Data struktures II NTIN067

Jirka Fink

https://ktiml.mff.cuni.cz/~fink/

Katedra teoretické informatiky a matematické logiky Matematicko-fyzikální fakulta Univerzita Karlova v Praze

Summer semester 2016/17

License: Creative Commons BY-NC-SA 4.0

Jirka Fink Data Structures II

Jirka Fink: Data Structures II

General information

E-mail fink@ktiml.mff.cuni.cz Homepage http://ktiml.mff.cuni.cz/~fink/ Consultations Individual schedule

Jirka Fink Data Structures II

Computational model Word-RAM

Description

- A word is a w-bit integer
- A memory an array of words indexed by words
- The size of memory is 2^w , so we assume that $w = \Omega(\log n)$
- Operations of words in constant time:
 - Arithmetical operations are +, -, \star , /, mod Bit-wise operations &, $|, \hat{,} >>$, << Comparisons =, <, \le , >, \ge
- Other operations in constant time: (un)conditional jumps, assignments, memory
- Inputs and outputs are stored in memory

Jirka Fink Data Structures II

Independent repeated trials

Markov inequality

If X is an independent non-negative random variable and c > 1, then $P[X < cE[X]] > \frac{c-1}{c}$.

Expected number of trial using probability

Let V be an event that occurs in a trial with probability p. The expected number of trials to first occurrence of V in a sequence of independent trials is $\frac{1}{p}$.

Expected number of trial using mean

If X is an independent non-negative random variable and c > 1. The expected number of trials to first occurrence of $X \le cE[X]$ in a sequence of independent trials is $\frac{c}{c-1}$.

Example

If the expected number of collisions of a randomly chosen hashing function h is k, then the expected number of independent trials to the first occurrence of a hashing function h with at most 2k collisions is 2.

Content

Static dictionaries

Literatura

Content

Static dictionaries

2 Literatura

Jirka Fink Data Structures II

Static dictionaries

Notations

- Universe U of all elements (words)
- Store $S \subseteq U$ of size n in a data structure
- Using hashing, we store S in a table $M = [m] = \{0, \dots, m-1\}$ of size m

Goal

Create a data structure determining whether a given element of *U* belongs to *S*.

Methods

	Build	Member	
Search tree	n log n	log n	optimal in the comparison model
Cuckoo	n (exp.)	1	log n-independent
FKS	n (exp.)	1	2-independent
	nlog n	1	deterministic

Jirka Fink Data Structur

Universal hashing systems

c-universal hashing system

A hashing system ${\mathcal H}$ of functions h:U o M is c-universal for c>1 if a uniformly chosen h from \mathcal{H} satisfies $P[h(x) = h(y)] \leq \frac{c}{m}$ for every $x, y \in U$ and $x \neq y$.

k-independent hashing system

A hashing system \mathcal{H} of functions $h:U\to M$ is k-independent for $k\in\mathbb{N}$ if a uniformly chosen h from \mathcal{H} satisfies $P[h(x_i) = z_i \text{ for all } i = 1, ..., k] = \mathcal{O}(\frac{1}{m^k})$ for all pairwise different $x_1, \ldots, x_k \in U$ and all $z_1, \ldots, z_k \in M$.

Example: System Multiply-mod-prime

- ullet Let p be a prime greater than u
- $\bullet \ h_{a,b}(x) = (ax + b \bmod p) \bmod m$
- $\mathcal{H} = \{h_{a,b}; a, b \in [p], a \neq 0\}$
- \bullet System ${\cal H}$ is 1-universal and 2-independent but it is not 3-independent

Hagerup, Miltersen, Pagh, 2001 [1]

A static dictionary for n w-bit keys with constant lookup time and a space consumption of $\mathcal{O}(n)$ words can be constructed in $\mathcal{O}(n \log n)$ time on w-word-RAM.

The algorithm is weakly non-uniform, i.e. requires certain precomputed constants

Overview

- Create a function $f_1:[2^w] \to [2^{4w}]$ which is an error-correcting code of relative minimum distance $\delta > 0$.
- ② Create a function $f_2:[2^{4w}] \to [\mathcal{O}(n^k)]$ which is an injection on $f_1(S)$
- **③** Create a function $f_3: [\mathcal{O}(n^k)] \to [\mathcal{O}(n^2)]$ which is an injection on $f_2(f_1(S))$
- Create a function $f_4: [\mathcal{O}(n^2)] \to [\mathcal{O}(n)]$ which is an injection on $f_3(f_2(f_1(S)))$
- $f_4 \circ f_3 \circ f_2 \circ f_1$ can be computed in constant time
- f_2, f_3, f_4 can be fount in time $\mathcal{O}(n \log n)$
- f_1 can be precomputed in time $\mathcal{O}(w)$

- The number of remaining bits is at most r.
- 2 Since $r > \frac{w}{2}$.

