prove that for every Turing machine M there exists a computable
function fM : Σ? → Σ? such that for every input w ∈ Σ? it holds that w ∈ L(M) if
and only if fM (w) ∈ ACCEPT

We have to find a computable function fM such that fM (w) = (M,w)

We use s-m-m lemma to “hard-code” M, so fM is SMN(Φ,M) where Φ is the
universal TM.
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Post correspondence problem (Post, 1946)

Input

Every domino contains two strings, one on each side; e.g. a
ab

An input to the problem is a collection of dominoes; e.g.
{

b
ca , a

ab , ca
a , abc

c

}

Match
A match a is a list of these dominoes (repetitions permitted) so that the string on the

top is the same as the string on the bottom; e.g. a
ab

b
ca

ca
a

a
ab

abc
c

Theorem
A problem whether for a given collection of dominoes there exists a match is
undecidable.

Proof
We m-reduce ACCEPT language to the Post correspondence problem (language) as
follows.
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Simplified Post correspondence problem

First, we consider the following simpler reduction
Consider a one-directional Turing machine M = (Q,Σ, δ, q0,F ).

When M terminates, all cells of the tape store the empty symbol λ. 1

Assume that a match has to start with one given domino.

Terminology 2

A configuration of a M is a word over Q ∪ Σ obtained from the word stored on the
tape by inserting the current state into the current position of head. 3

A history of computation is a concatenation all configurations separated with #
and preceded and superseded #.

Our goal is to create a list of dominoes such that the matching word represents a
history of computation.

The initial domino

#
#q0w1w2···wn#

where w1w2 · · ·wn is the input word. 4
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1 Turing machine cleans up the tape before it terminates.
2 We slightly modify few terms to simplify the proof.
3 We assume that Q and Σ are disjoin. Formally, a configuration is a concatenation

of the following words:
the content of the tape before the head
the current state
the symbol on the current position of head
the content of the tape after the head

Since Q ∩ Σ = ∅, the current state also indicates the current position of head on
tape.

4 #q0w1w2 · · ·wn# is the initial configuration with separating symbols #.
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Computation using Post correspondence problem

Dominoes representing the computation

1 For every s, s′ ∈ Σ and every q, q′ ∈ Q satisfying δ(q, s) = (q′, s′,N) add qs
q′s′

2 For every s, s′ ∈ Σ and every q, q′ ∈ Q satisfying δ(q, s) = (q′, s′,R) add qs
s′q′

3 For every s, s′, s̄ ∈ Σ and every q, q′ ∈ Q satisfying δ(q, s) = (q′, s′, L) add s̄qs
q′ s̄s′

4 For every s ∈ Σ add s
s

5 Add #
#

, #
λ#

and λ#
#

6 For every q ∈ F add q##
#
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Computation using Post correspondence problem

Reduction to the original Post corresponding problem
For a word w = w1w2 · · ·wn let

?w denotes ?w1 ? w2 ? · · · ? wn

w? denotes w1 ? w2 ? · · · ? wn?

?w? denotes ?w1 ? w2 ? · · · ? wn?

We reduce an instance of the Simplified Post corresponding problem{
t1
b1

, t2
b2

, . . . , tk
bk

}
with the initial domino t1

b1

to an instance of the Post corresponding problem{
?t1
?b1?

, ?t1
b1?

, ?t2
b2?

, . . . , ?tk
bk?

, ?♥
♥

}
.
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Rice’s theorem

Rice’s theorem (languages)
Let C be a class of partially decidable languages and let us define
LC = {M; L(M) ∈ C}. Then language LC is decidable if and only if C is either empty or
it contains all partially decidable languages.

Corollary
The following languages are undecidable.

Empty language: LC = {M; L(M) = ∅} where C = {∅}
Finite languages: LC = {M; L(M) is finite} where C is the set of finite languages

Regular languages: LC = {M; L(M) is regular} where C is the set of regular
languages

Decidable languages: LC = {M; L(M) is decidable} where C is the set of
decidable languages

Rice’s theorem (functions)
Let C be a class of computable functions and let us define AC = {we; ϕe ∈ C}. Then
language AC is decidable if and only if C is either empty or it contains all computable
functions.
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Rice’s theorem

Rice’s theorem (languages)
Let C be a class of partially decidable languages and let us define
LC = {M; L(M) ∈ C}. Then language LC is decidable if and only if C is either empty or
it contains all partially decidable languages.

Proof (⇒)
For sake of a contradiction, assume that C is decidable by a Turing machine
C solver. WLOG: Turing machine Mreject rejecting all inputs does not belong to C and
C contains a Turing machine Min. We construct Turing machine accept solver
which is a contradiction.

1 Program accept solver(M, w)
2 Program helper M,w (x)
3 if M(w) accepts then
4 Run Min(x) and return its output
5 else
6 Run Mreject (x) and return its output

7 Run C solver(helper M,w) and return its output
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Note that C is decidable if and only if C̄ is decidable. So, if Mreject ∈ C, we can consider
C̄ instead of C. We prove that our accept solver works properly. First, consider a
Turing machine M which accept an input w which implies the following statements

helper M ,w(x) and Min(x) give the same output for all inputs x

L(helperM,w ) = L(Min)

C solver accepts both Min and helperM,w

accept solver(M,w) accepts

Next, consider a Turing machine M which does not accept an input w which implies the
following statements

both helper M,w and Mreject do not accect any word

L(helperM,w ) = L(Mreject )

C solver rejects both Mreject and helperM,w

accept solver(M,w) rejects
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Outline

1 Computability

2 Complexity
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Decision, search and optimization problem

Decision problem
In a decision problem we want to decide whether a given instance x satisfies a
specified condition.

Formalized as a language L ⊆ Σ∗ of positive instances and a decision whether
x ∈ L.

Search problem
In a search problem we aim to find for a given instance x an output y which
satisfies a specified condition or information that no suitable y exists.

