Data Structures 1
NTIN066

Jirka Fink
Department of Theoretical Computer Science and Mathematical Logic
Faculty of Mathematics and Physics
Charles University in Prague

Winter semester 2017/18
Last change on January 11, 2018

License: Creative Commons BY-NC-SA 4.0

Content

Amortized analysis
(2)

Splay tree
(3)
(a,b)-tree and red-black tree
(a)

Heaps
(5)

Cache-oblivious algorithms
(6)

Hash tables
(3)

Geometrical data structures
(3)

Bibliography

General information

E-mail fink@ktiml.mff.cuni.cz
Homepage https://ktiml.mff.cuni.cz/fink/
Consultations Thursday, 17:15, office S305

Examination

- Implement given data structures
- Pass the exam
- A. Koubková, V. Koubek: Datové struktury I. MATFYZPRESS, Praha 2011.
- T. H. Cormen, C.E. Leiserson, R. L. Rivest, C. Stein: Introduction to Algorithms. MIT Press, 2009
- K. Mehlhorn: Data Structures and Algorithms I: Sorting and Searching. Springer-Verlag, Berlin, 1984
- D. P. Mehta, S. Sahni eds.: Handbook of Data Structures and Applications. Chapman \& Hall/CRC, Computer and Information Series, 2005
- E. Demaine: Cache-Oblivious Algorithms and Data Structures. 2002.
- R. Pagh: Cuckoo Hashing for Undergraduates. Lecture note, 2006.
- M. Thorup: High Speed Hashing for Integers and Strings. lecture notes, 2014.
- M. Thorup: String hashing for linear probing (Sections 5.1-5.4). In Proc. 20th SODA, 655-664, 2009.

Amortized analysis
(3) Splay tree
(3) (a.b)-tree and red-black tree
(4) Heaps
(3) Cache-oblivious algorithms
(6) Hash tables
7. Geometrical datè structures

Motivation

- Consider a data structure which is usually very fast
- However in rare cases, it needs to reorganize its internal structure
- So, the worst-case complexity is quite slow
- This data structure may used by an algorithm
- We are interested in the total complexity or average complexity of many operations

Incrementing binary counter

Problem description

- Consider an n-bit binary counter with an arbitrary initial value
- Operation Increment changes the last false bit to true and all following bits to false
- The number changed bits is at most n
- What is the maximal number of bits changed during k operations Increment?
Aggregate analysis
- The last bit is changed during every operation; i.e. k-times
- The last but one bit is changed during every other operation; i.e. at most「k/2]-times
- The i-th least significant bit is changed during every 2^{i}-th operation; i.e. at most $\left\lceil k / 2^{i}\right\rceil$-times
- The number of changed bits during k operations Increment is at most $\sum_{i=0}^{n-1}\left\lceil k / 2^{i}\right\rceil \leq \sum_{i=0}^{n-1}\left(1+k / 2^{i}\right) \leq n+k \sum_{i=0}^{n-1} 1 / 2^{i} \leq n+2 k$

Potential method

- The potential of a false bit is 0 and the potential of a true bit is 1
- The potential of the counter is the sum of potentials of all bits
- Let T_{i} be the number of changed bits during i-th operation and Φ_{i} be the potential of the counter after i-th operation
- Observe that $T_{i}+\Phi_{i}-\Phi_{i-1} \leq 2$
- The number of changed bit during k operations Increment is at most
$\sum_{i=1}^{k} T_{i} \leq \sum_{i=1}^{k}\left(2+\Phi_{i-1}-\Phi_{i}\right) \leq 2 k+\Phi_{0}-\Phi_{k} \leq 2 k+n$ since $0 \leq \Phi_{i} \leq n$

Problem description

- We have an array of length p storing n elements and we need to implement operations Insert and Delete
- If $n=p$ and an element has to be inserted, then the length of the array is doubled
- If $4 n=p$ and an element has to be deleted, then the length of the array is halved
- What is the number of copied elements during k operations Insert and Delete?
Aggregated analysis
- Let k_{i} be the number of operations between $(i-1)$-th and i-th reallocation
The first reallocation copies at most $n_{0}+k_{1}$ elements where n_{0} is the initial
number of elements
- The i-th reallocation copies at most $2 k_{i}$ elements for $i \geq 2$
- Every operation without reallocation copies at most 1 element
- The total number of copied elements is at most $k+\left(n_{0}+k_{1}\right)+\sum_{i \geq 2} 2 k_{i} \leq n_{0}+3 k$

Jirka Fink Data Structures 1
-
$\Phi^{\prime}-\Phi= \begin{cases}2 & \text { Insert and } p \leq 2 n \\ -2 & \text { Delete and } p \leq 2 n \\ -1 & \text { Insert and } p \geq 2 n \\ 1 & \text { Delete and } p \geq 2 n\end{cases}$
Potential method

- Consider the potential

$$
\Phi= \begin{cases}0 & \text { if } p=2 n \\ n & \text { if } p=n \\ n & \text { if } p=4 n\end{cases}
$$

and piece-wise linear function in other cases

- Explicitly,

$$
\Phi= \begin{cases}2 n-p & \text { if } p \leq 2 n \\ p / 2-n & \text { if } p \geq 2 n\end{cases}
$$

- Change of the potential without reallocation is $\Phi_{i}-\Phi_{i-1} \leq 2$ (1)
- Let T_{i} be the number of elements copied during i-th operation
- Hence, $T_{i}+\Phi_{i}-\Phi_{i-1} \leq 3$
- The total number of copied elements during k operations is $\sum_{i=1}^{k} T_{i} \leq 3 k+\Phi_{0}-\Phi_{k} \leq 3 k+n_{0}$

Amortized complexity

Average of the aggregated analysis

- The amortized complexity of an operation is the total time of k operations over k assuming that k is sufficiently large.
- For example, the amortized complexity of operations Insert and Delete in the dynamic array is $\frac{\sum_{i=1}^{k} T_{i}}{k} \leq \frac{3 k+n_{0}}{k} \leq 4=\mathcal{O}(1)$ assuming that $k \geq n_{0}$.

Potential method

- Let Φ a potential which evaluates the internal representation of a data structure
- Let T_{i} be the actual time complexity of i-th operation
- Let Φ_{i} be the potential after i-th operation
- The amortized complexity of the operation is $\mathcal{O}(f(n))$ if $T_{i}+\Phi_{i}-\Phi_{i-1} \leq f(n)$ for every operation i in an arbitrary sequence of operations
- For example in dynamic array, $T_{i}+\Phi_{i}-\Phi_{i-1} \leq 3$, so the amortized complexity of operations Insert and Delete is $\mathcal{O}(1)$

Jirka Fink Data Structures 1

Weight balanced trees: BB[a]-tree

Description (Jürg Nievergelt, Edward M. Reingold [11])

- A binary search tree satisfying the following weight-balanced condition
- Let s_{u} be the number of nodes in a subtree of a node $u(1)$
- For every node u it holds that the subtree of both children of u has at most αs_{u} nodes (2)
- Clearly, make sense only for $\frac{1}{2}<\alpha<1$

Height

- The subtree of every grandson of the root has at most $\alpha^{2} n$ vertices
- The subtree of every node in the i-th level is at most $\alpha^{i} n$ vertices
- $\alpha^{i} n \geq 1$ only for $i \leq \log _{\frac{1}{2}}(n)$
- The height of $\mathrm{BB}[\alpha]$-tree is $\Theta(\log n)$

Operation Build: Create $\mathrm{BB}[\alpha]$-tree from an array of sorted elements

- Create a root and set the middle element to be the key in the root
- Create both subtree of the root using recursing
- Time complexity is $\mathcal{O}(n)$

Jirka Fink \quad Data Structures 1
Weight balanced trees: $\mathrm{BB}[\alpha]$-tree

Operations Insert and Delete (1)

- Insert/Delete given node similarly as in (non-balanced) binary search trees (2)
- When a node u violates the weight condition, rebuild whole subtree in time $\mathcal{O}\left(s_{u}\right)$.

Amortized cost of rebalancing

- Between two consecutive rebuilds of a node u, there are at least $\Omega\left(s_{u}\right)$ updates in the subtree of u
- Therefore, amortized cost of rebuilding a subtree is $\mathcal{O}(1)$
- Update contributes to amortized costs of all nodes on the path from the root to leaf
- The amortized cost of operations Insert and Delete is $\mathcal{O}(\log n)$.