Static dictionaries: $[\mathcal{O}(n^2)] \rightarrow [\mathcal{O}(n)]$

Suppose that (f,g) is q-good and $r \ge 3 + \log n$. Then, for every $v \in [2^r]$ there exists $a_v \in [2']$ such that $(x \mapsto g(x) \oplus a_{l(x)}, f)$ is q'-good where $q' = \begin{cases} 0 & \text{if } q \leq n \end{cases}$

n otherwise. All values a_{ν} can be computed in expected time $\mathcal{O}(n)$ and space $\mathcal{O}(n)$ worst case.

Proof $(q' \le n)$

- $\bullet \ \, \mathsf{Let} \, \, h(x) = g(x) \oplus a_{f(x)}$
- 3 If $x, y \in S$ and $x \neq y$ and f(x) = f(y), then $g(x) \neq g(y)$ and $h(x) \neq h(y)$
- ① If $f(x) \neq f(y)$, then $P[h(x) = h(y)] = \frac{1}{2^r}$ where $a_v \sim U[2^r]$ independently for all
- $E[|\{\{x,y\}\subseteq S;\ h(x)=h(y)\}|]\leq \binom{n}{2}/2^r<\frac{n}{16}$ ③
- **1** The expected number of trials to generate h with at most n collisions is $\mathcal{O}(1)$.

Jirka Fink Data Structures II

Static dictionaries: $[\mathcal{O}(n^2)] \rightarrow [\mathcal{O}(n)]$

Lemma

Suppose that (f,g) is g-good and $r \ge 3 + \log n$. Then, for every $v \in [2^r]$ there exists

 $\int 0 \quad \text{if } q \leq n$ $a_v \in [2^r]$ such that $(x \mapsto g(x) \oplus a_{f(x)}, f)$ is q'-good where q' = f(x)n otherwise.

All values a_v can be computed in expected time $\mathcal{O}(n)$ and space $\mathcal{O}(n)$ worst case.

Proof $(q \le n \text{ implies } q' = 0)$

- $\ \ \, \mbox{Order } S_{\nu}$ by non-increasing size, i.e. $|S_{\nu_1}| \geq |S_{\nu_2}| \geq \ldots \geq |S_{\nu_{2'}}|$
- For $j = 1, ..., 2^r$ we find a_{v_i} such that h is perfect •
- For $a_{v_i} \sim U[2^r]$ it holds $E[|\{(x,y) \in S_{v_i} \times S_{< j}; \ h(x) = h(y)\}|]$
 - $\leq |S_{v_j}||S_{\leq j}|P[h(x)=h(y)]$ ②
 - $\leq \sum_{i=1}^{j-1} |S_{v_i}| |S_{v_i}| / 2^r \, ^{\mathfrak{I}} \\ \leq \sum_{i=1}^{j-1} |S_{v_i}^2| / 2^r \, ^{\mathfrak{I}}$

 - $\leq \sum_{i=1}^{j-1} {\binom{S_{v_i}}{2^{i}}}/2^{r-2} \stackrel{\text{(5)}}{=}$ $\leq q/2^{r-2} \leq \frac{1}{2}$
- **3** The expected number of trials to generate a_{v_i} such that h has no collision is $\mathcal{O}(1)$. 6 7

Static dictionaries: $[\mathcal{O}(n^2)] \rightarrow [\mathcal{O}(n)]$

Find a function $h: U \to [2^r]$ with $U = [\mathcal{O}(n^2)]$ and $r = \max\left\{\frac{w}{2}, 3 + \log n\right\}$ s.t.

- h is perfect on $S \subseteq U$ of size n and
- h can be computed in constant time and
- space consumption $\mathcal{O}(n)$ for finding and storing h and
- h can be fount in $\mathcal{O}(n \log n)$ worst case time.
 - First, expected O(n) time
 - then derandomize to $\mathcal{O}(n \log n)$ worst case time.

$x \in U$ is a point (f(x), g(x)) in a $(\mathcal{O}(n) \times \mathcal{O}(n))$ -table

For $x \in U$, let f(x) denote the first r bits of x and g(x) denotes the remaining bits. ① Then $x \mapsto (f(x), g(x))$ is an injection (e.i. perfect on U). ②

Static dictionaries: $[\mathcal{O}(n^2)] \rightarrow [\mathcal{O}(n)]$

For $q \ge 0$ and functions $f, g: U \to [2^r]$, the pair (f, g) is q-good if

- f has at most q collisions and
- $x \mapsto (f(x), g(x))$ is perfect on S.