Formalized as a relation R ⊆ Σ∗ × Σ∗ which contains all pairs (x , y) satisfying a
specified condition.

Optimization problem
In an optimization problem we moreover require the output y to be maximal or
minimal with respect to some measure.

Formalizad as a problem arg maxy∈Σ∗ {f (x , y); (x , y) ∈ R} where f is a (partial)
ordering of all pairs (x , y).
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Time and space complexity of a Turing machine

Definition
Let M be (deterministic) Turing machine which halts on every input and let f : N 7→ N
be a function.

We say that M runs in time f (n) if for any string x of length |x | = n the computation
of M over x finishes within f (n) steps.

We say that M works in space f (n) if for any string x of length |x | = n the
computation of M over x uses at most f (n) tape cells.

Definition
Let f : N 7→ N be a function, then we define classes:

DTIME(f (n)) – class of languages which can be accepted by deterministic Turing
machines running in time O(f (n)).

DSPACE(f (n)) – class of languages which can be accepted by deterministic Turing
machines working in space O(f (n)).

Observation
DTIME(f (n)) ⊆ DSPACE(f (n)) for any function f : N 7→ N.
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Important deterministic complexity classes

Definition
Class of problems solvable in polynomial time:

P =
⋃
k∈N

DTIME(nk )

Class of problems solvable in polynomial space:

PSPACE =
⋃
k∈N

DSPACE(nk )

Class of problems solvable in exponential time:

EXP =
⋃
k∈N

DTIME(2nk
)
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Strong Church-Turing thesis

Strong Church-Turing thesis
Real computation models can by simulated on TM with polynomial delay/space
increase.

Notes
Polynomials are closed under composition.

Polynomial time algorithms are (usually) efficient in practice.

Definition of P does not depend on particular computational model we use (as far
as it can be polynomially simulated on a TM).
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Verifier

Definition
A verifier for a language A is a Turing machine M, where
A = {x ; ∃y : M accepts (x , y)}.

Notes
A string y is called a certificate of x if M accepts (x , y).

Time and space complexities of a verifier is measured only in terms of |x |.
Hence, if time or space complexity of a verifier is f (n), then the length of y is at
most f (n).

A polynomial time verifier runs in time polynomial in |x |.
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Nondeterministic Turing machine

Definition
Nondeterministic Turing machine is a quintuple (Q,Σ, δ, q0,F ) where

Q is a finite set of states (internal memory)

Σ is a finite tape alphabet

q0 ∈ Q is the initial state

F ⊆ Q is the set of accepting states

δ : Q × Σ→ 2Q×Σ×{R,N,L}∪{⊥} is a transition function which for every state of Q
and every value in the current cell determines a set of possible transitions (a new
state, a symbol written on type and a movement of the head).

Idea of computation
In every step of a computation, nondeterministic TM chooses a transition which
leads to an accepting state if such a choice exists.

Nondeterministic TM looks as a parallel computer which in every step “forks” to
evaluate all possible transitions and it accepts a given input if at least one “thread”
terminates in an accepting state.

Nondeterministic Turing machine is not a real computation model in the sense of
strong Church-Turing thesis.
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Nondeterministic Turing machine

Definition
Computation of Nondeterministic TM M over string x is a sequence of
configurations C0,C1,C2, . . . , where

C0 is the initial configuration and
Ci+1 is obtained from Ci by applying one of possible transition defined by δ.

Computation is accepting if it is finite and M is in an accepting state in the last
configuration.

String x is accepted by NTM M if there is an accepting computation of M over x .

Language of string accepted by Nondeterministic TM M is denoted as L(M).

Definition
Let M be a nondeterministic Turing machine and let f : N 7→ N be a function.

We say that M works in time f (n) if every computation of M over any input x of
length |x | = n terminates within f (n) steps.

We say that M works in space f (n) if every computation of M over any input x of
length |x | = n uses at most f (n) cells of work tape.
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Nondeterministic Turing machine vs. verifier

Definition
NP is the class of languages that have polynomial time verifiers.

Notes
NP stands for Nondeterministically Polynomial.

Nondeterminism corresponds to “guessing” the right certificate y of x .

Corresponds to a class of search problems where we can check if a given string is
a solution to our problem.

Languages in NP are exactly those which are accepted by nondeterministic
polynomial time Turing machines.
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Basic nondeterministic complexity classes

Definition
Let f : N 7→ N be a function, then we define classes:

NTIME(f (n)) – class of languages accepted by nondeterministic TMs working in time
O(f (n)).

NSPACE(f (n)) – class of languages accepted by nondeterministic TMs working in
space O(f (n)).

Theorem
Class NP consists of languages accepted by nondeterministic Turing machines
working in polynomial time, that is

NP =
⋃
k∈N

NTIME(nk ).

Theorem
For any function f : N 7→ N we have that

DTIME(f (n)) ⊆ NTIME(f (n)) ⊆ DSPACE(f (n)) ⊆ NSPACE(f (n)).
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Turing machines using sublinear space

Motivation
Formally, space complexity includes the size of input and output, although “working
space” can be sublinear.

Definition
In case of sublinear space complexity, we use three tapes TM:

Read-only input tape

Write-only output tape (head moves only to the right)

Read-write working tapes

Only the working tape is included into space complexity.

Definition
Class of problems solvable deterministically in logarithmic space
L = DSPACE(log2 n).

Class of problems solvable nondeterministically in logarithmic space
NL = NSPACE(log2 n).

Class of problems solvable nondeterministically in polynomial space
NPSPACE =

⋃
k∈N NSPACE(nk ).
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Relations between classes

Notation
Let f , g : N 7→ N. We say that f (n) = o(g(n)) if for every ε > 0 there exists n0 ∈ N such
that for every n ≥ n0 it holds that f (n) < εg(n).
Equivalently, f (n) = o(g(n)) if limn→∞

f (n)
g(n)

= 0.

