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Computational model Word-RAM

@ A word is a w-bit integer
@ A memory an array of words indexed by words

@ The size of memory is 2", so we assume that w = Q(log n)
@ Operations of words in constant time:
o Arithmetical operations are +, —, x, /, mod
o Bit-wise operations &, |, >>, <<
e Comparisons =, <, <, >, >
@ Other operations in constant time: (un)conditional jumps, assignments, memory
accesses, etc.

@ Inputs and outputs are stored in memory
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Static dictionaries

@ Universe U of all elements (words)

@ Store S C U of size nin a data structure
@ Using hashing, we store Sinatable M =[m] ={0,...,m— 1} of size m

Create a data structure determining whether a given element of U belongs to S.

| Build Member

Search tree | nlogn logn optimal in the comparison model
Cuckoo n (exp.) 1 log n-independent
FKS n (exp.) 1 2-independent

nlogn 1 deterministic
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Independent repeated trials

Markov inequality

If X is an independent non-negative random variable and ¢ > 1, then
P[X < cE[X]] > 5.

Expected number of trial using probability

Let V be an event that occurs in a trial with probability p. The expected number of trials
to first occurrence of V in a sequence of independent trials is 113.

v

Expected number of trial using mean

If X is an independent non-negative random variable and ¢ > 1. The expected number
of trials to first occurrence of X < cE[X] in a sequence of independent trials is ;% .

If the expected number of collisions of a randomly chosen hashing function his k, then
the expected number of independent trials to the first occurrence of a hashing function
h with at most 2k collisions is 2.
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Universal hashing systems

c-universal hashing system

A hashing system # of functions h: U — M is c-universal for ¢ > 1 if a uniformly
chosen h from # satifies P[h(x) = h(y)] < £ forevery x,y € U and x # y.

k-independent hashing system

A hashing system # of functions h: U — M is k-independent for k € N if a uniformly
chosen h from H satifies P[h(x;) = z forall i =1,..., k] = O(-%) for all pairwise
different x1,...,xx € Uand all zy,..., 2z € M.

Example: System Multiply-mod-prime

@ Let p be a prime greater than u

@ hap(x) = (ax+ b mod p) mod m

@ H ={h.p; a,b e [p],a+#0}

@ System H is 1-universal and 2-independent but it is not 3-independent
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Hagerup, Miltersen, Pagh, 2001 [1]

A static dictionary for n w-bit keys with constant lookup time and a space consumption
of O(n) words can be constructed in O(nlog n) time on w-word-RAM.

The algorithm is weakly non-uniform, i.e. requires certain precomputed constants
dependent on w.

Overview

@ Create a function f; : [2¥] — [2**] which is an error-correcting code of relative
minimum distance § > 0.

@ Create a function % : [2**] — [O(n*)] which is an injection on f(S)
© Create a function f : [O(n*)] — [O(n?)] which is an injection on £(f(S))
Q Create a function f : [O(n?)] — [O(n)] which is an injection on f(f(f(S)))

@ fy0fz30fofi can be computed in constant time
@ f, f3, 4 can be fount in time O(nlog n)
@ f; can be precomputed in time O(w)
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Static dictionaries: [0 (n?)] — [O(n)]

Find a function h: U — [2"] with U = [O(n?)] and r = max {%,3 + log n} s.t.
@ his perfect on S C U of size n and
@ hcan be computed in constant time and

@ space consumption O(n) for finding and storing h and
@ hcan be fount in O(nlog n) worst case time.

o First, expected O(n) time,
e then derandomize to O(nlog n) worst case time.

x € Uis a point (f(x), g(x)) in a (O(n) x O(n))-table

For x € U, let f(x) denote the first r bits of x and g(x) denotes the remaining bits. @
Then x — (f(x), g(x)) is an injection (e.i. perfect on U). ®
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@ The number of remaining bits is at most r.
Q Sincer > 4.
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Static dictionaries: [0 (n?)] — [O(n)]

Definition

For g > 0 and functions f, g : U — [2'], the pair (f, g) is g-good if
@ f has at most g collisions and
@ x — (f(x),9(x)) is perfect on S.
The number of collisions is the number of pairs {x, y} C S such that f(x) = f(y).

Lemma

Suppose that (f, g) is g-good and r > 3 + log n. Then, for every v € [2'] there exists
0 ifg<n

n otherwise.

All values a, can be computed in expected time O(n) and space O(n) worst case.

ay € [2] such that (x — g(x) @ arx), ) is g’-good where ¢’ =

Application: Randomized construction of a mapping [O(n?)] — [O(n)]
Q (f,9)is (3)-good
Q@ (x— g(x)® axx, f) = (f,g') is n-good
Q (x = g'(x) @ aj, ') = (f",g") is 0-good, so " is perfect
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Static dictionaries: [0 (n?)] — [O(n)]

Suppose that (f, g) is g-good and r > 3 + log n. Then, for every v € [2'] there exists
0 ifg<n

n otherwise.