It is possible to use rotations to keep the $\mathrm{BB}[\alpha]$-tree balanced. However in range trees, a rotation in the x-tree leads to rebuilding many y-trees.

Weight balanced trees: $\mathrm{BB}[\alpha]$-tree

(2) Complexity is $\mathcal{O}(\log n)$ since tree has height $\mathcal{O}(\log n)$

Potential method

- The potencial of a node u is

$$
\Phi(u)= \begin{cases}0 & \text { if }\left|s_{(u)}-s_{r(u)}\right| \leq 1 \\ \left|s_{l(u)}-s_{r(u)}\right| & \text { otherwise }\end{cases}
$$

where $I(u)$ and $r(u)$ is left and right child of u, respectively

- The potential Φ of whole tree is the sum of potentials of all nodes
- Without reconstruction, Φ increases by $\mathcal{O}(\log (n))$
- If node u requires a reconstruction, then $\Phi(u) \geq \alpha s_{u}-(1-\alpha) s_{u} \geq(2 \alpha-1) s_{u}$
- So, the reconstruction is paid by the decreasement of the potential
- Every node in the new subtree has potential zero

Statically optimal tree

Goal

For a given sequence of operations FIND construct a binary search tree minimizing the total search time.

Formally

Consider elements x_{1}, \ldots, x_{n} with weights w_{1}, \ldots, w_{n}. The cost of a tree is $\sum_{i=1}^{n} w_{i} h_{i}$ where h_{i} is the depth of an element x_{i}. The statically optimal tree is a binary search with minimal cost.

Construction (Exercise)

- $\mathcal{O}\left(n^{3}\right)$ - straightforward dynamic programming
- $\mathcal{O}\left(n^{2}\right)$ - improved dynamic programming (Knuth, 1971 [9])

What we can do if the search sequence is unknown?

- Using rotations we keep recently searched elements closed to the root
- Operation Splay "rotates" a given element to the root
- Operation FIND finds a given element and calls operation Splay

Jirka Fink Data Structures 1

Splay tree: Operation SpLAY of a node x

- Zig-zag step consists of two simple rotations of x with its parent

- Zig-zig step consists of two simple rotations,

- however two simple rotations of x with its parent lead to a different tree

Splay trees: Zig step

Analysis
(1) $\Phi_{i}(x)=\Phi_{i-1}(p)$
(2) $\Phi_{i}(p)<\Phi_{i}(x)$

- $\Phi_{i}(u)=\Phi_{i-1}(u)$ for every other nodes u
- $\Phi_{i}-\Phi_{i-1}=\sum_{\text {nodes } u}\left(\Phi_{i}(u)-\Phi_{i-1}(u)\right)$
$=\Phi_{i}(p)-\Phi_{i-1}(p)+\Phi_{i}(x)-\Phi_{i-1}(x)$
$\leq \Phi_{i}(x)-\Phi_{i-1}(x)$
(0) Hence, $\Phi_{i}-\Phi_{i-1} \leq \Phi_{i}(x)-\Phi_{i-1}(x)$

Splay trees: Zig-zig step

Analysis

(1) $\Phi_{i}(x)=\Phi_{i-1}(g)$
(2) $\Phi_{i-1}(x)<\Phi_{i-1}(p)$

- $\Phi_{i}(p)<\Phi_{i}(x)$
(1) $s_{i-1}(x)+s_{i}(g) \leq s_{i}(x)$
- $\Phi_{i-1}(x)+\Phi_{i}(g) \leq 2 \Phi_{i}(x)-2$
(0) $\Phi_{i}-\Phi_{i-1}=\Phi_{i}(g)-\Phi_{i-1}(g)+\Phi_{i}(p)-\Phi_{i-1}(p)+\Phi_{i}(x)-\Phi_{i-1}(x)$
$\leq 3\left(\Phi_{i}(x)-\Phi_{i-1}(x)\right)-2$
(1. Zig step is used at most once during operation SpLAY, so we add " +1 " once. After applying telescopic cancellation, only the initial $\Phi_{0}(x)$ and final $\Phi_{\text {last }}(x)$ potential remains. From the definition it follows that $\Phi_{0}(x) \geq 0$ and $\Phi_{\text {last }}=\log _{2} n$.