Lemma
Let M be a deterministic or nondeterministic Turing machine working in space f (n).
Then, there exists a constant cM such that the number all configurations of M is at most{

2cM f (n) if f (n) = Ω(n)

n2cM f (n) if f (n) = o(n) using TM with sublinear space complexity. 1

Theorem
Let f (n) be a function satisfying f (n) ≥ log2 n. For any language L ∈ NSPACE(f (n))
there is a constant cL so that L ∈ TIME(2cLf (n)). 2

Theorem
The following chain of inclusions holds:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ NPSPACE ⊆ EXP.
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1 Number of possible contents on whole tape is |Σ|f (n).
Number of positions of a head is f (n).
Number of states is Q.

The total number of configurations is
|Σ|f (n)f (n)Q = 2f (n) log |Σ|+log f (n)+log Q ≤ 2f (n)(log |Σ|+1+log Q) = 2cM f (n) where
cM = log |Σ|+ 1 + log Q.
In the case of sublinear space complexity, we have to include the number of
positions of a head on input tape, so the number of configurations is
|Σ|f (n)f (n)Qn ≤ n2cM f (n).

2 Let M be a NTM deciding L in space f (n). We construct DTM M ′ deciding L in
time 2cLf (n). M ′ constructs an oriented graph whose vertices are all configurations
of M and configuration C1 and C2 are connected by an edge if M switch from the
configuration C1 to C2 in a single step. Then, M ′ determines whether there exists
an oriented path from the initial configuration to an accepting configuration using
BFS or DFS.
The number of vertices is at most n2cM f (n) and one vertex can be encoded in
f (n) log |Σ|+ log Q + log f (n) + log n bits. The maximal out-degree of a vertex is
23ΣQ . Hence, whole graph can be encoded in 2cG f (n) bits for some constant G
depending on M only.
TM can find a path in a graph in time O

(
24cG f (n)

)
.
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Savitch’s theorem

Theorem

For any function f (n) ≥ log2 n it holds that NSPACE(f (n)) ⊆ SPACE(f 2(n)).

Proof (using yieldability problem)

Given a NTM M working in space f (n), its two configuration C1 and C2 and t ∈ N, can
M switch from the configuration C1 to C2 in at most t steps? 1

1 Program yield(C1, C2, t)
2 if t = 1 then
3 return accept if M can switch from C1 to C2 in a single step, otherwise reject
4 else
5 foreach configuration C′ do
6 if both yield(C1, C′, bt/2c) and yield(C′, C2, dt/2e) accept then
7 return accept

8 return reject

Corollary

PSPACE = NPSPACE
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1 The initial configuration is known and the accepting configuration can be fixed by
modifying M so that tape is clear when M accepts.
The running time of M is 2O(f (n)), so DTM accepts if yield(Cinit, Caccept, 2O(f (n)))
accepts.
Depth of the recursion is log 2O(f (n)) = O(f (n)).
One configuration can be stored in O(f (n)) cells, so space complexity is O

(
f 2(n)

)
.
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Space hierarchy theorem

Definition
A function f : N 7→ N, where f (n) ≥ log n, is called space constructible if the function
that maps 1n to the binary representation of f (n) is computable in space O(f (n)).

Deterministic Space Hierarchy Theorem
For any space constructible function f : N 7→ N, there exists a language A that is
decidable in space O(f (n)) but not in space o(f (n)).

Corollary
1 For any two functions f1, f2 : N 7→ N, where f1(n) ∈ o(f2(n)) and f2 is space

constructible,
DSPACE(f1(n)) ( DSPACE(f2(n)).

2 For any two real numbers 0 ≤ a < b,

DSPACE(na) ( DSPACE(nb).

3 NL ( PSPACE ( EXPSPACE =
⋃

k∈N DSPACE(2nk
)
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Space hierarchy theorem

Deterministic Space Hierarchy Theorem
For any space constructible function f : N 7→ N, there exists a language A that is
decidable in space O(f (n)) but not in space o(f (n)).

Idea of the proof
Create a TM D working in space O(f (n)) deciding a language denoted by A

Input is a word w of length n encoding a TM M
Mark space of length f (n) for simulation M(w)
If simulation M(w) uses more that f (n) cells or loops, D rejects
D accepts w if and only if M rejects w

No TM M working in space o(f (n)) decides A
For constradiction, M decides A in space o(f (n)) and consider input w encoding M
Assume D has enough space to simulate M(w)
Then, M accepts w ⇔ D accepts w ⇔ M rejects w

Ensure that M has enough space to simulate M(w)
D has a fixed tape alphabet simulating M with arbitrary tape alphabet
If M runs in space g(n), then D uses dg(n) space
From g(n) ∈ o(f (n)) it follows that ∃n0 ∀n ≥ n0 : dg(n) < f (n)
Let input word w be 〈M〉10n0 where 〈M〉 is the code of M
Then |w | = n ≥ n0 and D can simulates M(w) in space f (n)

D must always terminate but M may loop
If M uses o(f (n)) space, then M uses 2o(f (n)) time or loops
D has a counter of steps of M and rejects if the counters exceeds 2f (n)
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Space hierarchy theorem

Deterministic Space Hierarchy Theorem
For any space constructible function f : N 7→ N, there exists a language A that is
decidable in space O(f (n)) but not in space o(f (n)).

Algorithm D deciding some language A

1 Program D(w)
2 Let n denotes the length of w
3 Compute f (n) using space constructibility and mark off this much space
4 if w is not of the form 〈M〉10n0 for some TM M then
5 Reject

6 Simulates M on w :
7 Count the number of steps and reject if the counter excedeeds 2f (n)

8 Reject if the simulation attempts to use more than f (n) space
9 if M accepts w then

10 Reject
11 else
12 Accept
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Time hierarchy theorem

Definition
A function f : N 7→ N, where f (n) ≥ n log n, is called time constructible if the function
that maps 1n to the binary representation of f (n) is computable in time O(f (n)).