All values a, can be computed in expected time O(n) and space O(n) worst case.

ay € [2] such that (x — g(x) @ arx), ) is g’-good where ' =

Proof (9’ < n)
Q Let h(x) = g(x) ® arx)
Q Ifx,y € Sand x # y and f(x) = f(y), then g(x) # g(y) and h(x) # h(y) @
Q If f(x) # f(y), then P[h(x) = h(y)] = - where a, ~ U[2'] independently for all
vel21®
Q E[[{{x,y} S S h(x)=h(y)}1< (/2" <@
©@ The expected number of trials to generate h with at most n collisions is O(1).
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@ Since x — (f(x) g(x)) is perfect on S, g(x) # g(y). From
g(x) ® anx = g(x) @ ary) # 9(y) @ ary, it follows that h(x) # h(y).

© Forevery v e [2"] we randomly and |ndependently choose a, from the uniform
distribution on [2]. Then,

h(x) = h(y)
gx)@ay = 9(y) @ ayy
arxy = g(x)®9g(y) ® ary)

Since ([2'], ®) is an Abelian group, b — b @ c is a bijection on [2"] for every

c € [2"] and so af,) ~ U[2'], it follows that g(x) & g(y) @ ar,) ~ U[2"]. Since asx
and &) are independent, also arx) and g(x) ® g(y) @ ar(,) are independent.
Hence, P[h(x) =h(y)] = #.

© Use the linearity of expectation and substitute r.
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Static dictionaries: [0 (n?)] — [O(n)]

Lemma

Suppose that (f, g) is g-good and r > 3 + log n. Then, for every v € [2'] there exists
0 ifg<n

n otherwise.

All values a, can be computed in expected time O(n) and space O(n) worst case.

ay € [2] such that (x — g(x) @ arx), ) is g’-good where ¢’ =

N

Proof (g < nimplies g’ = 0)

Q LetS, ={x€eS; f(x)=v}

@ Order S, by non-increasing size, i.e. |Sy,| > [Sy,| > ... > |Sy,|

Q Forj=1,...,2" wefind ay, such that h is perfect ©

Q For a, ~ U[2]itholds E[| {(x,y) € Sy, x S<j; h(x) = h(y)} ]

|Sy;11S<;IPlh(x) = h(y)] @

SISy lISyl/2r @

S IS1/2 @

i (/22 ®

q/22< 3

© The expected number of trials to generate ay; such that h has no collision is O(1).
® O

(VAN VAN VAN VAN VAN

A
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Q Note that we must find h without collisions. To be precise, we iteratively find a,; for
J from 1 to 2" such that it holds h(x) # h(y) for every x € S, and y € S_; where

Sqj= U{:1 Sy
@ Linearity of expectation
© Definition of S.;
Q IS,] > ISy
@ From this point, assume that |S,,| > 2.

@ In order to verify that h has no collision, we use a counter
my, = |{y € S<j; h(y) = v}|. For every j we can count the collisions and update
my in time O(|Sj|). The expected time to find all ay, is 3>, O(|Sj|) = O(n).

@ For Sy, = {x} we can find v with m, = 0 and set a,, = v & g(x).
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Static dictionaries: [0 (n?)] — [O(n)]

Derandomization

Let Lk(a) = [ {(x,¥) € Sy x S<;i (g(x) @ @)y = (h(y))w}| ©
(a); denotes the i-th bit of a and (a)u denotes the vector of all bits (a); fori € M C [r] @
forj« 1to2" do

a, <0

fork< Otor—1do

L if Ly(ay) > Lk(ay, +2¥) then

a B WO N =

La.,j<—av,.—|—2

Proof (goodness of (h, f))

o Ly(a)+ Lk(a® 2%) = Lx_+(a) for every a € [2¥] and k € [r]
“i(ay; % Sy |1S<;
o Lk(avj) < Lk 12(a]) < Lo(;]) _ | !\2|k <l
@ The total number of collision is at most )
iLe(ay) < 32,2718y 1184 < X278y lISyl <27 (3, 80)" < 5
@ If g < n, then the number of collision with Sy, is

— —r(Sy; —
Li(ay) <32 1Sy 1Sy | < Zi</’22 "( 2’) <2277g< %
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@ Where k € [r] and a € [2¥]

© Our goal is to iteratively and deterministically compute ay, for j from 1 to 2". The
value of a,, is computed by bits from the least significant to the most significant
bit. Lx(a) determines the number of collision between S,; and S; if we consider
only last k bits.