The number of collisions is the number of pairs $\{x,y\} \subseteq S$ such that f(x) = f(y).

Suppose that (f,g) is q-good and $r \ge 3 + \log n$. Then, for every $v \in [2']$ there exists $a_v \in [2^r]$ such that $(x \mapsto g(x) \oplus a_{f(x)}, f)$ is q'-good where $q' = \begin{cases} 0 & \text{if } q \leq n \\ n & \text{otherwise.} \end{cases}$ All values a_v can be computed in expected time $\mathcal{O}(n)$ and space $\mathcal{O}(n)$ worst case.

Application: Randomized construction of a mapping $[\mathcal{O}(n^2)] \to [\mathcal{O}(n)]$

- \bigcirc (f,g) is $\binom{n}{2}$ -good
- ② $(x \mapsto g'(x) \oplus a'_{f'(x)}, f') = (f'', g'')$ is 0-good, so f'' is perfect

Jirka Fink Data Structures II

- Since $x \mapsto (f(x), g(x))$ is perfect on $S, g(x) \neq g(y)$. From $g(x) \oplus a_{f(x)} = g(x) \oplus a_{f(y)} \neq g(y) \oplus a_{f(y)}$ it follows that $h(x) \neq h(y)$.
- ② For every $v \in [2^r]$ we randomly and independently choose a_v from the uniform distribution on $[2^r]$. Then,

$$\begin{array}{rcl} h(x) & = & h(y) \\ g(x) \oplus a_{f(x)} & = & g(y) \oplus a_{f(y)} \\ a_{f(x)} & = & g(x) \oplus g(y) \oplus a_{f(y)} \end{array}$$

Since $([2^r], \oplus)$ is an Abelian group, $b \mapsto b \oplus c$ is a bijection on $[2^r]$ for every $c \in [2^r]$ and so $a_{(y)} \sim U[2^r]$, it follows that $g(x) \oplus g(y) \oplus a_{t(y)} \sim U[2^r]$. Since $a_{t(x)}$ and $a_{t(y)}$ are independent, also $a_{t(x)}$ and $g(x) \oplus g(y) \oplus a_{t(y)}$ are independent. Hence, $P[h(x) = h(y)] = \frac{1}{2^r}$.

Use the linearity of expectation and substitute r.

- Note that we must find h without collisions. To be precise, we iteratively find a_{vi} for *j* from 1 to 2^r such that it holds $h(x) \neq h(y)$ for every $x \in S_{v_j}$ and $y \in S_{< j}$ where $S_{< j} = \bigcup_{i=1}^{j} S_{v_i}$.
- Linearity of expectation
- **3** Definition of $S_{< j}$
- $|S_{v_i}| \geq |S_{v_i}|$
- **⑤** From this point, assume that $|S_{v_i}| \ge 2$.
- 1 In order to verify that h has no collision, we use a counter $m_v = |\{y \in S_{< j}; \ h(y) = v\}|$. For every j we can count the collisions and update m_v in time $\mathcal{O}(|S_j|)$. The expected time to find all a_{v_j} is $\sum_i \mathcal{O}(|S_j|) = \mathcal{O}(n)$.
- For $S_{v_i} = \{x\}$ we can find v with $m_v = 0$ and set $a_{v_i} = v \oplus g(x)$.

Static dictionaries: $[\mathcal{O}(n^2)] \rightarrow [\mathcal{O}(n)]$

Derandomization

```
Let L_k(a) = |\{(x,y) \in S_{v_j} \times S_{< j} : (g(x) \oplus a)_{[k]} = (h(y))_{[k]}\}| \oplus (a)_i denotes the i-th bit of a and (a)_M denotes the vector of all bits (a)_i for i \in M \subseteq [r] \oplus 1 for j \leftarrow 1 to 2^r do
2 \qquad |a_{v_j} \leftarrow 0|
3 \qquad \text{for } k \leftarrow 0 \text{ to } r - 1 \text{ do}
4 \qquad |if L_k(a_{v_j}) > L_k(a_{v_j} + 2^k) \text{ then}
5 \qquad |a_{v_j} \leftarrow a_{v_j} + 2^k = 1
```