Deterministic Time Hierarchy Theorem
For any time constructible function f : N 7→ N, there exists a language A that is
decidable in time O(f (n)) but not in time o(f (n)/ log f (n)).

Corollary
1 For any two functions f1, f2 : N 7→ N, where f1(n) ∈ o(f2(n)/ log f2(n)) and f2 is time

constructible,
DTIME(f1(n)) ( DTIME(f2(n)).

2 For any two real numbers 0 ≤ a < b,

DTIME(na) ( DTIME(nb).

3 P ( EXP
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Time hierarchy theorem

Deterministic Time Hierarchy Theorem
For any time constructible function f : N 7→ N, there exists a language A that is
decidable in time O(f (n)) but not in time o(f (n)/ log f (n)).

Algorithm D deciding some language A

1 Program D(w)
2 Let n denotes the length of w
3 Compute f (n) using time constructibility and store it as a binary counter
4 if w is not of the form 〈M〉10n0 for some TM M then
5 Reject

6 Simulates M on w :
7 Decrease the counter of steps and reject if the counter reaches 0
8 if M accepts w then
9 Reject

10 else
11 Accept
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Polynomial reducibility

Definition

Language A is polynomially reducible to language B, denoted by A ≤P
m B, if there exists

a polynomial time computable function f : Σ∗ 7→ Σ∗ satisfying

(∀w ∈ Σ∗) [w ∈ A⇐⇒ f (w) ∈ B] .

Observation

≤P
m is reflexive and transitive relation (quasiorder).

If A ≤P
m B and B ∈ P then A ∈ P.

If A ≤P
m B and B ∈ NP then A ∈ NP.
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NP-completeness

Definition
Language B is NP-hard, if any language A ∈ NP is polynomially reducible to B.

Language B is NP-complete if B ∈ NP and B is NP-hard.

Observation
If arbitrary NP-complete problem has polynomial time algorithm then P = NP.

If for language B it exists NP-complete problem A polynomially reducible to B (i.e.
A ≤P

m B), then B is NP-hard.
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NP-complete problem

Tiling
Instance: Set of colors B, natural number s, square grid S of size s × s, in which

border cells have outer edges colored by colors in B. Set of tile types
K , every tile is a square with edges colored by colors in B.

Question: Is there a valid tiling of S with tiles from K ? By a valid tiling we mean
placing tiles to cells of S without rotation, so that the tiles sharing a
border have matching color and the tiles placed in a border cell have
the colors matching outer edge colors of S.

Theorem
Tiling is NP-complete problem.

Observation
Tiling is belongs to NP.
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NP-hardness of Tiling

Every language A ∈ NP is polynomially reducible to Tiling

There exists NTM M deciding A in polynomial time p(n).
For simplification we assume:

1 F = {q1} where q1 6= q0, and δ(q1, a) = ∅ for every a ∈ Σ.
2 Computation of M terminates with an empty tape (accepting configuration is unique).
3 Tape is one-directional.

Let x be an instance of A and s = p(|x |).
Rows encode configurations of computation of M:

The set of colors is Σ ∪ Q × (Σ ∪ {L,R}).
Upper and bottom edges of the grid are colored by the initial and accepting
configuration, resp.
Left and right edges of the grid are colored by λ.
Types of tiles are defined by the transition function of M . . .

For every valid tiling there exists a computation of M.
The sequence of colors between i-th and (i + 1)-th rows there exists exactly one color
from Q × Σ and other colors are from Q.
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Satisfiability (SAT)

Terminology
Literal: Variable (e.g. x) or its negation (e.g. x).

Clause: Disjunction of literals.

Conjunctive normal form (CNF): a formula is in CNF if it is a conjunction of clauses.

Satisfiability (SAT)
Instance: A formula ϕ in CNF.

Question: Is there an assignment v of truth values to variables so that ϕ(v) is
satisfied?

Cook-Levin theorem
SAT is NP-complete problem.
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Satisfiability (SAT)

SAT is NP-hard problem
1 Given a set of colors B and types of tiles K and a grid s × s.
2 Variables are xi,j,k for i , j = 1, . . . , s and k ∈ K .
3 Assignment xi,j,k = 1 means that tiles of type K is places on position (i , j).
4 Every position (i , j) has exactly one tile:∨

k∈K xi,j,k
x i,j,k ∨ x i,j,k′ for every color k 6= k ′.

5 Colors are compatible between positions (i , j) a (i , j + 1):
x i,j,k ∨ x i,j+1,k′ whenever the right edge of the tile k on position (i, j) differs from the
left edge of the tile k ′ on position (i, j + 1).

6 Color of upper edge of the grid is compatible with the first row:∨
k∈Uj

x1,j,k where Uj is the set of tiles with upper edge colored by the same color as
j-th column of the upper edge of the grid.

7 Similar clauses ensuring compatibility between position (i , j) and (i + 1, j) and all
edge of the grid.

8 CNF ϕ is the conjunction of all presented clauses.
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3-Satisfiability

Definition
A formula ϕ is in k -CNF if it is in CNF and every clause consists of exactly k literals
where k ∈ N.

k -SAT
Instance: A formula ϕ in k -CNF

Question: Is there an assignment v of truth values to variables so that ϕ(v) is
satisfied?

Theorem

3-SAT is NP-complete problem. 1

Note
2-SAT is polynomially solvable.
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1 Too short clauses can be prolonged using additional variables, e.g. x1 ∨ x̄2 can be
replaced by (x1 ∨ x̄2 ∨ y)&(x1 ∨ x̄2 ∨ ȳ). Too long clause x̄1 ∨ x2 ∨ x3 ∨ · · · ∨ xk can
be shortened by (x̄1 ∨ x2 ∨ y)&(ȳ ∨ x3 ∨ · · · ∨ xk ) using additional variables.
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Vertex Cover

Vertex Cover problem
Instance: An undirected graph G = (V ,E) and an integer k ≥ 0.

