
(1)

Static dictionaries
(2)

Literatura

Goal

A static dictionary for $n w$-bit keys with constant lookup time and a space consumption of $\mathcal{O}(n)$ words can be constructed in $\mathcal{O}(n \log n)$ time on w-word-RAM.
The algorithm is weakly non-uniform, i.e. requires certain precomputed constants dependent on w.

Overview

(1) Create a function $f_{1}:\left[2^{w}\right] \rightarrow\left[2^{4 w}\right]$ which is an error-correcting code of relative minimum distance $\delta>0$.
(2) Create a function $f_{2}:\left[2^{4 \omega}\right] \rightarrow\left[\mathcal{O}\left(n^{k}\right)\right]$ which is an injection on $f_{1}(S)$
(0. Create a function $f_{3}:\left[\mathcal{O}\left(n^{k}\right)\right] \rightarrow\left[\mathcal{O}\left(n^{2}\right)\right]$ which is an injection on $f_{2}\left(f_{1}(S)\right)$
(- Create a function $f_{4}:\left[\mathcal{O}\left(n^{2}\right)\right] \rightarrow[\mathcal{O}(n)]$ which is an injection on $f_{3}\left(f_{2}\left(f_{1}(S)\right)\right)$

- $f_{4} \circ f_{3} \circ f_{2} \circ f_{1}$ can be computed in constant time
- f_{2}, f_{3}, f_{4} can be fount in time $\mathcal{O}(n \log n)$
- f_{1} can be precomputed in time $\mathcal{O}(w)$

Jirka Fink Dala Structures II

(1) The number of remaining bits is at most r.
(c) Since $r \geq \frac{w}{2}$.

Static dictionaries: $\left[\mathcal{O}\left(n^{2}\right)\right] \rightarrow[\mathcal{O}(n)]$

Derandomization

Let $L_{k}(a)=\left|\left\{(x, y) \in S_{v_{j}} \times S_{<j ;} ;(g(x) \oplus a)_{[k]}=(h(y))_{[k]}\right\}\right|$ (1)
(a) ${ }_{i}$ denotes the i-th bit of a and $(a)_{M}$ denotes the vector of all bits $(a)_{i}$ for $i \in M \subseteq[r]$ (2) for $j \leftarrow 1$ to 2^{r} do

$$
\begin{aligned}
& a_{v_{j}} \leftarrow 0 \\
& \text { for } k \leftarrow 0 \text { to } r-1 \text { do }
\end{aligned}
$$

$$
\text { if } L_{k}\left(a_{v_{j}}\right)>L_{k}\left(a_{v_{j}}+2^{k}\right) \text { then }
$$

$$
\left\lfloor a_{v_{j}} \leftarrow a_{v_{j}}+2^{k}\right.
$$

Proof (goodness of (h, f))

- $L_{k}(a)+L_{k}\left(a \oplus 2^{k}\right)=L_{k-1}(a)$ for every $a \in\left[2^{k}\right]$ and $k \in[r]$
- $L_{k}\left(a_{v_{j}}\right) \leq \frac{L_{k-1}\left(a v_{j}\right)}{2} \leq \frac{L_{0}\left(a_{j}\right)}{2^{k}}=\frac{\left|s_{v_{j}}\right|\left|s_{<j}\right|}{2^{k}}$
- The total number of collision is at most
$\sum_{j} L_{r}\left(a_{v_{j}}\right) \leq \sum_{j} 2^{-r}\left|S_{v_{j}}\right|\left|S_{<j}\right| \leq \sum_{i<j} 2^{-r}\left|S_{v_{j}}\right|\left|S_{v_{i}}\right| \leq 2^{-r-1}\left(\sum_{i} S_{V_{i}}\right)^{2}<\frac{n}{16}$
- If $q \leq n$, then the number of collision with $S_{v_{j}}$ is
$L_{r}\left(a_{v_{j}}\right) \leq \sum_{i<j} 2^{-r}\left|S_{v_{j}}\right|\left|S_{V_{i}}\right| \leq \sum_{i<j} 2^{2-r}\binom{S_{v_{j}}}{2} \leq 2^{2-r} q \leq \frac{1}{2}$

Jirka Fink Data Structures II

Static dictionaries: $\left[\mathcal{O}\left(n^{2}\right)\right] \rightarrow[\mathcal{O}(n)]$

