Data struktures II NTIN067

Jirka Fink

https://ktiml.mff.cuni.cz/~fink/

Katedra teoretické informatiky a matematické logiky Matematicko-fyzikální fakulta Univerzita Karlova v Praze

> Summer semester 2016/17 Last change February 21, 2017

License: Creative Commons BY-NC-SA 4.0

General information

E-mail fink@ktiml.mff.cuni.cz Homepage http://ktiml.mff.cuni.cz/~fink/ Consultations Individual schedule

Description

- A word is a w-bit integer
- A memory an array of words indexed by words
- The size of memory is 2^w , so we assume that $w = \Omega(\log n)$
- Operations of words in constant time:
 - Arithmetical operations are +, -, *, /, mod
 - Bit-wise operations &, $|,\hat{,} >>, <<$
 - Comparisons =, <, \leq , >, \geq
- Other operations in constant time: (un)conditional jumps, assignments, memory accesses, etc.
- Inputs and outputs are stored in memory

Notations

- Universe U of all elements (words)
- Store $S \subseteq U$ of size *n* in a data structure
- Using hashing, we store S in a table $M = [m] = \{0, ..., m-1\}$ of size m

Goal

Create a data structure determining whether a given element of U belongs to S.

Methods			
	Build	Member	
Search tree	n log n	log n	optimal in the comparison model
Cuckoo	<i>n</i> (exp.)	1	log n-independent
FKS	<i>n</i> (exp.)	1	2-independent
	n log n	1	deterministic

Markov inequality

If X is an independent non-negative random variable and c > 1, then $P[X < cE[X]] > \frac{c-1}{c}$.

Expected number of trial using probability

Let V be an event that occurs in a trial with probability p. The expected number of trials to first occurrence of V in a sequence of independent trials is $\frac{1}{p}$.

Expected number of trial using mean

If X is an independent non-negative random variable and c > 1. The expected number of trials to first occurrence of $X \le cE[X]$ in a sequence of independent trials is $\frac{c}{c-1}$.

Example

If the expected number of collisions of a randomly chosen hashing function h is k, then the expected number of independent trials to the first occurrence of a hashing function h with at most 2k collisions is 2.

c-universal hashing system

A hashing system \mathcal{H} of functions $h: U \to M$ is *c*-universal for c > 1 if a uniformly chosen *h* from \mathcal{H} satifies $P[h(x) = h(y)] \leq \frac{c}{m}$ for every $x, y \in U$ and $x \neq y$.

k-independent hashing system

A hashing system \mathcal{H} of functions $h: U \to M$ is *k*-independent for $k \in \mathbb{N}$ if a uniformly chosen *h* from \mathcal{H} satifies $P[h(x_i) = z_i$ for all $i = 1, ..., k] = \mathcal{O}(\frac{1}{m^k})$ for all pairwise different $x_1, ..., x_k \in U$ and all $z_1, ..., z_k \in M$.

Example: System Multiply-mod-prime

- Let p be a prime greater than u
- $h_{a,b}(x) = (ax + b \mod p) \mod m$
- $\mathcal{H} = \{h_{a,b}; a, b \in [p], a \neq 0\}$
- System \mathcal{H} is 1-universal and 2-independent but it is not 3-independent

Goal

A static dictionary for *n w*-bit keys with constant lookup time and a space consumption of $\mathcal{O}(n)$ words can be constructed in $\mathcal{O}(n \log n)$ time on *w*-word-RAM. The algorithm is weakly non-uniform, i.e. requires certain precomputed constants dependent on *w*.

Overview

- Create a function $f_1 : [2^w] \to [2^{4w}]$ which is an error-correcting code of relative minimum distance $\delta > 0$.
- 2 Create a function $f_2 : [2^{4w}] \to [\mathcal{O}(n^k)]$ which is an injection on $f_1(S)$
- Create a function $f_3 : [\mathcal{O}(n^k)] \to [\mathcal{O}(n^2)]$ which is an injection on $f_2(f_1(S))$
- Create a function $f_4 : [\mathcal{O}(n^2)] \to [\mathcal{O}(n)]$ which is an injection on $f_3(f_2(f_1(S)))$
 - $f_4 \circ f_3 \circ f_2 \circ f_1$ can be computed in constant time
 - f_2, f_3, f_4 can be fount in time $\mathcal{O}(n \log n)$
 - f_1 can be precomputed in time $\mathcal{O}(w)$

Goal

Find a function $h: U \to [2^r]$ with $U = [\mathcal{O}(n^2)]$ and $r = \max\{\frac{w}{2}, 3 + \log n\}$ s.t.