Question: Is there a set of vertices S ⊆ V of size at most k so that each edge
{u, v} ∈ E has one of its endpoints in S (that is {u, v} ∩ S 6= ∅)?

Vertex cover problem is NP-complete
We construct a graph G for a given 3-SAT formula ϕ.

For every variable x in ϕ, add two vertices vx and vx̄ joined by an edge.
For every clause (e.g. x ∨ ȳ ∨ z) in ϕ, add

three vertices cx , cȳ , and cz and
edges cx cȳ , cx cz and cȳ cz (forming a triangle on cx , cȳ , and cz ) and
edges cx vx , cȳ vȳ and czvz .

Let k = v + 2c where v and c is the number of variables and clauses, resp.

Observe that G has no vertex cover smaller than k .

G has a vertex cover of size k if and only if ϕ is satisfiable.
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NP-complete problems related to Vertex Cover

Clique
Instance: An undirected graph G = (V ,E) and an integer k ≥ 0.

Question: Does G contain k vertices S such that every pair of vertices in S is
connected by an edge in G?

Independent set
Instance: An undirected graph G = (V ,E) and an integer k ≥ 0.

Question: Does G contain k vertices S such that every pair of vertices in S is not
connected by an edge in G?

Edge cover

Instance: An undirected graph G = (V ,E) and an integer k ≥ 0.

Question: Does G contain k edges covering all vertices of G?
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Hamiltonian cycle

Hamiltonian cycle
Instance: An undirected graph G = (V ,E).

Question: Does G contain a cycle throught all vertices?

Travelling salesman problem, TSP

Instance: A complete graph G = (V ,E) with weights on edges w : E(G)→ N
and a limit d .

Question: Does G contain a Hamiltonian cycle with total weight at most d .

Theorem
Both Hamiltonain cycle and TSP are NP-complete problems.
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3-Dimensional Matching

3-Dimensional Matching
Instance: Set M ⊆ W × X × Y , where W , X , and Y are sets of size q.

Question: Can we find a perfect matching in M? In particular, is there a set
M ′ ⊆ M of size q so that all triples in M ′ are pairwise disjoint?

Theorem
3-Dimensional Matching is an NP-complete problem.

Theorem
Existence of a perfect matching in an undirected graph is polynomial problem.
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Subset-Sum

Subset-Sum
Instance: Positive integers a1, . . . , ak and s which are binary coded.

Question: Is there a subset A ⊆ {a1, . . . , ak} such that
∑

a∈A a = s?

Subset-Sum is NP-complete problem (reduction from 3-SAT)
For a given 3-SAT ϕ on variables x1, . . . , xv and clauses c1, . . . , cd , we construct
2(v + d) + 1 integers y1, . . . , yv , z1, . . . , zv , g1, . . . , gd , h1, . . . , hd , s, each one is
v + d decimal integer of base 10 as follows.

1 Let yi [j] denotes j-th digit of integer yi .
2 For a positive literal xi in a clause cj we set yi [j] = 1.
3 For a negative literal x̄i in a clause cj we set zi [j] = 1.
4 Let yi [d + i] = zi [d + i] = 1 for i = 1, . . . , v .
5 Let yj [j] = zj [j] = 1 for j = 1, . . . , d .
6 All other digits are 0.
7 Let s[j] = 3 for j = 1, . . . , d and s[d + i] = 1 for i = 1, . . . , v .

There is no carry in the sum of all integers y1, . . . , hd in decimal representation.

In the subset A, we have to choose either yi or zi for every variable xi ⇒ yi ∈ A for
positive assignment of xi .

For every clause cj , at least one integer of y1, . . . , yv , z1, . . . , zv has to contribute by
1 in the j-th digit to the sum

∑
a∈A a⇒ at least one satisfied linteral in clause cj . 1
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1 Observe that there a subset A of integers y1, . . . , hd with
∑

a∈A a = s if and only if
ϕ is satisfiable.
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Subset-Sum

Subset-Sum
Instance: Positive integers a1, . . . , ak and s which are binary coded.

Question: Is there a subset A ⊆ {a1, . . . , ak} such that
∑

a∈A a = s?

Subset-Sum is NP-complete if integers a1, . . . , ak and s are binary coded, but it is
polynomial if integers are unary coded.

Dynamic programming algorithm for Subset-Sum
1 Consider logical variables zi,j which is true if there exists A ⊆ {a1, . . . , ai} such

that
∑

a∈A = j for j = 0, . . . , s.
2 Clearly, z0,0 is true and z0,j is false for j > 0.
3 Observe that zi,j = zi−1,j ∨ zi−1,j−ai for i = 1, . . . , k and j = 0, . . . , s.
4 Time complexity is O(ks) which is polynomial in the length of the input if all

integers a1, . . . , ak and s are unary coded.

3-partition is NP-complete even if integers are unary coded
Instance: Positive integers a1, . . . , a3k .

Question: Can integers a1, . . . , a3k be split into k groups, each with 3 elements, so
that the sum of integers in each group is the same (i.e. 1

k

∑3k
i=1 ai )?
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Scheduling

Scheduling

Instance: A set of tasks U, processing time d(u) ∈ N associated with every task
u ∈ U, number of processors m, deadline D ∈ N

Question: Is it possible to assign all tasks to processors so that the (parallel)
processing time is at most D?

Theorem
Scheduling is an NP-complete problem.
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Number problem

Definition
Let A be a decision problem and let I be an instance of A. Then

len(I) denotes the length (=number of bits) of encoding of I when using binary
encoding of numbers.

max(I) denotes the value of a maximum number parameter in I.

We say that A is a number problem, if for any polynomial p there is an instance I of A
with max(I) > p(len(I)).

Examples
Number problems : Subset-Sum, 3-partition, TSP

Non-number problems : Hamiltonicity, SAT
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Pseudopolynomial algorithm

Definition
We say that an algorithm which solves problem A is pseudopolynomial if its running
time is bounded by a polynomial in two variables len(I) and max(I).