Proof (goodness of (h, f))

```
• L_k(a) + L_k(a \oplus 2^k) = L_{k-1}(a) for every a \in [2^k] and k \in [r]
```

$$\bullet \ L_k(a_{v_j}) \leq \frac{L_{k-1}(a_{v_j})}{2} \leq \frac{L_0(a_{v_j})}{2^k} = \frac{|S_{v_j}||S_{< j}|}{2^k}$$

• The total number of collision is at most $\sum_{j} L_r(a_{v_j}) \leq \sum_{j} 2^{-r} |S_{v_j}| |S_{c_j}| \leq \sum_{i < j} 2^{-r} |S_{v_j}| |S_{v_i}| \leq 2^{-r-1} \left(\sum_{i} S_{v_i}\right)^2 < \frac{n}{16}$

• If $q \le n$, then the number of collision with S_{v_j} is

 $L_r(a_{v_j}) \le \sum_{i < j} 2^{-r} |S_{v_j}| |S_{v_i}| \le \sum_{i < j} 2^{2-r} {S_{v_j} \choose 2} \le 2^{2-r} q \le \frac{1}{2}$

Jirka I

ta Structures II

14

Static dictionaries: $[\mathcal{O}(n^2)] \rightarrow [\mathcal{O}(n)]$

Derandomization

```
Let L_k(a) = |\{(x,y) \in S_{v_j} \times S_{< j}; \ (g(x) \oplus a)_{[k]} = (h(y))_{[k]}\}| (a)_i denotes the i-th bit of a and (a)_M denotes the vector of all bits (a)_i for i \in M \subseteq [r] 1 for j \leftarrow 1 to 2^r do 2 a_{v_j} \leftarrow 0 for k \leftarrow 0 to r-1 do 1 if L_k(a_{v_j}) > L_k(a_{v_j+2^k}) then 5 a_{v_j} \leftarrow a_{v_j} \leftarrow a_{v_j} + 2^k
```

Proof (Complexity)

- In order to compute $L_k(a)$, we build a binary tree (trie)
- Every vertex $a \in [2^k]$ of the k-th level has a counter $c_k(a) = |\{y \in S_{< j}; \ (h(y))_{[k]} = (a)_{[k]}\}|$
- $L_k(a) = \sum_{x \in \mathcal{S}_{v_i}} c_k(g(x) \oplus a)$ can be computed in $\mathcal{O} \big(|\mathcal{S}_{v_j}| \big)$ time
- After the j-th step, counters can be updated in $\mathcal{O}(|S_{v_i}|r)$ time
- Total time is $\sum_{i} |S_{v_i}| r = \mathcal{O}(n \log n)$

Jirka Fink

ta Structures I

15

Static dictionaries: Error-correcting code

Definition

- The Hamming distance between $x \in [2^w]$ and $y \in [2^w]$ is the number of bits in which x and y differ.
- $\psi:[2^w] \to [2^{4w}]$ is an error correcting code of relative minimum distance $\delta>0$ if the Hamming distance between $\psi(x)$ and $\psi(y)$ is at least $4w\delta$ for every distinct $x,y\in[2^w]$.

Lommo

Let $\mathcal H$ be a 2-universal hashing system of function $[2^w] o [2^{4w}]$. For every δ with $1/4w < \delta \le 1/2$, the probability that $h \sim U(\mathcal H)$ is an error correcting code of relative minimum distance $\delta > 0$ is at least $1 - \left({n \choose \delta} \right)^{4\delta}$. ①

Proof

- For $x \in [2^{4w}]$ the number of y within Hamming distance k is at most $(\frac{4ew}{k})^k$. ②
- For $x \neq y$, $P(\text{Hamming distance between } x \text{ and } y \leq k) \leq 2^{1-4w} (\frac{4ew}{k})^k$
- The probability that this happens for any of the ${2w\choose 2}<2^{2w-1}$ pairs is at most $\left(\left(\frac{e}{\delta}\right)^{4\delta}/4\right)^w$ ③

lirka Finl

Data Structuros I

17

Static dictionaries: $[2^w] \rightarrow [\mathcal{O}(n^k)]$

Lemma

Let $\psi:[2^w] o [2^{4w}]$ be an error correcting code of relative minimum distance $\delta>0$ and $S\subseteq U=[2^w]$ of size n. There exists a set $D\subseteq [4w]$ with $|D|\le 2\log n/\log\frac1{1-\delta}$ such that for every pair x,y of distinct elements of S it holds $(\psi(x))_D\neq (\psi(y))_D$.