- *h* is perfect on $S \subseteq U$ of size *n* and
- h can be computed in constant time and
- space consumption $\mathcal{O}(n)$ for finding and storing *h* and
- *h* can be fount in $\mathcal{O}(n \log n)$ worst case time.
 - First, expected O(n) time,
 - then derandomize to O(n log n) worst case time.

$x \in U$ is a point (f(x), g(x)) in a $(\mathcal{O}(n) \times \mathcal{O}(n))$ -table

For $x \in U$, let f(x) denote the first r bits of x and g(x) denotes the remaining bits. Then $x \mapsto (f(x), g(x))$ is an injection (e.i. perfect on U).

- The number of remaining bits is at most *r*.
- 2 Since $r \geq \frac{w}{2}$.

Definition

For $q \ge 0$ and functions $f, g : U \rightarrow [2^r]$, the pair (f, g) is q-good if

- f has at most q collisions and
- $x \mapsto (f(x), g(x))$ is perfect on *S*.

The number of collisions is the number of pairs $\{x, y\} \subseteq S$ such that f(x) = f(y).

Lemma

Suppose that (f, g) is *q*-good and $r \ge 3 + \log n$. Then, for every $v \in [2']$ there exists $a_v \in [2']$ such that $(x \mapsto g(x) \oplus a_{f(x)}, f)$ is *q'*-good where $q' = \begin{cases} 0 & \text{if } q \le n \\ n & \text{otherwise.} \end{cases}$ All values a_v can be computed in expected time $\mathcal{O}(n)$ and space $\mathcal{O}(n)$ worst case.

Application: Randomized construction of a mapping $[\mathcal{O}(n^2)] \rightarrow [\mathcal{O}(n)]$

• (f,g) is
$$\binom{n}{2}$$
-good

•
$$(x \mapsto g(x) \oplus a_{f(x)}, f) = (f', g')$$
 is *n*-good

3 $(x \mapsto g'(x) \oplus a'_{f'(x)}, f') = (f'', g'')$ is 0-good, so f'' is perfect

Lemma

Suppose that (f, g) is *q*-good and $r \ge 3 + \log n$. Then, for every $v \in [2^r]$ there exists $a_v \in [2^r]$ such that $(x \mapsto g(x) \oplus a_{f(x)}, f)$ is q'-good where $q' = \begin{cases} 0 & \text{if } q \le n \\ n & \text{otherwise.} \end{cases}$ All values a_v can be computed in expected time $\mathcal{O}(n)$ and space $\mathcal{O}(n)$ worst case.

Proof $(q' \leq n)$

- Let $h(x) = g(x) \oplus a_{f(x)}$
- 2 If $x, y \in S$ and $x \neq y$ and f(x) = f(y), then $g(x) \neq g(y)$ and $h(x) \neq h(y)$ ①
- If $f(x) \neq f(y)$, then $P[h(x) = h(y)] = \frac{1}{2^r}$ where $a_v \sim U[2^r]$ independently for all $v \in [2^r]$ ②
- $E[|\{\{x,y\}\subseteq S; h(x)=h(y)\}|] \leq \binom{n}{2}/2^r < \frac{n}{16}$
- **(**) The expected number of trials to generate *h* with at most *n* collisions is O(1).

- Since $x \mapsto (f(x), g(x))$ is perfect on $S, g(x) \neq g(y)$. From $g(x) \oplus a_{f(x)} = g(x) \oplus a_{f(y)} \neq g(y) \oplus a_{f(y)}$ it follows that $h(x) \neq h(y)$.
- Por every v ∈ [2'] we randomly and independently choose a_v from the uniform distribution on [2']. Then,

$$\begin{array}{lll} h(x) &=& h(y) \\ g(x) \oplus a_{f(x)} &=& g(y) \oplus a_{f(y)} \\ a_{f(x)} &=& g(x) \oplus g(y) \oplus a_{f(y)} \end{array}$$

Since $([2^r], \oplus)$ is an Abelian group, $b \mapsto b \oplus c$ is a bijection on $[2^r]$ for every $c \in [2^r]$ and so $a_{f(y)} \sim U[2^r]$, it follows that $g(x) \oplus g(y) \oplus a_{f(y)} \sim U[2^r]$. Since $a_{f(x)}$ and $a_{f(y)}$ are independent, also $a_{f(x)}$ and $g(x) \oplus g(y) \oplus a_{f(y)}$ are independent. Hence, $P[h(x) = h(y)] = \frac{1}{2^r}$.