Jink Fink	Data Structures $1 \times{ }^{24}$
Splay trees: Delete	
Algorithm	
```Find and splay \(x\) \(L \leftarrow\) the left subtree of \(x\) if \(L\) is empty then Remove node \(x\) else Find and splay the largest key \(a\) in \(L\) \(L^{\prime} \leftarrow\) the left subtree of \(a\) \# a have no right child now Merge nodes \(x\) and \(a\)```	



## Outline



## Jika Fink Data Structures 1

## Overview of the problem

- Implement Splay tree with operations SPLAY, FIND, INSERT
- Implement "a naive" version, which uses simple rotations only
- Measure the average depth of search elements during operations Findand Splay
- Study the dependency of the average depth on the size of a set of searched elements
- Study the average depth in a sequential test
- Deadline: October 29, 2017
- For a data generator and more details visit https://ktiml.mff.cuni.cz/~fink/


## Splay trees: Analysis

## Amortized complexity

- Zig-zig or zig-zag step:
$T_{i}+\Phi_{i}-\Phi_{i-1} \leq 2+3\left(\Phi_{i}(x)-\Phi_{i-1}(x)\right)-2=3\left(\Phi_{i}(x)-\Phi_{i-1}(x)\right)$
- Zig step:
$T_{i}+\Phi_{i}-\Phi_{i-1} \leq 1+\Phi_{i}(x)-\Phi_{i-1}(x) \leq 1+3\left(\Phi_{i}(x)-\Phi_{i-1}(x)\right)$
- Amortized complexity of one operation SPLAY (the sum of all steps):

$$
\begin{aligned}
\sum_{i-\text { th step }}\left(T_{i}+\Phi_{i}-\Phi_{i-1}\right) & \leq 1+\sum_{i-\text { th step }} 3\left(\Phi_{i}(\mathrm{x})-\Phi_{i-1}(x)\right) \\
& \leq 1+3\left(\Phi_{\text {last }}(x)-\Phi_{0}(x)\right) \\
& \leq 1+3 \log _{2} n \\
& =\mathcal{O}(\log n)
\end{aligned}
$$

- Amortized complexity of operation SPLAY is $\mathcal{O}(\log n)$


## Worst-case complexity of $k$ operations SPLAY

- Potential always satisfies $0 \leq \Phi \leq n \log _{2} n$
- The difference between the final and the initial potential is at most $n \log _{2} n$
- Complexity of $k$ operations SPLAY is $\mathcal{O}((n+k) \log n)$


## Jikk Fink Data Structures 1

## Splay trees: Operation INSERT

## INSERT a key $x$

(1) Find a node $u$ with the closest key to $x$
(3) Splay the node $u$

- Insert a new node with key $x$



## Amortized complexity

- Amortized complexity of FIND and SPLAY: $\mathcal{O}(\log n)$
- The potential $\Phi$ is increased by at most $\Phi(x)+\Phi(u) \leq 2 \log n$
- Amortized complexity of operation INSERT is $\mathcal{O}(\log n)$

The first homework: Splay trees

(a,b)-tree and red-black tree
$\square$ Heaps
$\square$

## Properties

- Inner nodes have arbitrary many children (usually at least 2)
- Inner node with $k$ children has $k-1$ sorted keys
- The $i$-th key is greater than all keys in the $i$-th subtree and smaller than all keys in the $(i+1)$-th subtree for every key $i$
- Two ways of storing elements:
- Elements are stored in leaves only
- Elements are stored in all nodes (i.e. inner nodes contain element for every key)


(a,b)-tree: Operation INSERT
Insert 4 into the following (2,4)-tree
Add a new leat into the proper parent



Jirka Fink Data Structures 1
(1) It also necessary to update the list of keys and children of the parent $u$.
(3) We should verify that we the resulting tree after the operation INSERT satisfies all properties required by the definition of $(a, b)$-tree. Indeed, we check that split nodes have at least a children (other conditions are trivial). A node requiring a split has $b+1$ children and it is split into two nodes with $\left\lfloor\frac{b+1}{2}\right\rfloor$ a $\left\lceil\frac{b+1}{2}\right\rceil$ children. Since $b \geq 2 a-1$, each new node has at least $\left\lfloor\frac{b+1}{2}\right\rfloor \geq\left\lfloor\frac{2 a-1+1}{2}\right\rfloor=\lfloor a\rfloor=a$ children as required.

## Properties

( $a, b$ )-tree is a search tree satisfying the following properties
(1) $a, b$ are integers such that $a \geq 2$ and $b \geq 2 a-1$
(2) All internal nodes except the root have at least $a$ and at most $b$ children

- The root has at most $b$ children
- All leaves are at the same depth
- Elements are stored in leaves (simplifies the explanation)


Operation FIND
Search from the root using keys stored in internal nodes

## Jirka Fink Dala Structures 1

(a,b)-tree: Operation INSERT

## Algorithm

${ }_{1}$ Find the proper parent $v$ of the inserted element
2 Add a new leaf into $v$
3 while $\operatorname{deg}(v)>b$ do
\# Find parent $u$ of node $v$
if $v$ is the root then
| Create a new root with $v$ as its only child
else
$\lfloor u \leftarrow$ parent of $v$
\# Split node $v$ into $v$ and $v^{\prime}$
Create a new child $v^{\prime}$ of $u$ immediately to the right of $v$
Move the rightmost $\lfloor(b+1) / 2\rfloor$ children of $v$ to $v^{\prime}$ (1) (2)
$v \leftarrow u$


Jirka Fink Data Structures 1
(a,b)-tree: Operation Delete
Delete 4 from the following $(2,4)$-tree


Find and delete the proper leaf

(a,b)-tree: Analysis

## Height

- (a,b)-tree of height $d$ has at least $a^{d-1}$ and at most $b^{d}$ leaves.
- Height of $(a, b)$-tree satisfies $\log _{b} n \leq d \leq 1+\log _{a} n$.


## Complexity

Time complexity of operations FIND, Insert and DeLETE is $\mathcal{O}(\log n)$.

## The number of modified nodes when $(a, b)$-tree is created using INSERT

- We create (a,b)-tree using operation INSERT
- We ask what the number of balancing operations (split) is (1)
- Every split creates a new node
- A tree with $n$ elements has at most $n$ inner nodes
- The total number of splits is at most $n$
- The amortized number of modified nodes during one operation INSERT is $\mathcal{O}$ (1) (2)

One balancing operation (node split) modifies a bounded number of nodes (split node, parent, children). Hence, the numbers of splits and modified nodes are asymptotically equal.
(2) Note that operation INSERT has to find the proper leaf for the new element, so complexity of operation INSERT is $\mathcal{O}(\log n)$.

## Operation INSERT

Split every node with $b$ children on path from the root to the inserted leaf.

## Operation DeLete

Update (move a child or merge with a sibling) every node with a children on path from the root to the deleted leaf.
(a,b)-tree: Parallel access: Example

- INSERT element with a key 6 into the following $(2,4)$-tree

- First, we split the root
(3)
- Then, we continue to its left child which we also split

$$
\sqrt[3]{3}
$$

- Now, a node with key 8 does not require split and a new node can be added
$\sqrt[3]{3}$

A-sort: Algorithm

Input: list $x_{1}, x_{2}, \ldots, x_{n}$
$1 T \leftarrow$ an empty (a,b)-tree
${ }_{2}$ for $i \leftarrow n$ to $\mathbf{1 \#}$ Elements are processed from the (almost) largest
3 do
\# Modified operation insert of $X_{i}$ to $T$
$v \leftarrow$ the leaf with the smallest key
while $v$ is not the root and the smallest key stored in $v$ 's parent is greater than $x_{i}$ do $\lfloor v \leftarrow$ parent of $v$
INSERT $x_{i}$ but start searching for the proper parent at $v$
Output: Walk through whole (a,b)-tree $T$ and print all elements

Jirka Fink Data Structures 1

A-sort (Guibas, McCreight, Plass, Roberts [7])

## Goals

Sort "almost" sorted list of elements

## Modification of (a,b)-tree

The ( $a, b$ )-tree also stores the pointer to the most-left leaf.

## Example: INSERT element $x_{i}=16$

- Walk from the leaf with
minimal key to the root
while $x_{i}$ does not
belong to the subtree of
the current element
- INSERT $x_{i}$ into
the subtree where $x_{i}$
belongs
The minimal key
- Height of that subtree is $\Theta\left(\log f_{i}\right)$, where $f_{i}$ is
the number of key
smaller than $x_{i}$

A-sort: Complexity
The inequality between arithmetic and geometric means
If $a_{1}, \ldots, a_{n}$ are non-negative real numbers, then

$$
\frac{\sum_{i=1}^{n} a_{i}}{n} \geq \sqrt[n]{\prod_{i=1}^{n} a_{i}}
$$

## Time complexity

- Let $f_{i}=\left|\left\{j>i ; x_{j}<x_{i}\right\}\right|$ be the number of keys smaller than $x_{i}$ stored in the tree when $x_{i}$ is inserted
- Let $F=\sum_{i=1}^{n} f_{i}$ be the number of inversions
- Finding the starting vertex $v$ for one key $x_{i}: \mathcal{O}\left(\log f_{i}\right)$
- Finding starting vertices for all keys: $\mathcal{O}(n \log (F / n))$
$\sum_{i} \log f_{i}=\log \prod_{i} f_{i}=n \log \sqrt[n]{\prod_{i} f_{i}} \leq n \log \frac{\sum_{i} f_{i}}{n}=n \log \frac{F}{n}$.
- Splitting nodes during all operations insert: $\mathcal{O}(n)$
- Total time complexity: $\mathcal{O}(n+n \log (F / n))$
- Worst case complexity: $\mathcal{O}(n \log n)$ since $F \leq\binom{ n}{2}$
- If $F \leq n \log n$, then the complexity is $\mathcal{O}(n \log \log n)$


## Jirka Fink $\quad$ Data Structures 1

Red-black tree: Definition

## Definition

- Binary search tree with elements stored in inner nodes
- Every node is either red or black
