Problem 1. Write a program for a Random access machine which sorts a given list of elements. You can start by implementing any sorting algorithm. Can you sort n integers in time $\mathcal{O}(n \log n)$ using additional $\mathcal{O}(1)$ memory cells?
Problem 2. Construct a Turing machine which recognizes language

$$
L=\{w ; w \text { contains twice as many } 0 \mathrm{~s} \text { as } 1 \mathrm{~s}\} .
$$

Write exact definition of your Turing machine!
Problem 3. Show that every Turing machine can be modified to a Turing machine which can perform only two of three operations (i.e. move head and change a state, or write on tape and move head, or write on tape and change a state) in every step. Write exact definition of the modified Turing machine.
Problem 4. Construct a Turing machine which recognizes language $L=\left\{0^{\left(2^{n}\right)} ; n \in \mathbb{N}\right\}$, i.e. words containing only zeros whose length is a power of two. Write the transition function exactly!
Problem 5. An always-moving Turing machine is a Turing machine which must move its head in every step; i.e. the transition function is of the form $\delta: Q \times \Sigma \rightarrow Q \times \Sigma \times\{R, L\} \cup\{\perp\}$. Prove that for (standard) Turing machines there exists an equivalent always-moving Turing machine. Describe exactly the construction of a transition function.
Problem 6. Construct a Turing machine which recognizes language $L=\left\{a^{n} b^{n} c^{n} ; n \in \mathbb{N}\right\}$. Write the transition function exactly!

Problem 7. Consider a variant of Turing machine which has one-directional tape and its head can perform only two movents: move right and reset which moves the head on the first cell. Show how a (standard) Turing machine can be transformed to the described variant of Turing machine.
Problem 8. Prove that one-tape Turing machines which are allowed to write on every cell at most once are equivalent to (standard) Turing machines.
Problem 9. Prove that a one-tape Turing machine which cannot overwrite their input are equivalent to a Finite automata.
Problem 10. Prove that the concatenation $L_{1} \cdot L_{2}=\left\{a b ; a \in L_{1}, b \in L_{2}\right\}$ of (partially) decidable languages is (partially) decidable.

Problem 11. Consider a partially decidable language L. Prove that language

$$
\left\{w_{1} w_{2} \cdots w_{k} ; k \in \mathbb{N}, w_{1}, w_{2}, \ldots, w_{k} \in L\right\}
$$

is partially decidable where $w_{1} w_{2} \cdots w_{k}$ is a concatenation of k words of L.
Problem 12. Is language $\left\{\left(M_{1}, M_{2}\right) ; M_{1}, M_{2}\right.$ are Turing machines and $\left.L\left(M_{1}\right)=L\left(M_{2}\right)\right\}$ decidable ?
Problem 13. Let EMPTY be the set of all Turing machines which does not accept any input. Prove that the complement EMPTY is partially decidable.
Problem 14. Let M_{1}, M_{2} be Turing machines. Is language $\left\{\left(M_{1}, M_{2}\right) ; L\left(M_{1}\right) \cap L\left(M_{2}\right)=\emptyset\right\}$ decidable?
Problem 15. Is language $\{M ; M \notin L(M)\}$ is (partially) decidable? Note that we encoded every Turing machine by a number and also words are encoded as a number. Therefore, a number M encodes a word (input) and also a Turing machine. So, $M \notin L(M)$ meas that a word M is not accepted by a Turing machine M.
Problem 16. A deterministic queue automaton (DQA) is defined the same way as a deterministic pushdown automata (DPDA), except that it has a queue instead of a stack. In other words, a DQA is a deterministic finite automaton augmented with an unbounded queue, together with the operations of (a) pushing a symbol onto the "back" of the queue, and (b) popping the symbol at the "front" of the queue. Show that DQAs are equivalent in power to Turing machines: that is, any given language L is decidable by a DQA if and only if it's decidable by a Turing machine.