Use the linearity of expectation and substitute r.

Lemma

Suppose that (f, g) is q-good and $r \ge 3 + \log n$. Then, for every $v \in [2']$ there exists $a_v \in [2']$ such that $(x \mapsto g(x) \oplus a_{f(x)}, f)$ is q'-good where $q' = \begin{cases} 0 & \text{if } q \le n \\ n & \text{otherwise.} \end{cases}$

All values a_v can be computed in expected time $\mathcal{O}(n)$ and space $\mathcal{O}(n)$ worst case.

Proof ($q \le n$ implies q' = 0)

• Let
$$S_v = \{x \in S; f(x) = v\}$$

3 Order S_v by non-increasing size, i.e. $|S_{v_1}| \ge |S_{v_2}| \ge \ldots \ge |S_{v_{2^r}}|$

So For $j = 1, ..., 2^r$ we find a_{v_j} such that *h* is perfect ①

(5)

• For $a_{v_j} \sim U[2^r]$ it holds $E[|\{(x, y) \in S_{v_j} \times S_{<j}; h(x) = h(y)\}|]$

$$\leq |S_{ extsf{v}_j}||S_{< j}|P[h(x) = h(y)]$$
 (2)
 $\leq \sum_{i=1}^{j-1} |S_{ extsf{v}_j}||S_{ extsf{v}_i}|/2^r$ (3)

$$\sum_{i=1}^{j-1} |S_{v_i}^2|/2^r$$

$$\leq \sum_{i=1}^{J-1} {\binom{s_{v_i}}{2}}/{2^{r-2}}$$

$$q/2^{r-2} \le \frac{1}{2}$$

The expected number of trials to generate a_{v_j} such that *h* has no collision is O(1).
⑦

- Note that we must find *h* without collisions. To be precise, we iteratively find a_{v_j} for *j* from 1 to 2^r such that it holds $h(x) \neq h(y)$ for every $x \in S_{v_j}$ and $y \in S_{< j}$ where $S_{< j} = \bigcup_{i=1}^{j} S_{v_i}$.
- Linearity of expectation
- **③** Definition of $S_{< j}$
- $|S_{v_i}| \geq |S_{v_j}|$
- From this point, assume that $|S_{v_i}| \ge 2$.
- In order to verify that *h* has no collision, we use a counter
 m_v = | {y ∈ S_{<j}; h(y) = v} |. For every *j* we can count the collisions and update
 m_v in time O(|S_j|). The expected time to find all a_{v_i} is ∑_i O(|S_j|) = O(n).
- For $S_{v_j} = \{x\}$ we can find v with $m_v = 0$ and set $a_{v_j} = v \oplus g(x)$.

Derandomization

Let $L_k(a) = |\{(x, y) \in S_{v_j} \times S_{<j}; (g(x) \oplus a)_{[k]} = (h(y))_{[k]}\}|$ ⁽¹⁾ (a)_i denotes the *i*-th bit of *a* and (a)_M denotes the vector of all bits (a)_i for $i \in M \subseteq [r]$ ⁽²⁾ 1 for $j \leftarrow 1$ to 2^r do 2 $\begin{vmatrix} a_{v_j} \leftarrow 0 \\ s_i & \\ for k \leftarrow 0$ to r - 1 do 4 $\begin{vmatrix} if L_k(a_{v_j}) > L_k(a_{v_j} + 2^k) \\ a_{v_j} \leftarrow a_{v_j} + 2^k \end{vmatrix}$ then

Proof (goodness of (h, f))

•
$$L_k(a) + L_k(a \oplus 2^k) = L_{k-1}(a)$$
 for every $a \in [2^k]$ and $k \in [r]$