Derandomization

Let $L_{k}(a)=\mid\left\{(x, y) \in S_{v_{j}} \times S_{<j ;}(g(x) \oplus a)_{[k]}=(h(y))_{[k]}\right\}$
(a) $)_{i}$ denotes the i-th bit of a and (a) ${ }_{M}$ denotes the vector of all bits (a) $)_{i}$ for $i \in M \subseteq[r]$ for $j \leftarrow 1$ to 2^{r} do

```
avj
for }k\leftarrow0\mathrm{ to }r-1\mathrm{ do
if L_
    Lavi}\leftarrowa\mp@subsup{a}{\mp@subsup{v}{j}{}}{}+\mp@subsup{2}{}{k
```


Proof (Complexity)

- In order to compute $L_{k}(a)$, we build a binary tree (trie)
- Every vertex $a \in\left[2^{k}\right]$ of the k-th level has a counter $c_{k}(a)=\left|\left\{y \in S_{<j ;}(h(y))_{[k]}=(a)_{[k]}\right\}\right|$
- $L_{k}(a)=\sum_{x \in S_{v_{j}}} c_{k}(g(x) \oplus a)$ can be computed in $\mathcal{O}\left(\left|S_{v_{j}}\right|\right)$ time
- After the j-th step, counters can be updated in $\mathcal{O}\left(\left|S_{v_{j}}\right| r\right)$ time
- Total time is $\sum_{j}\left|S_{v_{j}}\right| r=\mathcal{O}(n \log n)$

Jirka Fink Data Structures II

Static dictionaries: Error-correcting code

Definition

- The Hamming distance between $x \in\left[2^{w}\right]$ and $y \in\left[2^{w}\right]$ is the number of bits in which x and y differ.
- $\psi:\left[2^{w}\right] \rightarrow\left[2^{4 w}\right]$ is an error correcting code of relative minimum distance $\delta>0$ if the Hamming distance between $\psi(x)$ and $\psi(y)$ is at least $4 w \delta$ for every distinct $x, y \in\left[2^{w}\right]$.

Lemma

Let \mathcal{H} be a 2 -universal hashing system of function $\left[2^{w}\right] \rightarrow\left[2^{4 w}\right]$. For every δ with $1 / 4 w<\delta \leq 1 / 2$, the probability that $h \sim U(\mathcal{H})$ is an error correcting code of relative minimum distance $\delta>0$ is at least $1-\left(\left(\frac{e}{\delta}\right)^{4 \delta} / 4\right)^{w}$. (1)

Proof

- For $x \in\left[2^{4 w}\right]$ the number of y within Hamming distance k is at most $\left(\frac{4 e w}{k}\right)^{k}$. (2)
- For $x \neq y, P($ Hamming distance between x and $y \leq k) \leq 2^{1-4 w}\left(\frac{4 e w}{k}\right)^{k}$
- The probability that this happens for any of the $\binom{2^{w}}{2}<2^{2 w-1}$ pairs is at most $\left(\left(\frac{e}{\delta}\right)^{4 \delta} / 4\right)^{w}$ (3)

Static dictionaries: $\left[2^{w}\right] \rightarrow\left[\mathcal{O}\left(n^{k}\right)\right]$

Lemma

Let $\psi:\left[2^{w}\right] \rightarrow\left[2^{4 w}\right]$ be an error correcting code of relative minimum distance $\delta>0$ and $S \subseteq U=\left[2^{w}\right]$ of size n. There exists a set $D \subseteq[4 w]$ with $|D| \leq 2 \log n / \log \frac{1}{1-\delta}$ such that for every pair x, y of distinct elements of S it holds $(\psi(x))_{D} \neq(\psi(y))_{D}$.