Proof

- ullet For $D\subseteq [4w]$ and $v\in [2^{|D|}]$ let $C(D,v)=\{x\in S;\; (\psi(x))_D=v\}$ ①
- \bullet The set of colliding pairs of D is $B(D) = \bigcup_{v \in [2^{|D|}]} \binom{C(D,v)}{2}$
- We construct $D_0 \subseteq D_1 \subseteq \ldots \subseteq D_k$ such that $|D_i| = i$ and $|B(D_i)| < (1 \delta)^i n^2/2$ ②
- Let $I(d)=\{\{x,y\}\in B(D_i);\ (\psi(x))_d=(\psi(y))_d\}$ be the colliding pairs indistinguishable by $d\in [4w]\setminus D_i$
- Let $I = \sum_{d \in [4w] \setminus D_i} |I(d)|$
- Every pair $\{x,y\} \in B(D_i)$ contributes to I by at most $4w-i-4w\delta < 4w(1-\delta)$, so $I \le 4w(1-\delta)|B(D_i)|$
- By averaging, there exists $d \in [4w] \setminus D_i$ such that $|I(d)| \le \frac{1}{4w-i} \le (1-\delta)|B(D_i)|$ ③
- Let $D_{i+1} = D_i \cup \{d\}$. Hence, $|B(D_{i+1})| = |I(d)| \le (1 \delta)|B(D_i)|$
- By setting $k = \left| 2 \log n / \log \frac{1}{1 \delta} \right|$ we obtain $|B(D_k)| < 1$.

- Where $k \in [r]$ and $a \in [2^k]$
- Our goal is to iteratively and deterministically compute a_{v_j} for j from 1 to 2'. The value of a_{v_k} is computed by bits from the least significant to the most significant bit. L_k(a) determines the number of collision between S_{v_j} and S_{<j} if we consider only last k bits.

Jirka Fink

Data Structures II

14

Static dictionaries: $[\mathcal{O}(n^k)] \rightarrow [\mathcal{O}(n^2)]$

Approach

- Every $x \in U = [\mathcal{O}(n^k)]$ can be regarded as constant-length string over an alphabet of size n
- Build n-way branching compressed trie of string S
- ullet The number of leaves is |S|=n, so the total number of vertices is at most kn
- Build static $[\mathcal{O}(n^2)] \to [\mathcal{O}(n)]$ dictionary for pairs (vertex of the trie, letter) which returns a child of the vertex
- One polynomial-size-universe lookup is evaluated using a constant number of quadratic-size-universe lookups
 Space complexity is \$\mathcal{O}(n)\$ and this dictionary is constructed in \$\mathcal{O}(n \log n)\$ time

D-1- 01----

- For $\delta < \frac{1}{4w}$ it holds that $4w\delta < 1$ and the identity is an error correcting code of relative minimum distance δ .
- **②** The number of $y \in [2^{4w}]$ within Hamming distance $k \ge 1$ from a fixed $x \in [2^{4w}]$ is $\sum_{i=0}^k \binom{4w}{i} \le (\frac{4w}{k})^k \sum_{i=0}^k \binom{4w}{i} (\frac{k}{4w})^i \le (\frac{4w}{k})^k (1 + \frac{k}{4w})^{4w} \le (\frac{4w}{k})^k e^k \le (\frac{4ew}{k})^k$ using the binomial theorem.
- $\textbf{ 9} \text{ By setting } k = \lfloor 4w\delta \rfloor \text{ we obtain } 2^{2w-1}2^{1-4w}(\tfrac{4ew}{k})^k \leq 2^{-2w}(\tfrac{4ew}{4w\delta})^{4w\delta} = (2^{-2}(\tfrac{e}{\delta})^{4\delta})^w$

Jirka Fi

Data Structures II

1

- **①** Note that for every $D \subseteq [4w]$ the set S is split into $2^{|D|}$ disjoint clusters C(D, v) for $v \in [2^{|D|}]$.
- **③** A bit $d \in [4w] \setminus D_i$ with $|I(d)| \le (1-\delta)|B(D_i)|$ can be found in $\mathcal{O}(wn)$ time as follows. We a list of all clusters $C(D_i, v)$ of size at least two. Every cluster has a list of all elements. So, I(d) for one $d \in [4w] \setminus D_i$ can be determined in $\mathcal{O}(n)$ time and we can process all d in $\mathcal{O}(wn)$ time. Then, all lists can be updated in $\mathcal{O}(n)$ time. Using word-level parallelism, the time complexity can be improved to $\mathcal{O}(n)$.

Jirka Fink

Data Struct

Static dictionaries

2 Literatura

[1] Torben Hagerup, Peter Bro Miltersen, and Rasmus Pagh. Deterministic dictionaries.

Journal of Algorithms, 41(1):69–85, 2001.