•
$$L_k(a_{v_j}) \leq \frac{L_{k-1}(a_{v_j})}{2} \leq \frac{L_0(a_{v_j})}{2^k} = \frac{|S_{v_j}||S_{< j}|}{2^k}$$

- The total number of collision is at most $\sum_{j} L_r(a_{v_j}) \le \sum_{j} 2^{-r} |S_{v_j}| |S_{< j}| \le \sum_{i < j} 2^{-r} |S_{v_j}| |S_{v_i}| \le 2^{-r-1} (\sum_{i} S_{v_i})^2 < \frac{n}{16}$
- If $q \leq n$, then the number of collision with S_{v_j} is $L_r(a_{v_j}) \leq \sum_{i < j} 2^{-r} |S_{v_j}| |S_{v_i}| \leq \sum_{i < j} 2^{2-r} {S_{v_j} \choose 2} \leq 2^{2-r} q \leq \frac{1}{2}$

- Where $k \in [r]$ and $a \in [2^k]$
- Our goal is to iteratively and deterministically compute a_{vj} for *j* from 1 to 2^{*r*}. The value of a_{vk} is computed by bits from the least significant to the most significant bit. L_k(a) determines the number of collision between S_{vj} and S_{<j} if we consider only last *k* bits.

Derandomization

Let $L_k(a) = |\{(x, y) \in S_{v_j} \times S_{<j}; (g(x) \oplus a)_{[k]} = (h(y))_{[k]}\}|$ (a)_i denotes the *i*-th bit of *a* and (a)_M denotes the vector of all bits (a)_i for $i \in M \subseteq [r]$ 1 for $j \leftarrow 1$ to 2^r do 2 $|a_{v_j} \leftarrow 0$ 3 for $k \leftarrow 0$ to r - 1 do 4 $|L_k(a_{v_j}) > L_k(a_{v_j+2^k})$ then 5 $|L_k(a_{v_j} \leftarrow a_{v_j} + 2^k]$

Proof (Complexity)

- In order to compute $L_k(a)$, we build a binary tree (trie)
- Every vertex a ∈ [2^k] of the k-th level has a counter c_k(a) = | {y ∈ S_{<j}; (h(y))_[k] = (a)_[k]} |
- $L_k(a) = \sum_{x \in S_{v_i}} c_k(g(x) \oplus a)$ can be computed in $\mathcal{O}(|S_{v_j}|)$ time
- After the *j*-th step, counters can be updated in $\mathcal{O}(|S_{v_j}|r)$ time

• Total time is
$$\sum_{j} |S_{v_j}| r = \mathcal{O}(n \log n)$$

Approach

- Every x ∈ U = [O(n^k)] can be regarded as constant-length string over an alphabet of size n
- Build *n*-way branching compressed trie of string S
- The number of leaves is |S| = n, so the total number of vertices is at most kn
- Build static $[\mathcal{O}(n^2)] \rightarrow [\mathcal{O}(n)]$ dictionary for pairs (vertex of the trie, letter) which returns a child of the vertex
- One polynomial-size-universe lookup is evaluated using a constant number of quadratic-size-universe lookups
- Space complexity is O(n) and this dictionary is constructed in $O(n \log n)$ time

Static dictionaries: Error-correcting code

Definition

- The Hamming distance between x ∈ [2^w] and y ∈ [2^w] is the number of bits in which x and y differ.
- ψ : [2^w] → [2^{4w}] is an error correcting code of relative minimum distance δ > 0 if the Hamming distance between ψ(x) and ψ(y) is at least 4wδ for every distinct x, y ∈ [2^w].

Lemma

Let \mathcal{H} be a 2-universal hashing system of function $[2^w] \to [2^{4w}]$. For every δ with $1/4w < \delta \leq 1/2$, the probability that $h \sim U(\mathcal{H})$ is an error correcting code of relative minimum distance $\delta > 0$ is at least $1 - ((\frac{\varrho}{\delta})^{4\delta}/4)^w$. (1)

Proof

- For $x \in [2^{4w}]$ the number of y within Hamming distance k is at most $(\frac{4ew}{k})^k$. ②
- For $x \neq y$, *P*(Hamming distance between x and $y \leq k$) $\leq 2^{1-4w} (\frac{4ew}{k})^k$
- The probability that this happens for any of the $\binom{2^w}{2} < 2^{2w-1}$ pairs is at most $\left(\left(\frac{e}{\delta}\right)^{4\delta}/4\right)^w$ (3)