Notes
We usually measure complexity of an algorithm only with respect to len(I).

If for some polynomial p and for every instance I of A we have that
max(I) ≤ p(len(I)) then a pseudopolynomial algorithm is actually polynomial.

Also, if the numbers in I would be encoded in unary, a pseudopolynomial algorithm
would run in polynomial time.

For example, dynamic programming algorithm for Subset-Sum problem is a
pseudopolynomial.
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Factorization

Trivial algorithm for factorization

Input: An integer n
1 i := 2
2 while i · i ≤ n do
3 if i divides n then

Output: i
4 n := n/i
5 else
6 i := i + 1

7 if n > 1 then
Output: n

Complexity

Complexity of the algorithm is O
(√

n
)
.

If a given integer n is encoded in unary, then
√

n is a polynomial function, so the
algorithm is pseudopolynomial.

If a given integer n is encoded in binary using k = dlog ne bits, complexity is
O
(

2k/2
)

which is exponential.
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Strong NP-completeness

Definition
Let A be a decision problem and let p be a polynomial. Then A(p) denotes the
restriction of problem A to instances I which satisfy max(I) ≤ p(len(I)).

We say that problem A is strongly NP-complete, if there is a polynomial p for which
A(p) is NP-complete.

Notes
Any NP-complete problem which is not a number problem is strongly NP-complete.

If there is a strongly NP-complete problem which can be solved by a
pseudopolynomial algorithm then P = NP.

Unary coding
Pseudopolynomial = polynomial when considering unary encoding.

Strongly NP-complete = NP-complete even when considering unary encoding.
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Strong NP-completeness of number problems

”Weighted” versions of NP-complete problems
”Weighted” versions of strongly NP-complete problems usually remain strongly
NP-complete, e.g.

Hamiltonicity→ Travelling Salesman problem

Vertex cover→ weighted vertex cover

Number problems
3-partition: strongly NP-complete

Subset-Sum: NP-complete, pseudopolynomial algorithm

Factorization: pseudopolynomial algorithm

Prime testing: polynomial algorithm
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Optimization problem

Definition
We define optimization problem as a triple A = (DA,SA, µA), where

DA ⊆ Σ∗ is a set of instances,

SA(I) assigns a set of feasible solutions to each I ∈ DA

µA(I, σ) assigns a positive rational value to every I ∈ DA and every feasible
solution σ ∈ SA(I).

Optimum solution
If A is a maximization problem, then an optimum solution to instance I is a feasible
solution σ ∈ SA(I), which has the maximum value µA(I, σ).

If A is a minimization problem, then an optimum solution to instance I is a feasible
solution σ ∈ SA(I), which has the minimum value µA(I, σ).

The value of an optimum solution is denoted opt(I).
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Approximation algorithm for Vertex cover

Minimal vertex cover problem
Instance: An undirected graph G = (V ,E).

Output: Find a vertex cover (i.e. S ⊆ V so that each edge {u, v} ∈ E has one
of its endpoints in S) with minimal size.

Observation
If there exists a polynomial algorithm for minimal vertex cover problem, then P = NP.

Approximation algorithm

Input: Graph G
1 Let M be a maximal matching of G
2 Let S be the set of both endpoints of all edges of M

Output: S
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Approximation algorithm for Vertex cover

Approximation algorithm

Input: Graph G
1 Let M be a maximal matching of G
2 Let S be the set of both endpoints of all edges of M

Output: S

Analysis
The running time is polynomial
The algorithm outputs a vertex cover

If there is an edge uv uncovered by S, then M ∪ {uv} is a matching, so M is not a
maximal matching

If S′ is the minimal vertex cover, then |S| ≤ 2|S′|
For every uv ∈ M, vertex u or v is covered by S′
Hence, |S| = 2|M| ≤ 2|S′|
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Approximation algorithm

Definition
Algorithm R is called approximation algorithm for optimization problem A, if for each
instance I ∈ A the output of R(I) is a feasible solution σ ∈ SA(I) (if there is any).

If A is a maximization problem, then c ≥ 1 is an approximation ratio of algorithm
R, if for all instances I ∈ DA we have that opt(I) ≤ c · µA(I,R(I)).

If A is a minimization problem, then c ≥ 1 is an approximation ratio of algorithm R,
if for all instances I ∈ DA we have that µA(I,R(I)) ≤ c · opt(I).

Example: Vertex cover

The algorithm finds a vertex cover S of size at most 2|S′| where S′ is the minimal
vertex cover.

Therefore, the approximation ratio is 2.

Inapproximability of maximal independent set
If there exists a polynomial algorithm for maximal independent set with approximation
error c for some c > 1, then P= NP.
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Travelling Salesman problem

TSP with triangular inequality
TSP is NP-complete even if weights of edges satisfies the triangular inequality.

Inapproximability of TSP (without triangular inequality)
If for some c > 1 there exists a polynomial algorithm for TSP with approximation error
c, then P = NP.

Approximation of TSP with triangular inequality
For TSP with triangular inequality there exists a polynomial algorithm with
approximation error 3/2.
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Bin packing

Bin packing

Instance: Set of k items of rational sizes a1, . . . , ak ∈ [0, 1].

Constrain: Splitting of items to pairwise disjoint bins B1, . . . ,Bm, which satisfy that
the sum of sizes of items in every bin is at most 1.

Objective: Minimize the number of bins m.

Any-Fit algorithm
Take items as they come and for each item try to find a bin in which it fits. If no such bin
exists, add a new bin with the item in it.

Any-Fit algorithm has approximation error 2

The optimal number of bins m′ is at least
∑k

i=1 ai .

For every pair of different bins Bi and Bj it holds that
∑

l∈Bi
al +

∑
l∈Bj

al > 1.

By summing last inequality for pairs (1, 2), (2, 3), . . . , (m − 1,m), (m, 1) we obtain
2
∑m

i=1

∑
l∈Bi

l > m.