- Paths from the root to all leaves contain the same number of black nodes
- Parent of a red node must be black
- Leaves are black (1)

(1) The last condition is not necessary but it simplifies operations. Note that we can also require that the root is black


## Red-black tree: Equivalence to (2,4)-tree

- A node with no red child


- A node with one red child (1)

- A node with two red children


43
Red-black tree: Insert

Creating new node

- Find the position for the new element $n$ and add it


If the parent $p$ is red, balance the tree

## Balancing

- Node $n$ and its parent $p$ are red. All other properties is satisfied.
- The grandparent $g$ is black.
- The uncle $u$ is red or black.

Red-black tree: INSERT - uncle is black


Note
The order of elements in $(2,4)$-tree depends on whether $n$ is left or right child of $p$ and
whether $p$ is left or right child of $g$.

## Jirka Fink Data Structures 1

Red-black tree: Properties

## Corollary of the equivalence to (2,4)-tree

- Height of a red-black tree is $\Theta(\log n)$
- Complexity of operations FIND, INSERT and DELETEis $\mathcal{O}(\log n)$
- Amortized number of modified nodes during operations INSERT and DELETE is $\mathcal{O}(1)$
- Parallel access (top-down balancing)


## Applications

- Associative array e.g. std::map and std::set in C++, TreeMap in Java
- The Completely Fair Scheduler in the Linux kernel
- Computational Geometry Data structures


## Red-black tree: INSERT - uncle is red





Note
Splitting a node in (2,4)-tree moves the key $g$ to the parent node which contains other keys and children. The last balancing operation has two cases.

Outline
(1) Amortized analysis
(2) Splay tree
(3) (a,b)-tree and red-black tree
(4) Heaps

- $d$-regular heap
- Binomial heap
- Lazy binomial heap
- Fibonacci heap
(3) Cache-oblivious algorithms
(6) Hash tables
(7) Geometrical data structures
(3) Bibliography
Basic operations
- Insert
- FindMin
- Deletemin
- Decrease


## Applications

- Priority queue
- Heapsort
- Dijkstra's algorithm (find the shortest path between given two vertices)
- Jarník's (Prim's) algorithm (find the minimal spanning tree)
Properties
- An element has its priority which can be be decreased (1)
- Elements stored in all nodes of a tree
- Priority of every node is always smaller than or equal than priorities of its children
(2)




Jirka Fink Data Structures 1
$d$-regular heap: Operations INSERT and DECREASE

## Insert: Algorithm

Input: A new element with priority $x$
$1 v \leftarrow$ the first empty block in the array
Store the new element to the block $v$
3 while $v$ is not the root and the parent $p$ of $v$ has a priority greater than $x$ do
Swap elements $v$ and $p$
ง $v \leftarrow p$


Since priority may change and it does not identify elements. Therefore in heaps, we use the work priority instead of key.
(2) This condition implies that an element with the smallest priority is stored in the root, so it can be fount in time $\mathcal{O}(1)$.


Jirka Fink Data Structures 1
$d$-regular heap: Operation DeLETEMIN


[^0]
## Complexity

## Complexity


© We add " +1 " to count at most one incomplete subtree.


## Observations

A binomial tree $B_{k}$ of order $k$ has

- $2^{k}$ nodes,
- height $k$,
- $k$ children in the root,
- maximal degree $k$ and
- ( $\left.\begin{array}{l}k \\ d\end{array}\right)$ nodes at depth $d$.

The subtree of a node with $k$ children is isomorphic to $B_{k}$.

$$
\sum_{h=0}^{\infty} \frac{h}{d^{h}}=\frac{d}{(d-1)^{2}}
$$

## Complexity

- Processing a node with a subtree of height $h: \mathcal{O}(d h)$
(2) A complete subtree of height $h$ has $d^{h}$ leaves
- Every leaf belong in at most one complete subtree of height $h$.
(- The number of nodes with a subtree of height $h$ is at most $\frac{n}{d^{h}}+1 \leq \frac{2 n}{d^{h}}$ (1)
(- The total time complexity is

$$
\sum_{h=0}^{\left\lceil\log _{d} n\right\rceil} \frac{2 n}{d^{h}} d h \leq 2 n d \sum_{h=0}^{\infty} \frac{h}{d^{h}}=2 n\left(\frac{d}{d-1}\right)^{2} \leq 2 n 2^{2}=\mathcal{O}(n)
$$

Jink Fink Data Structures 1

## Outline

(1) Amortized analysis
(2)

Splay tree
(3)
(a,b)-tree and red-black tree
(4)

Heaps

- Binomial heap
- Lazy binomial heap
- Fibonacci heap
(5) Cache-oblivious algorithms
(6)

Hash tables
(7) Geometrical data structures
(8) Bibliography


Binomial trees of order 0, 1, 2 and 3


Jink Fink $\quad$ Data Structures 1

## Set of binomial trees

## Observations

For every $n$ there exists a set of binomial trees of pairwise different order such that the total number of nodes is $n$.

Relation between a binary number and a set of binomial trees
$\begin{array}{ccccccccc}\text { Binary number } n= & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ & \downarrow & & & \downarrow & \downarrow & & \downarrow & \\ \text { Binomial tree contains: } & B_{7} & & & B_{4} & B_{3} & & B_{1} & \end{array}$

## Example of a set of binomial trees on $1010_{2}$ nodes

10

(15)
Binomial heap
A binomial heap is a set of binomial trees that satisfies

- Every element is stored in one node of one tree.
- Each binomial tree obeys the minimum-heap property: the priority of a node is
greater than or equal to the priority of its parent.
There is at most one binomial tree for each order.
Example

Jirka Fink Data Stuctures 1
Binomial heap: Representation

## A node in a binomial tree contains

- an element (priority and value),
- a pointer to its parent,
- a pointer to its most-left and the most-right children, (1)
- a pointer to its left and right sibling and (2)
- the number of children (order).


## Binomial heap

- Binomial trees are stored in a double linked list using pointers to siblings.
- Binomial heap keeps a pointer to an element of the smallest priority.



## Joining two binomial heaps in time $\mathcal{O}(\log n)$

Join works as an analogy to binary addition. We start from the lowest orders, and whenever we encounter two trees of the same order, we join them.

Example								$B_{6}$
Binomial trees	$B_{5}$	$B_{4}$	$B_{3}$	$B_{2}$	$B_{1}$	$B_{0}$		
	First heap	0	1	1	0	1	1	0
	Second heap	0	1	1	0	1	0	0
	Join	1	1	0	1	0	1	0

Jirka Fink $\quad$ Data Stuctures 1

## Outline

0
Amortized analysis
(2)

Splay tree
(3)
(a,b)-tree and red-black tree
(4) Heaps

## - Binomial heap

3
Cache-oblivious algorithms
(6) Hash tables

구
Geometrical data structures
(8) Bibliography

## Observation

Binomial heap contains at most $\log _{2}(n+1)$ trees and each tree has height at most $\log _{2} n$.

## Relation between a binary number and a set of binomial trees


(1) Actually, one pointer to any child is sufficient. In order to understand the analysis of Fibonacci heap, it is easier to assume that a parent has access to the first and the last children and new child is appended to the end of the list of children when two trees are joined.
(2) Pointers for a double linked list of all children which is sorted by orders.

Binomial heap: Operations Insertand DECREASE

## Operation INSERT

- INSERTis implemented as join with a new tree of order zero containing new element.
- Complexity of INSERT is similar to the binary counter.
- The worst-case complexity is $\mathcal{O}(\log n)$.
- The amortized complexity is $\mathcal{O}(1)$.


## Deletemin

Split the tree with the smallest priority into a new heap by deleting its root and join the new heap with the rest of the original heap. The complexity is $\mathcal{O}(\log n)$.


Lazy binomial heap

Difference
Lazy binomial heap is a set of binomial trees, i.e. different orders of binomial trees in a lazy binomial heap is not required.

## Operaions Join and INSERT

Just concatenate lists of binomial trees, so the worst-case complexity is $\mathcal{O}(1)$.

## Delete min

- Delete the minimal node
- Append its children to the list of heaps
- Reconstruct to the proper binomial heap
- Find element with minimal priority

Heap: Overview

- While the lazy binomial heap contains two heaps of the same order, join them.
- Use an array indexed by the order to find heaps of the same order.

Algorithm	
```Initialize an array of pointers of size \(\left\lceil\log _{2}(n+1)\right\rceil\) for each tree \(h\) in the lazy binomial heap do \(0 \leftarrow\) order of \(h\) while array[0] is not NIL do \(h \leftarrow\) the join of \(h\) and array[ 0 ] array \([0] \leftarrow \mathrm{NIL}\) \(0 \leftarrow 0+1\) \(\operatorname{array}[0] \leftarrow h\) Create a binomial heap from the array```	
Jirka Fink Data Stuctures 1	70
Outline	
(1) Amortized analysis	
(2) Splay tree	
(3) (a,b)-tree and red-black tree	
Heaps - d-regular heap - Binomial heap - Lazy binomial heap - Fibonacci heap	
(5) Cache-oblivious algorithms	
(6) Hash tables	
(7) Geometrical data structures	
(8) Bibliography	

