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Problem 1. Write a program for a Random access machine which sorts a given list of elements. You can
start by implementing any sorting algorithm. Can you sort n integers in time O(n log n) using additional
O(1) memory cells?

Problem 2. Construct a Turing machine which recognizes language

L = {w; w contains twice as many 0s as 1s} .

Write exact definition of your Turing machine!

Problem 3. Show that every Turing machine can be modified to a Turing machine which can perform only
two of three operations (i.e. move head and change a state, or write on tape and move head, or write on tape
and change a state) in every step. Write exact definition of the modified Turing machine.

Problem 4. Construct a Turing machine which recognizes language L =
{

0(2n); n ∈ N
}

, i.e. words
containing only zeros whose length is a power of two. Write the transition function exactly!

Problem 5. An always-moving Turing machine is a Turing machine which must move its head in every
step; i.e. the transition function is of the form δ : Q × Σ → Q × Σ × {R,L} ∪ {⊥}. Prove that for
(standard) Turing machines there exists an equivalent always-moving Turing machine. Describe exactly the
construction of a transition function.

Problem 6. Construct a Turing machine which recognizes language L = {anbncn; n ∈ N}. Write the
transition function exactly!

Problem 7. Consider a variant of Turing machine which has one-directional tape and its head can perform
only two movents: move right and reset which moves the head on the first cell. Show how a (standard)
Turing machine can be transformed to the described variant of Turing machine.

Problem 8. Prove that one-tape Turing machines which are allowed to write on every cell at most once are
equivalent to (standard) Turing machines.

Problem 9. Prove that a one-tape Turing machine which cannot overwrite their input are equivalent to a
Finite automata.

Problem 10. Prove that the concatenation L1·L2 = {ab; a ∈ L1, b ∈ L2} of (partially) decidable languages
is (partially) decidable.

Problem 11. Consider a partially decidable language L. Prove that language

{w1w2 · · ·wk; k ∈ N, w1, w2, . . . , wk ∈ L}

is partially decidable where w1w2 · · ·wk is a concatenation of k words of L.

Problem 12. Is language {(M1,M2); M1,M2 are Turing machines and L(M1) = L(M2)} decidable?

Problem 13. Let EMPTY be the set of all Turing machines which does not accept any input. Prove that
the complement EMPTY is partially decidable.

Problem 14. Let M1,M2 be Turing machines. Is language {(M1,M2); L(M1) ∩ L(M2) = ∅} decidable?

Problem 15. Is language {M ; M 6∈ L(M)} is (partially) decidable? Note that we encoded every Turing
machine by a number and also words are encoded as a number. Therefore, a number M encodes a word
(input) and also a Turing machine. So,M 6∈ L(M) meas that a wordM is not accepted by a Turing machine
M .

Problem 16. A deterministic queue automaton (DQA) is defined the same way as a deterministic pushdown
automata (DPDA), except that it has a queue instead of a stack. In other words, a DQA is a deterministic
finite automaton augmented with an unbounded queue, together with the operations of (a) pushing a symbol
onto the “back” of the queue, and (b) popping the symbol at the “front” of the queue. Show that DQAs are
equivalent in power to Turing machines: that is, any given language L is decidable by a DQA if and only if
it’s decidable by a Turing machine.