Hence, m < 2
∑m

i=1

∑
l∈Bi

l = 2
∑k

i=1 ai ≤ 2m′.
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Bin packing

Sorted-Any-Fit algorithm
Sort the items by their value decreasing. Take items from the biggest to smallest and
for each item try to find a bin in which it fits. If no such bin exists, add a new bin with
the item in it.

Best-fit algorithm
Take items as they come and for each item try to find the most full bin in which it fits. If
no such bin exists, add a new bin with the item in it.

Notes
Best-fit algorithm has approximation error 1.7.

If m′ is the optimal number of bins and m is the number of bins found by
Sorted-Any-Fit algorithm, then m ≤ 11

9 m′ + 4.

There is no polynomial algorithm with approximation error smaller than 3/2.
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Fully polynomial time approximation scheme

Definitions
Algorithm ALG is an approximation scheme for an optimization problem A, if on
the input instance I ∈ DA and a rational number ε it returns a solution σ ∈ SA(I)
with approximation ratio 1 + ε.

If ALG works in polynomial time with respect to len(I), then it is a polynomial time
approximation scheme.

If ALG works in polynomial time with respect to both len(I) and 1
ε
, it is a fully

polynomial time approximation schema (FPTAS).
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Fully polynomial time approximation scheme

Optimization version of Subset-Sum problem
Instance: Positive integers a1, . . . , ak and s which are binary coded.

Feasible solution: A subset A ⊆ {a1, . . . , ak} such that
∑

a∈A a ≤ s.

Objective: Maximize
∑

a∈A a.

Algorithm for the optimization version of Subset-sum

Input: Numbers a1, . . . , ak , s ∈ N and ε > 0
1 δ = k−1

√
1

1+ε

2 A0 = {0}
3 for i = 1 to k do
4 Ai = Ai−1

5 for t ∈ Ai−1 do
6 t ′ = t + ai

7 if t ′ ≤ s and Ai does not contain an integer between δt ′ and t ′ then
8 Insert t ′ into Ai

9 return max Ak
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Unsatisfiability

Unsatisfiability (UNSAT)
Instance: Formula ϕ in CNF

Question: Is it true, that for any assignment v of values to variables ϕ(v) = 0 (i.e.
ϕ is unsatisfiable)?

Notes
We do not know a polynomial time verifier for problem UNSAT, this problem most
probably does not belong to class NP.

Language UNSAT is (more or less) the complement of language SAT, because for
any formula ϕ in CNF we have ϕ ∈ UNSAT⇐⇒ ϕ /∈ SAT.

Similar “complementary” problems
Does a given graph contain no Hamiltonian cycle?

Given a finite set of integers, does every non-empty subset have a non-zero sum?

Given a graph G and k ∈ N, is the size of maximal clique in G at most k?
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Class coNP

Definition

We say that language A belongs to the class coNP if and only if its complement A
belongs to the class NP.

Notes
For instance UNSAT belongs to coNP. (It is easy to recognize instances which do
not encode a formula.)

Language L belongs to coNP, iff there is a polynomial time verifier V which
satisfies that L = {x ; (∀y) V (x , y) accepts } .
Clearly, P ⊆ NP ∩ coNP.

It is not known whether NP = coNP.

Clearly, if P = NP, then NP = coNP.

A problem A is polynomially reducible to a problem B if and only if the
complementary problem Ā is polynomially reducible to the complementary
problem B̄.
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coNP-completeness

Definition
Problem A is coNP-complete, if

(i) A belongs to class coNP and

(ii) every problem B in coNP is polynomially reducible to A.

Notes

Language A is coNP-complete, if and only if complement A is NP-complete.

For example UNSAT is an coNP-complete problem.

If there is an NP-complete language A, which belongs to coNP, then NP = coNP.

Integer factorization
Instance: Positive integers m and n.

Question: Is there an integer k dividing m and satisfying 1 < k < n.

Clearly, Integer factorization belongs to NP.

Agrawal–Kayal–Saxena primality test implies that Integer factorization belongs to
coNP.

It is not known whether there exists a polynomial algorithm for Integer factorization.
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Class #P

Motivation
How hard it is to determine the number of

Hamiltonian cycles in a given graph?

satisfied assignments of given CNF/DNF formula?

perfect matchings of a given graph?

These counting problems can be solved in polynomial space.
Are there polynomial time algorithms?

Definition
Function f : Σ∗ 7→ N belongs to class #P, if there is a polynomial time verifier V such
that each x ∈ Σ∗ satisfies f (x) = | {y ; V (x , y) accepts} |.

Notes

We can associate a function #A in #P with every problem A ∈ NP (given by the “natural”
polynomial time verifier for A).

Natural verifier verifies that y is a solution to the search problem corresponding to A.

For example the natural verifier for SAT accepts a pair (ϕ, v), if ϕ is a CNF and v is a
satisfying assignment for ϕ.

Then #SAT(ϕ) = | {v ; ϕ(v) = 1} |.
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Class #P (properties)

Nonzero value of f ∈ #P
Instance: x ∈ Σ∗

Question: f (x) > 0?

Notes
Nonzero Value of f ∈ #P belongs to NP.

Value of f ∈ #P can be obtained by using polynomial number of queries about an
element belonging to the set {(x ,N); f (x) ≥ N}.
Value of f ∈ #P can be computed in polynomial space.
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Reducing a function to another function

Definition
Function f : Σ∗ 7→ N is polynomial reducible to function g : Σ∗ 7→ N if there are
functions α : Σ∗ × N 7→ N and β : Σ∗ 7→ Σ∗, which can be computed in polynomial time
and

∀x ∈ Σ∗ : f (x) = α(x , g(β(x)))

Note
This corresponds to the fact that f can be computed in polynomial time with one call of
function g (if this call is a constant time operation).
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#P-completeness

Definition
We say that function f : Σ∗ 7→ N is #P-complete, if

(i) f ∈ #P and

(ii) every function g ∈ #P is polynomially reducible to f .