Jikk Fink Data Structures 1

(1) Data structures studied so far are defined by structural invariants and operations are designed to keep these invariants. However, Fibonacci heap is defined by elementary operations and the structure is derived from these operations.
(2) This is similar as binomial heap but trees are not required to be isomorphic to binomial heaps.

- This is similar as binomial heap but relations to the number of nodes and height are different.
(- Similarly as in binomial heaps, we append the root of one tree to the list of children of the root of the other tree.
- Similar as in lazy binomial heaps.
- Operation DELETEMIN is the same as in lazy binomial heaps including the reconstruction.

Algorithm

Input: A node u and new priority k
1 Decrease priority of the node u
${ }_{2}$ if u is a root or the parent of u has priority at most k then
3 Leturn\# The minimal heap property is satisfied
$4 p \leftarrow$ the parent of u
5 Unmark the flag in u
${ }_{6}$ Remove u from its parent p and append u to the list of heaps
7 while p is not a root and the flag in p is set do

$u \leftarrow p$

$p \leftarrow$ the parent of u
Unmark the flag in u
Remove u from its parent p and append u to the list of heaps
12 if p is not a root then
${ }_{13} L$ Set the flag in p

Complexity table

	Binary	Binomial		Lazy binomial	
	worst	worst	amort	worst	amort
INSERT	$\log n$	$\log n$	1	1	1
DECREASE	$\log n$				
DELETEMIN	$\log n$	$\log n$	$\log n$	n	$\log n$

Question
Can we develop a heap with faster DELETEMIN than $\mathcal{O}(\log n)$ and INSERT in time $\mathcal{O}(1)$?

Next goal
 We need faster operation Decrease.

Abstract

How? If we relax the condition on trees in a binomial heap to be isomorphic to binomial trees, is there a faster method to decrease priority of a given node?

Jirka Fink Dala Structures 1

Fibonacci heap (Fredman, Tarjan, 1987 [5])

Basic properties and legal operations ()

(1) Fibonacci heap is a list of trees satisfying the heap invariant (2)
(2) The order of a tree is the number of children of its root (3)
(0) We are allowed to join two trees of the same order (4)

- We are allowed to disconnect one child from any node (except the root)
- The structure of a node contains a bit (mark) to remember whether it has lost a child
- Roots may loose arbitrary many children
- If a node become a root, it is unmarked
- If a root is joined to a tree, it can loose at most one child until it become a root again
- We are allowed to create new tree with a single element (5)
(1) We are allowed to delete the root of a tree (6)

Operations which same in lazy binomial heaps

Insert, FindMin, Deletemin

| Jika Fink | Dala Structures 1 | 73 |
| :--- | :--- | :--- | :--- |

Fibonacci heap: Operation Decrease

Idea

- Decrease priority of a given node and disconnect it from its parent
- If the parent is marked, disconnect it from the grandparent
- If the grandparent is marked, disconnect it
- Repeat until an unmarked node or a root is reached

Fibonacci heap: Structure

Invariant

For every node u and its i-th child v holds that v has at least

- $i-2$ children if v is marked and
- $i-1$ children if v is not marked. (1)

Proof (The invariant always holds.)

We analyze the initialization and all basic operations allowed by the definition of Fibonacci heap.

- Initialization: An empty heap satisfies the invariant.
(0) INSERT: A tree with a single node satisfies the invariant.
- Delete a root: Children of remaining nodes are unchanged.
(1) Join: A node u of order k is appended as a $(k+1)$-th child of a node p of order k
- Removing i-th child x from a node u of order k which is a root
- Removing i-th child x from an unmarked node u of order k which is j-th child of p
(1) We assume that later inserted child has a larger index.

Fibonacci heap: Structure

Invariant

For every node u and its i-th child v holds that v has at least

- $i-2$ children if v is marked and
- $i-1$ children if v is not marked.

Size of a subtree

Let s_{k} be the minimal number of nodes in a subtree of a node with k children.
Observe that $s_{k} \geq s_{k-2}+s_{k-3}+s_{k-4}+\cdots+s_{2}+s_{1}+s_{0}+s_{0}+1$.

Jirka Fink Data Structures 1

Appending all children of the root can be done in $\mathcal{O}(1)$ by a simple concatenating of linked lists. However, some of these children can be marked, so unmarking takes $\mathcal{O}(\log n)$-time as required by our definition. In a practical implementation, it is not important when flags of roots are unmarked.

Jirka Fink Data Structures 1

Fibonacci heap: Amortized complexity of DELETE

Delete root and append its children

- Cost: $\mathcal{O}(\log n)$
- $\Delta \Phi \leq \mathcal{O}(\log n)$
- Amortized complexity: $\mathcal{O}(\log n)$

Single iteration of the while-loop (join)

- Cost: $\mathcal{O}(1)$
- $\Delta \Phi=-1$
- Amortized complexity: Zero

Remaining parts

- Cost: $\mathcal{O}(\log n)$
- $\Delta \Phi=0$
- Amortized complexity: $\mathcal{O}(\log n)$

Total amortized complexity

$\mathcal{O}(\log n)$

Heap: Overview
Complexity table

	Binary	Binomial		Lazy binomial		Fibonacci	
	worst	worst	amort	worst	amort	worst	amort
INSERT	$\log n$	$\log n$	1	1	1	1	1
DECREASE	$\log n$	n	1				
DELETEMIN	$\log n$	$\log n$	$\log n$	n	$\log n$	n	$\log n$

Techniques for memory hierarchy
Example of sizes and speeds of different types of memory

O Also called a block or a line.
(3) Whole block must be loaded into cache when data are accessed.

- For simplicity, we consider only loading pages from disk to cache, which is also called page faults.
- We assume that every block from disk can be stored in any position of cache. This assumtion makes analysis easier, although it does not hold in practice, see e.g. https://en.wikipedia.org/wiki/CPU_cache\#Associativity.

Binary search

- $\Theta(\log n)$ elements are compared with a given key.
- Last $\Theta(\log B)$ nodes are stored in at most two pages.
- Remaining nodes are stored in pair-wise different pages.
- $\Theta(\log n-\log B)$ pages are transfered.

Cache-oblivious analysis: Mergesort

Case $n \leq M / 2$

Case $n>M / 2$
(1) Let z be the maximal block in the recursion that can be sorted in cache.
(2) Observe: $z \leq \frac{M}{2}<2 z$
(Merging one level requires $2 \frac{n}{B}+2 \frac{n}{z}+\mathcal{O}(1)=\mathcal{O}\left(\frac{n}{B}\right)$ page transfers.
(2)
Hence, the number of page transers is $\mathcal{O}\left(\frac{n}{B}\right)\left(1+\log _{2} \frac{n}{z}\right)=\mathcal{O}\left(\frac{n}{B} \log \frac{n}{M}\right)$. (3)
(9) Hence, the number of page transfers is $\mathcal{O}\left(\frac{n}{B}\right)\left(1+\log _{2} \frac{n}{z}\right)=\mathcal{O}\left(\frac{n}{B} \log \frac{n}{M}\right)$. (3)

Cache-oblivious analysis: Matrix transposition: Simple approach

Page replacement strategies

> Optimal: The future is known, off-line
> LRU: Evicting the least recently used page
> FIFO: Evicting the oldest page

Simple algorithm for a transposing matrix A of size $k \times k$

1 for $i \leftarrow 2$ to k do

$2 \quad$ for $j \leftarrow i+1$ to k do

$\left\lfloor\operatorname{Swap}\left(A_{i j}, A_{j i}\right)\right.$

Assumptions

For simplicity, we assume that

- $B<k$: One page stores at most one row of the matrix.
- $P<k$: Cache cannot store all elements of one column at once.

	Jirka Fink Data Stuctures 1 1 90
	Cache-oblivious analysis: Matrix transposition: Cache-aware approach
	Cache-aware algoritmus for transposition of a matrix A of size $k \times k$
2 3 4 5	```\# We split the matrix \(\boldsymbol{A}\) into submatrices of size \(\boldsymbol{z} \times \boldsymbol{z}\) for (\(i=0 ; i<k ; i+=z\)) do for \((j=i ; j<k ; j+=z)\) do \# We transpose the submatrix starting on position \((i, j)\) for \((i i=i ; i i<\min (k, i+z) ; i i++)\) do for \((j j=\max (j, i i+1) ; j j<\min (k, j+z) ; j j++)\) do \(\operatorname{Swap}\left(A_{i i, j j}, A_{j j, i i}\right)\)```
Notes	
	- Assuming $4 B \leq P$, we choose $z=B$ - Every submatrix is stored in at most $2 z$ blocks and two submatrices are stored in cache for transposition - The number of transfered block is at most $\left(\frac{k}{z}\right)^{2} 2 z=\mathcal{O}\left(\frac{k^{2}}{B}\right)$ - Optimal value of the parameter z depend on computer - We efficiently use only one level of cache - This approach is usually faster than cache-oblivious if z is chosen correctly

Cache-oblivious analysis: Matrix transposition: Recursive approach

Procedure transpose_on_diagonal (\boldsymbol{A})

if matrix A is small then

| Transpose matrix A using the trivial approach
else
$A_{11}, A_{12}, A_{21}, A_{22} \leftarrow$ coordinates of submatrices
transpose_on_diagonal (A_{11})
transpose_on_diagonal (A_{22})
transpose_and_swap (A_{12}, A_{21})

9 Procedure transpose_and_swap (A, B)

if matrices A and B are small then
Swap and transpose matrices A and B using the trivial approach
else
$A_{11}, A_{12}, A_{21}, A_{22}, B_{11}, B_{12}, B_{21}, B_{22} \leftarrow$ coordinates of submatrices transpose_and_swap $\left(A_{11}, B_{11}\right)$ transpose_and_swap $\left(A_{12}, B_{21}\right)$ transpose_and_swap $\left(A_{21}, B_{12}\right)$ transpose_and_swap $\left(A_{22}, B_{22}\right)$

Half cache is for two input arrays and the other half is for the merged array.
(2) Merging all blocks in level i into blocks in level $i-1$ requires reading whole array and writing the merged array. Furthermore, misalignments may cause that some pages contain elements from two blocks, so they are accessed twice.
(3) Funnelsort requires $\mathcal{O}\left(\frac{n}{B} \log _{P} \frac{n}{B}\right)$ page transfers.