Proo

- For $D \subseteq[4 w]$ and $v \in\left[2^{[D \mid}\right]$ let $C(D, v)=\left\{x \in S ;(\psi(x))_{D}=v\right\}$ (1)
- The set of colliding pairs of D is $B(D)=\bigcup_{v \in\left[2^{[D]}\right]}\binom{C(D, v)}{2}$
- We construct $D_{0} \subseteq D_{1} \subseteq \ldots \subseteq D_{k}$ such that $\left|D_{i}\right|=i$ and $\left|B\left(D_{i}\right)\right|<(1-\delta)^{i} n^{2} / 2$ (2)
- Let $I(d)=\left\{\{x, y\} \in B\left(D_{i}\right) ;(\psi(x))_{d}=(\psi(y))_{d}\right\}$ be the colliding pairs indistinguishable by $d \in[4 w] \backslash D_{i}$
- Let $I=\sum_{d \in[4 w] \backslash D_{i}} \mid I(d)$
- Every pair $\{x, y\} \in B\left(D_{i}\right)$ contributes to $/$ by at most $4 w-i-4 w \delta<4 w(1-\delta)$ so $I \leq 4 w(1-\delta)\left|B\left(D_{i}\right)\right|$
- By averaging, there exists $d \in[4 w] \backslash D_{i}$ such that $|I(d)| \leq \frac{1}{4 w-1} \leq(1-\delta)\left|B\left(D_{i}\right)\right|$ (3)
- Let $D_{i+1}=D_{i} \cup\{d\}$. Hence, $\left|B\left(D_{i+1}\right)\right|=|/(d)| \leq(1-\delta)\left|B\left(D_{i}\right)\right|$
- By setting $k=\left\lfloor 2 \log n / \log \frac{1}{1-\delta}\right\rfloor$ we obtain $\left|B\left(D_{k}\right)\right|<1$.
(1) Where $k \in[r]$ and $a \in\left[2^{k}\right]$
(2) Our goal is to iteratively and deterministically compute $a_{v_{j}}$ for j from 1 to 2^{r}. The value of $a_{v_{k}}$ is computed by bits from the least significant to the most significant bit. $L_{k}(a)$ determines the number of collision between $S_{v_{j}}$ and $S_{<i}$ if we consider only last k bits.

Approach

- Every $x \in U=\left[\mathcal{O}\left(n^{k}\right)\right]$ can be regarded as constant-length string over an alphabet of size n
- Build n-way branching compressed trie of string S
- The number of leaves is $|S|=n$, so the total number of vertices is at most $k n$
- Build static $\left[\mathcal{O}\left(n^{2}\right)\right] \rightarrow[\mathcal{O}(n)]$ dictionary for pairs (vertex of the trie, letter) which returns a child of the vertex
- One polynomial-size-universe lookup is evaluated using a constant number of quadratic-size-universe lookups
- Space complexity is $\mathcal{O}(n)$ and this dictionary is constructed in $\mathcal{O}(n \log n)$ time relative minimum distance δ
(2) The number of $y \in\left[2^{4 \omega}\right]$ within Hamming distance $k \geq 1$ from a fixed $x \in\left[2^{4 \omega}\right]$ is $\sum_{i=0}^{k}\binom{4 w}{i} \leq\left(\frac{4 w}{k}\right)^{k} \sum_{i=0}^{k}\binom{4 w}{i}\left(\frac{k}{4 w}\right)^{i} \leq\left(\frac{4 w}{k}\right)^{k}\left(1+\frac{k}{4 w}\right)^{4 W} \leq\left(\frac{4 w}{k}\right)^{k} e^{k} \leq\left(\frac{4 e w}{k}\right)^{k}$ using the binomial theorem
(3) By setting $k=\lfloor 4 w \delta\rfloor$ we obtain $2^{2 w-1} 2^{1-4 w}\left(\frac{4 e w}{k}\right)^{k} \leq 2^{-2 w}\left(\frac{4 e w}{4 w \delta}\right)^{4 w \delta}=\left(2^{-2}\left(\frac{e}{\delta}\right)^{4 \delta}\right)^{w}$

Jirka Fink Data Structures II

(1) Note that for every $D \subseteq[4 w]$ the set S is split into $2^{|D|}$ disjoint clusters $C(D, v)$ for $v \in\left[2^{[D]}\right]$.
(2) For $i=0$ it holds that $D_{0}=\emptyset$ and $B\left(D_{0}\right)=\binom{n}{2}<\frac{n^{2}}{2}$.
(0) A bit $d \in[4 w] \backslash D_{i}$ with $|/(d)| \leq(1-\delta)\left|B\left(D_{i}\right)\right|$ can be found in $\mathcal{O}(w n)$ time as follows. We a list of all clusters $C\left(D_{i}, v\right)$ of size at least two. Every cluster has a list of all elements. So, $I(d)$ for one $d \in[4 w] \backslash D_{i}$ can be determined in $\mathcal{O}(n)$ time and we can process all d in $\mathcal{O}(w n)$ time. Then, all lists can be updated in $\mathcal{O}(n)$ time. Using word-level parallelism, the time complexity can be improved to $\mathcal{O}(n)$.