Notes
For example #SAT, #Vertex Cover and other counting versions of NP-complete
problems are #P-complete.

There are problems in P such that their counting versions are #P-complete.

Perfect matching in a bipartite graphs
The following problem is in P but it is #P-complete.

Instance: G = (A ∪ B,E) where E ⊆ A× B and A ∩ B = ∅ and |A| = |B|.
Question: Is there a matching in G of size |A| = |B|?
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Permanent of a matrix

Definition
Let A be a matrix of type n × n. Then we define permanent of A as

perm(A) =
∑
π∈S(n)

n∏
i=1

ai,π(i),

where S(n) is a set of permutations over set {1, . . . , n}.

Notes
Like “determinant” without a sign of permutation.

If A is a adjacency matrix of a bipartite graph G, then perm(A) computes the
number of perfect matchings of G.

Function perm is #P-complete.
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#DNF-SAT

#DNF-SAT
Term is a conjunction of literals.

Disjunctive normal form (DNF) is a disjunction of terms.

Instance: Formula ϕ in DNF.

Question: Is there an assignment v such that ϕ(v) is satisfied?

This problem is in #P while it is decidable in polynomial time.
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Parametrized version of Vertex Cover problem

Vertex Cover problem
Instance: An undirected graph G = (V ,E) and an integer k ≥ 0.

Question: Is there a set of vertices S ⊆ V of size at most k so that each edge
{u, v} ∈ E has one of its endpoints in S?

This problem is strongly NP-complete. How the complexity depends on k?

Vertex Cover problem parametrized by the size k of a cover
Instance: An undirected graph G = (V ,E).

Question: Is there a set of vertices S ⊆ V of size at most k so that each edge
{u, v} ∈ E has one of its endpoints in S?

Solvable by a brutal-force algorithm in time O
(
|V |k |E |

)
.

For every k ∈ N, this algorithm is polynomial although the degree of the
polynomial depends on k .
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Fix-parameter tractability

Goal

Complexity of brutal-force algorithm for k -vertex cover problem is O
(
|V |k |E |

)
.

We would prefer a polynomial time algorithm for k -vertex cover such that the
polynomial is independent on k .

But there is no algorithm polynomial in both k and the size of input (unless P= NP).

We describe an algorithm running in time O(p(|V |)f (k)) where p is a polynomial
function and f is an arbitrary function.
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Fix-parameter tractability: Vertex Cover

Algorithm

1 Program Has Cover(Graph G, size of a vertex cover k)
2 if G has no edge then
3 return Accept

4 if k = 0 then
5 return Reject

6 uv ← an arbitrary edge of G
7 if Has Cover(G \ u, k − 1) or Has Cover(G \ v, k − 1) accepts then
8 return Accept
9 else

10 return Reject

Observations
Let G be a graph and uv its edge and k ≥ 1. Then, G has a vertex cover of size k
if and only if G \ u or G \ v has a vertex cover of size k − 1.

Time complexity is O
(
2k |V |

)
.
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Fix-parameter tractability: Definitions

Definitions
A parameter of a language L is a function k : Σ∗ → N.

A parametrized language is a language with a parameter.

A parameterized language is fix-parameter tractable (FPT) if there exists an
algorithm A deciding L, a function f : N→ N and a polynomial function p : N→ N
such that A decides every instance x in time O(p(|x |) · f (k(x))).

Notes
Usually, the parameter is a natural property of the problem and it may be a part of
the input.

A language may have many interesting parametrizations.

Observation
A language L with a parameter k is fix-parameter tractable if and only if there exists an
algorithm A′ deciding L, a function f ′ : N→ N and a polynomial function p′ : N→ N
such that A decides every instance x in time O(p′(|x |) + f ′(k(x))). 1
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1 In proves of both implications, we can use the same algorithm and only determine
functions giving complexity.
⇒ Since ab ≤ a2b2 for a, b ≥ 0, it follows that p(|x |) · f (k(x)) ≤ p2(|x |) + f 2(k(x)).
⇐ p′(|x |) + f ′(k(x)) ≤ 2p′(|x |) · f ′(k(x)) assuming p′(|x |), f ′(k(x)) ≥ 1.
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Vertex Cover: Kernelization

Algorithm

Input: Graph G, size of a vertex cover k
1 for every vertex v in G do
2 if deg(v) > k then
3 G← G \ v
4 k ← k − 1

5 Remove all isolated vertices from G
6 if k < 0 or |E | > k2 then
7 return A canonical negative instance

8 return G, k

Observations
Let v be a vertex of G of degree larger than k . Then G contains a vertex cover of
size k if and only if G \ v contains a vertex cover of size k − 1.

If a graph of maximal degree k has a vertex cover of size k , then it has at most k2

edges.

The resulting graph contains at most k2 edges and 2k2 vertices.

Complexity is O(|V |+ |E |) and vertex cover can be found in O
(
|V |+ |E |+ k22k).
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Kernelization

Definition
A kernelization of a language L with a parameter k is a function g : Σ∗ → Σ∗ if

1 g computable in polynomial time and
2 x ∈ L⇔ g(x) ∈ L for every x ∈ Σ∗ and
3 there exists a function f : N→ N such that for every x ∈ Σ∗ it holds that
|g(x)| ≤ f (k(x)).

Theorem
A decidable parametrized language has a fix-parameter tractable if and only if it has
kernelization.

Proof
⇐: Run the kernelization and then the decider.
⇒: Let A be an algorithm of running time O(p(|x |) · f (k(x))) and x be an instance.

If |x | ≤ f (k(x)), then x is already kernelized.
If f (k(x)) ≤ |x |, then run A and return a canonical positive or negative instance
depending on whether x ∈ L. Running time is p(|x |) · f (k(x)) ≤ |x | · p(|x |).
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