LRU or FIFO page replacement

All the column values are evicted from the cache before they can be reused, so $\Omega\left(k^{2}\right)$ pages are transfered.

Optimal page replacement

(1) Transposing the first row requires at least k transfers.
(2) Then, at most P elements of the second column is cached.
(3) Therefore, transposing the second row requires at least $k-P-1$ transfers
(-) Transposing the i-th row requires at least max $\{0, k-P-i\}$ transfers.
(- The total number of transfers is at least $\sum_{i=1}^{k-P} i=\Omega\left((k-P)^{2}\right)$.

Cache-oblivious analysis: Matrix transposition: Recursive approach

Idea

Recursively split the matrix into sub-matrices:

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right) \quad A^{T}=\left(\begin{array}{ll}
A_{11}^{T} & A_{21}^{T} \\
A_{12}^{T} & A_{22}^{T}
\end{array}\right)
$$

Matrices A_{11} and A_{22} are transposed using the same scheme, while A_{12} and A_{21} are swapped during their recursive transposition.

Cache-oblivious analysis: Representation of binary trees
(1) B-tree has height $\Theta\left(\log _{B}(n)\right.$.
(2) This is asymptotically optimal - proof is based on Information theory.

Goals

Construct a representation of binary trees efficiently using cache.
We count the number of transfered blocks during a walk from a leaf to the root.
Representation of a binary heap in an array
Very inefficient: The number of transfered blocks is $\Theta(\log n-\log B)=\Theta\left(\log \frac{n}{B}\right)$

B-regular heap (similarly B-tree)

- The height of a tree is $\log _{B}(n)+\Theta(1)$ (1)
- One node is stored in at most two blocks
- The number of transfered blocks is $\Theta\left(\frac{\log n}{\log B}\right)=\Theta\left(\log _{B}(n)\right)$ (2)
- Disadvantage: cache-aware and we want a binary tree

Convert to a binary tree
Every node of a B-regular heap can be replaced by a binary subtree.

Cache-oblivious analysis: Cache-aware representation

..skipped ..
(11) (12) (91) (92)
skped...

Path from the root to the leaf $f 2$
Jikik Fink Data Structures 1
Cache-oblivious analysis: The van Emde Boas layout

Number of page transfers

- Let $h=\log _{2} n$ be the height of the tree.
- Let z be the maximal height of a subtree in the recursion that fits into one page.
- Observe: $z \leq \log _{2} B \leq 2 z$.
- The number of subtrees of height z on the path from the root to a leaf is
$\frac{h}{2} \leq \frac{2 \log _{2} n}{\log _{2} B}=2 \log _{B} n$
- Hence, the number of page transfers is $\mathcal{O}\left(\log _{B} n\right)$.

Cache-oblivious analysis: Comparison of LRU and OPT strategies

Proof ($\left.F_{\text {LRU }} \leq \frac{P_{\text {RIV }}}{P_{\text {LRU }} F_{\text {OPT }}} F_{\text {OPT }}+P_{\text {OPT }}\right)$

(1) If LRU transfers $f \leq P_{\text {LRU }}$ blocks in a sequence s, then OPT transfers at least $f-P_{\text {OPT }}$ blocks in s

- If LRU reads f different blocks in s, then s contains at least f different blocks
- If LRU reads one block twice in s, then s contains at least $P_{\text {LRU }} \geq f$ different blocks
- OPT stores at most $P_{\text {OPT }}$ blocks of s in cache before processing s, so at least $f-P_{\text {OPT }}$ must be read to cache when s is processed
(2) Split sequence s_{1}, \ldots, s_{k} into subsequences so that LRU transfers $P_{\text {LRU }}$ blocks in every subsequence (except the last one)
(3) If $F_{\text {OPT }}^{\prime}$ and $F_{\text {LRU }}^{\prime}$ denotes the number of transfered blocks in a subsequence, then $F_{\text {LRU }}^{\prime} \leq \frac{P_{\text {LRU }}}{P_{\text {LRU }}-P_{\text {OPT }}} F_{\text {OPT }}^{\prime}$ (except the last one)
- OPT transfers $F_{\text {OPT }}^{\prime} \geq P_{\text {LRU }}-P_{\text {OPT }}$ blocks in every subsequence
- Hence, $\frac{F_{\text {LRU }}^{\prime}}{F_{\text {OPT }}^{\prime}} \leq \frac{P_{\text {LRU }}}{P_{\text {LRU }}-P_{\text {OPT }}}$
(9) The last subsequence satisfies $F_{\mathrm{LRU}}^{\prime \prime} \leq \frac{P_{\mathrm{LRU}}}{P_{\mathrm{LRU}}-P_{\mathrm{OPT}}} F_{\mathrm{OPT}}^{\prime \prime}+P_{\mathrm{OPT}}$
- So, $F_{\text {OPT }}^{\prime \prime} \geq F_{\text {LRU }}^{\prime \prime}-P_{\text {OPT }}$ a $1 \leq \frac{P_{\text {LRU }}}{P_{\text {LRU }}-P_{\text {OPT }}}$
- Therefore, $F_{\text {LRU }}^{\prime \prime} \leq F_{\text {OPT }}^{\prime \prime}+P_{\text {OPT }} \leq \frac{P_{\text {LRU }}}{P_{\text {LRU }}-P_{\text {OPT }}} F_{\text {OPT }}^{\prime \prime}+P_{\text {OPT }}$

Cache-oblivious analysis: The van Emde Boas layout

Recursive description

- Van Emde Boas layout of order 0 is a single node.
- The layout of order k has one "top" copy of the layout of order $k-1$ and every leaf of the "top" copy has attached roots of two "bottom" copies of the layout of order $k-1$ as its children.
All nodes of the tree are stored in an array so that the "top" copy is the first followed by all "bottom" copies.

Cache-oblivious analysis: Comparison of LRU and OPT strategies
Theorem (Sleator, Tarjan, 1985 [18])

- Let s_{1}, \ldots, s_{k} be a sequence of pages accessed by an algorithm.
- Let $P_{\text {OPT }}$ and $P_{\text {LRU }}$ be the number of pages in cache for OPT and LRU, resp ($\left.P_{\text {opt }}<P_{\text {Lau }}\right)$.
- Let $F_{\text {OPt }}$ and $F_{\text {LRu }}$ be the number of page faults during the algorithm.

Then, $F_{\text {LRU }} \leq \frac{P_{\text {LIUU }}}{P_{\text {RuU }}-P_{\text {OPT }}} F_{\text {OPT }}+P_{\text {OPT }}$.

Corollary

If LRU can use twice as many cache pages as OPT, then LRU transports at most twice many pages than OPT does (plus $P_{\text {OPT }}$).

The asymptotic number of page faults for some algorithms

In most cache-oblivious algorithms, doubling/halving cache size has no impact on the asymptotic number of page faults, e.g.