- For δ < ¹/_{4w} it holds that 4wδ < 1 and the identity is an error correcting code of relative minimum distance δ.</p>
- **3** The number of $y \in [2^{4w}]$ within Hamming distance $k \ge 1$ from a fixed $x \in [2^{4w}]$ is $\sum_{i=0}^{k} \binom{4w}{i} \le (\frac{4w}{k})^k \sum_{i=0}^k \binom{4w}{i} (\frac{k}{4w})^i \le (\frac{4w}{k})^k (1 + \frac{k}{4w})^{4w} \le (\frac{4w}{k})^k e^k \le (\frac{4ew}{k})^k$ using the binomial theorem.

3 By setting $k = \lfloor 4w\delta \rfloor$ we obtain $2^{2w-1}2^{1-4w}(\frac{4ew}{k})^k \le 2^{-2w}(\frac{4ew}{4w\delta})^{4w\delta} = (2^{-2}(\frac{e}{\delta})^{4\delta})^w$

Lemma

Let $\psi : [2^w] \to [2^{4w}]$ be an error correcting code of relative minimum distance $\delta > 0$ and $S \subseteq U = [2^w]$ of size *n*. There exists a set $D \subseteq [4w]$ with $|D| \le 2 \log n / \log \frac{1}{1-\delta}$ such that for every pair *x*, *y* of distinct elements of *S* it holds $(\psi(x))_D \neq (\psi(y))_D$.

Proof

- For $D \subseteq [4w]$ and $v \in [2^{|D|}]$ let $C(D, v) = \{x \in S; (\psi(x))_D = v\}$ ①
- The set of colliding pairs of D is $B(D) = \bigcup_{v \in [2^{|D|}]} {C(D,v) \choose 2}$
- We construct $D_0 \subseteq D_1 \subseteq \ldots \subseteq D_k$ such that $|D_i| = i$ and $|B(D_i)| < (1 \delta)^i n^2/2$ 2
- Let *I*(*d*) = {{*x*, *y*} ∈ *B*(*D_i*); (ψ(*x*))_{*d*} = (ψ(*y*))_{*d*}} be the colliding pairs indistinguishable by *d* ∈ [4*w*] \ *D_i*
- Let $I = \sum_{d \in [4w] \setminus D_i} |I(d)|$
- Every pair {x, y} ∈ B(D_i) contributes to *I* by at most 4w − i − 4wδ < 4w(1 − δ), so I ≤ 4w(1 − δ)|B(D_i)|
- By averaging, there exists $d \in [4w] \setminus D_i$ such that $|I(d)| \le \frac{1}{4w-i} \le (1-\delta)|B(D_i)|$ 3
- Let $D_{i+1} = D_i \cup \{d\}$. Hence, $|B(D_{i+1})| = |I(d)| \le (1 \delta)|B(D_i)|$
- By setting $k = \left| 2 \log n / \log \frac{1}{1-\delta} \right|$ we obtain $|B(D_k)| < 1$.

- Note that for every D ⊆ [4w] the set S is split into 2^{|D|} disjoint clusters C(D, v) for v ∈ [2^{|D|}].
- 2 For i = 0 it holds that $D_0 = \emptyset$ and $B(D_0) = {n \choose 2} < \frac{n^2}{2}$.
- A bit *d* ∈ [4*w*] \ *D_i* with |*I*(*d*)| ≤ (1 − δ)|*B*(*D_i*)| can be found in *O*(*wn*) time as follows. We a list of all clusters *C*(*D_i*, *v*) of size at least two. Every cluster has a list of all elements. So, *I*(*d*) for one *d* ∈ [4*w*] \ *D_i* can be determined in *O*(*n*) time and we can process all *d* in *O*(*wn*) time. Then, all lists can be updated in *O*(*n*) time. Using word-level parallelism, the time complexity can be improved to *O*(*n*).

[1] Torben Hagerup, Peter Bro Miltersen, and Rasmus Pagh. Deterministic dictionaries.

Journal of Algorithms, 41(1):69-85, 2001.