Jirka Fink Data Structures Il 14



1

2
3
4
5

Static dictionaries: [0 (n?)] — [O(n)]

Derandomization

Let Lx(a) = | {(x,¥) € Sy x S<ji (g(x) & @)y = (h(y))i } |
(a); denotes the i-th bit of a and (a)u denotes the vector of all bits (a); for i € M C [r]
forj<+ 1to 2" do
ay +0
fork < Otor—1do
if Lk(ay) > Lk(a, o) then
L | ay+a,+2

Proof (Complexity)

@ In order to compute L, (a), we build a binary tree (trie)
@ Every vertex a € [2] of the k-th level has a counter
c(a) ={y € S<;i (h(¥))w = (A} |
@ Ly(a) = ersv,. cx(g(x) @ a) can be computed in O(|Sy|) time

o After the j-th step, counters can be updated in O(|S,|r) time
o Total timeis >, [Sy|r = O(nlog n)
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Static dictionaries: [O(n*)] — [O(n?)]

Approach

@ Everyx e U= [O(nk)] can be regarded as constant-length string over an
alphabet of size n

@ Build n-way branching compressed trie of string S
@ The number of leaves is |S| = n, so the total number of vertices is at most kn

@ Build static [O(ng)] — [O(n)] dictionary for pairs (vertex of the trie, letter) which
returns a child of the vertex

@ One polynomial-size-universe lookup is evaluated using a constant number of
quadratic-size-universe lookups

@ Space complexity is O(n) and this dictionary is constructed in O(nlog n) time
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Static dictionaries: Error-correcting code

@ The Hamming distance between x € [2"] and y € [2"] is the number of bits in
which x and y differ.

@ 1 : [2"] — [2*"] is an error correcting code of relative minimum distance § > 0 if
the Hamming distance between (x) and () is at least 4w for every distinct
X,y € [2"].

v

Lemma

Let # be a 2-universal hashing system of function [2%] — [2**]. For every & with
1/4w < § < 1/2, the probability that h ~ U(H) is an error correcting code of relative

minimum distance § > 0 is at least 1 — ((£)*/4)". ©

v

Proof
@ For x € [2*"] the number of y within Hamming distance k is at most (#2%)*. ®
@ For x # y, P(Hamming distance between x and y < k) < 2'~#¥(4e%)k
@ The probability that this happens for any of the (%) < 22~ pairs is at most

(/4" © )
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@ For § < . it holds that 4ws < 1 and the identity is an error correcting code of
relative minimum distance 4.

© The number of y € [24‘”] within Hamming distance k > 1 from a fixed x € [2*"]is

o (M) < (B T () () < (O + )™ < (B9)ke < (%) using
the binomial theorem.

© By setting k = [4w4] we obtain 22¥~ 121~ (4w )k < p2w(den)dws _ (p=2( ey yw
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Static dictionaries: [2¥] — [O(n¥)]

Lemma

Let ¢ : [2¥] — [2*"] be an error correcting code of relative minimum distance ¢ > 0
and S C U = [2"] of size n. There exists a set D C [4w] with |D| < 2log n/log 5
such that for every pair x, y of distinct elements of S it holds (1(x))p # (¥(¥))b-

@ ForDC [4w]and v € [2!P] let C(D,v) = {x € S; (¥(x))p = v} ®
@ The set of colliding pairs of D is B(D) = U,¢ion; (3"
@ We construct Dy C Dy C ... C Dy such that |D;| = i and |B(D))| < (1 —6)'n?/2 ®

@ Let I(d) = {{x,y} € B(D)); (¥(x))a = (¢»(¥))a} be the colliding pairs
indistinguishable by d € [4w] \ D;

o Let/=3 jcump, (D)

@ Every pair {x, y} € B(D;) contributes to / by at most 4w — i — 4wé < 4w(1 — §),
so I < 4w(1 - 6)|B(D))|

@ By averaging, there exists d € [4w]\ D; such that |/(d)| < ;.= < (1-6)|B(D})| ®

o Let Diy = D; U {d}. Hence, |B(Di1)| = |I(d)| < (1 — 8)|B(D))|
@ By setting k = {2 log n/ log HT@J we obtain |B(Dy)| < 1.
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@ Note that for every D C [4w] the set S'is split into 2/°! disjoint clusters C(D, v) for
v e [21P1).

@ For i = 0 it holds that Dy = ) and B(Do) = (f) < Z.

©Q Abitd € [4w] \ D; with |/(d)| < (1 — §)|B(D;)| can be found in O(wn) time as
follows. We a list of all clusters C(D;, v) of size at least two. Every cluster has a list
of all elements. So, /(d) for one d € [4w] \ D; can be determined in O(n) time and
we can process all d in O(wn) time. Then, all lists can be updated in O(n) time.
Using word-level parallelism, the time complexity can be improved to O(n).
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