- Scanning: $\mathcal{O}(n / B)$
- Mergesort: $\mathcal{O}\left(\frac{n}{B} \log \frac{n}{M}\right)$
- Funnelsort: $\mathcal{O}\left(\frac{n}{B} \log _{P} \frac{n}{B}\right)$
- The van Emde Boas layout: $\mathcal{O}\left(\log _{B} n\right)$

Comparison of reading and writing data

Reading from memory

\# Initialize an array A of 32 -bit integers of length n
1 for ($i=0 ; i+d<n$; $i+=d$) do
${ }^{2}$ LA[i] $=\mathrm{i}+\mathrm{d}$ \# Create a loop using every d-th position
${ }_{3} A[i]=0$ \# Close the loop
4 for ($j=0 ; j<2^{28} ; j++$) do
5 Li=A[i] \# Repeatedly walk on the loop

Writing into memory

1 for ($j=0 ; j<2^{28} ; j++$) do
2 A $\left.\left[j^{*} d\right) \% \mathrm{n}\right]=\mathrm{j} \#$ Repeated operation write on d-th position

Few more thicks

Which version is faster and how much?

\# Modulo
1 for ($j=0 ; j<2^{28 ;} ; j++$) do
$2\left\lfloor A\left[j^{*} d\right) \% n\right]=j$
\# Bitwise conjunction
3 mask $=n-1$ \# Assume that n is a power of two
4 for ($j=0 ; j<2^{28} ; j++$) do
$5\lfloor A[(j * d) \&$ mask $]=j$
How fast is the computation if we skip the last line?
1 for ($i=0 ; i+d<n ; i+=d$) do
$2\lfloor A[i]=i+d$
3 A $[\mathrm{i}]=0$
4 for $\left(j=0 ; j<2^{28} ; j++\right.$) do
$5\lfloor i=A[i]$
$6 \operatorname{printf(}(\% \mathrm{O} \backslash \mathrm{n} "$, i);

$\square .$| Jikk Fink | Data Stuctures 1 | 104 |
| :--- | :--- | :--- |

Hash tables

Basic terms

- Universe $U=\{0,1, \ldots, u-1\}$ of all elements
- Represent a subset $S \subseteq U$ of size n
- Store S in an array of size m using a hash function $h: U \rightarrow M$ where $M=\{0,1, \ldots, m-1\}$
- Collision of two elements $x, y \in S$ means $h(x)=h(y)$
- Hash function h is perfect on S if h has no collision on S

Adversary subset

If $u \geq m n$, then for every hashing function h there exists $S \subseteq U$ of size n such that all elements of S are hashed to the same position.

Notes

- There is no function "well hashing" every subset $S \subseteq U$.
- For a given subset $S \subseteq U$ we can construct a perfect hashing function.
- We construct a system of hashing functions \mathcal{H} such that for every subset S the expected number of collisions is small for randomly chosen $h \in \mathcal{H}$.

Jirka Fink \quad Data Stuctures 1

Universal hashing

Goal
 We construct a system \mathcal{H} of hashing functions $f: U \rightarrow M$ such that uniformly chosen function $h \in \mathcal{H}$ has for every subset S small expected number of collisions.

Totally random hashing system

- The system \mathcal{H} contains all functions $f: U \rightarrow M$
- Hence, $P[h(x)=z]=\frac{1}{m}$ for every $x \in U$ and $z \in M$
- Positions $h(x)$ a $h(y)$ are independent for two different keys $x, y \in U$
- Impractical: encoding one function from \mathcal{H} requires $\Theta(u \log m)$ bits
- We use it in proofs

Hashing random data

- If we need to store a uniformly chosen subset $S \subseteq U$.
- Every reasonable function $f: U \rightarrow S$ is sufficient e.g. $f(x)=x \bmod m$.
- Useful in proofs considering totally random hashing system.
- Keys have uniform distributions only in rare practical situations

Outline

(3) Hash tables

- Universal hashing
- Separate chaining
- Linear probing
- Cuckoo hashing
(3) Bibliography

Outline

Amortized analysisSplay tree(3)
(a,b)-tree and red-black treeHeaps
(3)

Cache-oblivious algorithmsHash tables

- Universal hashing
- Separate chasining
(2)

Geometrical data structures
(8)

Bibliography

Universal hashing

C-universal hashing system

A system \mathcal{H} of hashing functions is c-universal, if for every $x, y \in U$ with $x \neq y$ the number of functions $h \in \mathcal{H}$ satisfying $h(x)=h(y)$ is at most $\frac{|\mathcal{P H}|}{m}$ where $c \geq 1$. Equivalently, a system \mathcal{H} of hashing functions is c-universal, if uniformly chosen $h \in \mathcal{H}$ satisfies $P[h(x)=h(y)] \leq \frac{c}{m}$ for every $x, y \in U$ with $x \neq y$. (1)

(2, c-independent hashing system

A set \mathcal{H} of hash functions is ($2, c$)-independent if for every $x_{1}, x_{2} \in U$ with $x_{1} \neq x_{2}$ and $z_{1}, z_{2} \in M$ the number of functions $h \in \mathcal{H}$ satisfying $h\left(x_{1}\right)=z_{1}$ and $h\left(x_{2}\right)=z_{2}$ is at most $\frac{\underline{q}|\vec{M}|}{m^{2}}$. (2)
Equivalently, a set \mathcal{H} of hash functions is ($2, c$)-independent if randomly chosen $h \in \mathcal{H}$ satisfies $P\left[h\left(x_{1}\right)=z_{1}\right.$ and $\left.h\left(x_{2}\right)=z_{2}\right] \leq \frac{c}{m^{2}}$ for every $x_{1} \neq x_{2}$ elements of U and $z_{1}, z_{2} \in M$.

(k, c)-independent hashing system

A set \mathcal{H} of hash functions is (k, c)-independent if randomly chosen $h \in \mathcal{H}$ satisfies $P\left[h\left(x_{i}\right)=z_{i}\right.$ for every $\left.i=1, \ldots, k\right] \leq \frac{c}{m^{k}}$ for every pair-wise different elements
$x_{1}, \ldots, x_{k} \in U$ and $z_{1}, \ldots, z_{k} \in M$.
A set \mathcal{H} of hash functions is k-independent if it is (k, c)-independent for some $c \geq 1$.

Example of c-universal system (Exercise)
$\mathcal{H}=\left\{h_{a}(x)=(a x \bmod p) \bmod m ; 0<a<p\right\}$, where $p>u$ is a prime

Relations

(1) If a hashing system is (k, c)-independent, then it is $(k-1, c)$-independent. (1)
(2) If a hashing system is $(2, c)$-independent, then it is also c-universal.
(3) 1-independent hashing system may not be c-universal. (2)
(9) If $P\left[h\left(x_{i}\right)=z_{i}\right.$ for every $\left.i=1, \ldots, k\right] \leq \frac{1}{m^{k}}$ for every $z_{1}, \ldots, z_{k} \in M$, then $P\left[h\left(x_{i}\right)=z_{i}\right.$ for every $\left.i=1, \ldots, k\right]=\frac{1}{m^{k}}$ for every $z_{1}, \ldots, z_{k} \in M$
(6) There exists $z_{1}, \ldots, z_{k} \in M$ such that $P\left[h\left(x_{i}\right)=z_{i}\right.$ for every $\left.i=1, \ldots, k\right] \geq \frac{1}{m^{k}}$.
(1) $P\left[h\left(x_{i}\right)=z_{i}\right.$ for every $\left.i=1, \ldots, k-1\right]$
$=P\left[h\left(x_{i}\right)=z_{i}\right.$ for every $i=1, \ldots, k-1$ and $\left.\exists z_{k}: h\left(x_{k}\right)=z_{k}\right]$ $=\sum_{z_{k} \in M} P\left[h\left(x_{i}\right)=z_{i}\right.$ for every $\left.i=1, \ldots, k\right] \leq m \frac{c}{m^{k}}$
(1) Consider $\mathcal{H}=\{x \mapsto a ; a \in M\}$. Then, $P[h(x)=z]=P[a=z]=\frac{1}{m}$ but $P\left[h\left(x_{1}\right)=h\left(x_{2}\right)\right]=P[a=a]=1$.

Universal hashing: Multiply-mod-prime

Definition

- p is a prime greater than u and $[p]$ denotes $\{0, \ldots, p-1\}$
- $h_{\mathrm{a}, \mathrm{b}}(x)=(a x+b \bmod p) \bmod m$ (1)
- $\mathcal{H}=\left\{h_{a, b} ; a, b \in[p], a \neq 0\right\}$
- System \mathcal{H} is 1 -universal and 2 -independent, ale but it is not 3 -independent

Notation

We write $a \equiv_{c} b$ if $a \bmod c=b \bmod c$ where $a, b \in \mathbb{Z}$ and $c \in \mathbb{N}$.

Lemma

For every different $x_{1}, x_{2} \in[p]$, equations

$$
y_{1}=a x_{1}+b \bmod p
$$

$$
y_{2}=a x_{2}+b \bmod p
$$

define a bijection between $(a, b) \in[p]^{2}$ and $\left(y_{1}, y_{2}\right) \in[p]^{2}$. (2)
Furthermore, these equations define a bijection between $\left\{(a, b) \in[p]^{2} ; a \neq 0\right\}$ and $\left\{\left(y_{1}, y_{2}\right) \in[p]^{2} ; y_{1} \neq y_{2}\right\}$. (3)

Sirka Fink \quad Data Structures 1

Universal hashing: Multiply-mod-prime

Definition

- $h_{a, b}(x)=(a x+b \bmod p) \bmod m$ where p is a prime larger than u
- $\mathcal{H}=\left\{h_{a, b} ; a, b \in[p], a \neq 0\right\}$

Lemma

For every different $x_{1}, x_{2} \in[p]$, equations

$$
\begin{aligned}
& y_{1}=a x_{1}+b \bmod p \\
& y_{2}=a x_{2}+b \bmod p
\end{aligned}
$$

define a bijection between $\left\{(a, b) \in[p]^{2} ; a \neq 0\right\}$ and $\left\{\left(y_{1}, y_{2}\right) \in[p]^{2} ; y_{1} \neq y_{2}\right\}$.

The multiply-mod-prime set of functions \mathcal{H} is 1 -universal

(1) For $x_{1} \neq x_{2}$ we have a collision $h_{a, b}\left(x_{1}\right)=h_{a, b}\left(x_{2}\right) \Leftrightarrow y_{1} \equiv m y_{2}$ and $y_{1} \neq y_{2}$.
(1) For given y_{1} there are at most $\left\lceil\frac{p}{m}\right\rceil-1$ values $y_{2} \neq y_{1}$ such that $y_{1} \equiv_{m} y_{2}$.

- The number such a pairs $\left(y_{1}, y_{2}\right)$ is at most $p\left(\left[\frac{p}{m}\right\rceil-1\right) \leq p\left(\frac{p+m-1}{m}-1\right) \leq \frac{p(p-1)}{m}$.
- There are at most $\frac{p(p-1)}{m}$ pairs from $\left\{(a, b) \in[p]^{2} ; a \neq 0\right\}$ causing a collision $h_{a, b}\left(x_{1}\right)=h_{a, b}\left(x_{2}\right)$.
- Hence, $P\left[h_{a, b}\left(x_{1}\right)=h_{a, b}\left(x_{2}\right)\right] \leq \frac{p(p-1)}{m|H|} \leq \frac{1}{m}$.

Universal hashing: Multiply-mod-prime

Definition

- $h_{a, b}(x)=(a x+b \bmod p) \bmod m$ where p is a prime larger than u
- $\mathcal{H}=\left\{h_{a, b} ; a, b \in[p], a \neq 0\right\}$

System \mathcal{H} is not 3 -independent

(1) For simplicity, assume that $p \geq 4 u$.
(3) Choose arbitrary $z_{1}, z_{2} \in[p]$.
(0) Let $x_{1}=1, x_{2}=3, x_{3}=2$ and $z_{3}=\left(z_{1}+z_{2}\right) 2^{-1}$ where $2^{-1} \in G F(p)$.
(- Note that $3 a+b<p$ for every $a, b \in[p]$.
(0) If $h\left(x_{1}\right)=z_{1}$ and $h\left(x_{2}\right)=z_{2}$, then $h\left(x_{3}\right)=z_{3}$.

- $2 h\left(x_{3}\right) \equiv_{p} 2(2 a+b)=(a+b)+(3 a+b) \equiv p z_{1}+z_{2} \equiv_{p} 2 z_{3}$
(- Conditional probability: $P\left[h\left(x_{3}\right)=z_{3} \mid h\left(x_{1}\right)=z_{1}\right.$ and $\left.h\left(x_{2}\right)=z_{2}\right]=1$
(1) $P\left[h\left(x_{3}\right)=z_{3}\right.$ and $h\left(x_{1}\right)=z_{1}$ and $\left.h\left(x_{2}\right)=z_{2}\right]$
$=P\left[h\left(x_{3}\right)=z_{3} \mid h\left(x_{1}\right)=z_{1}\right.$ and $\left.h\left(x_{2}\right)=z_{2}\right] P\left[h\left(x_{1}\right)=z_{1}\right.$ and $\left.h\left(x_{2}\right)=z_{2}\right]$
$=P\left[h\left(x_{1}\right)=z_{1}\right.$ and $\left.h\left(x_{2}\right)=z_{2}\right] \geq \frac{1}{m^{2}}$ for some $z_{1}, z_{2} \in[p]$
(- Hence, for every $c \geq 1$ there exists $m \in \mathbb{N}$ and $p \geq 4 u \geq 4 m$ and $z_{1}, z_{2}, z_{3} \in[p]$ such that $P\left[h\left(x_{1}\right)=z_{1}\right.$ and $h\left(x_{2}\right)=z_{2}$ and $\left.h\left(x_{3}\right)=z_{3}\right]>\frac{c}{m^{3}}$.

Hashing system Poly-mod-prime

- Let p be a prime larger than u and $k \geq 2$ be an interger
- $h_{a_{0}, \ldots, a_{k-1}}(x)=\left(\sum_{i=0}^{k-1} a_{i} x^{i} \bmod p\right) \bmod m$
- $\mathcal{H}=\left\{h_{a_{0}, \ldots, a_{k-1}} ; a_{0}, \ldots, a_{k-1} \in[p]\right\}$
- Note that Poly-mod-prime for $k=2$ is the same as Mupliply-mod-prime
k-independence (exercise)
Hashing system Poly-mod-prime is k-independent but it is not $(k+1)$-independent

Jirka Fink Data Structures 1

Universal hashing: Tabular hashing

Tabular hashing is not 4-independent

(1) Consider elements x_{1}, x_{2}, x_{3} and x_{4} such that

- x_{1} satisfies $x_{1}^{0}=0, x_{1}^{1}=0, x_{1}^{i}=0$ for $i \geq 2$
- x_{2} satisfies $x_{2}^{0}=1, x_{2}^{1}=0, x_{2}^{i}=0$ for $i \geq 2$
- x_{3} satisfies $x_{3}^{0}=0, x_{3}^{1}=1, x_{3}^{i}=0$ for $i \geq 2$
- x_{4} satisfies $x_{4}^{0}=1, x_{4}^{1}=1, x_{4}^{i}=0$ for $i \geq 2$
(2) Observe that $h\left(x_{4}\right)=h\left(x_{1}\right) \oplus h\left(x_{2}\right) \oplus h\left(x_{3}\right)$
(Choose arbitrary $z_{1}, z_{2}, z_{3} \in M$ and let $z_{4}=z_{1} \oplus z_{2} \oplus z_{3}$
(- Conditional probability
$P\left[h\left(x_{4}\right)=z_{4} \mid h\left(x_{1}\right)=z_{1}\right.$ and $h\left(x_{2}\right)=z_{2}$ and $\left.h\left(x_{3}\right)=z_{3}\right]=1$
(0) $P\left[h\left(x_{4}\right)=z_{4}\right.$ and $h\left(x_{1}\right)=z_{1}$ and $h\left(x_{2}\right)=z_{2}$ and $\left.h\left(x_{3}\right)=z_{3}\right]=$ $P\left[h\left(x_{1}\right)=z_{1}\right.$ and $h\left(x_{2}\right)=z_{2}$ and $\left.h\left(x_{3}\right)=z_{3}\right] \geq \frac{1}{m^{f}}$ for some $z_{1}, z_{2}, z_{3} \in M$
(0) Hence, for every $c \geq 1$ there exists $m \in \mathbb{N}$ and $z_{1}, z_{2}, z_{3}, z_{4} \in M$ such that $P\left[h\left(x_{1}\right)=z_{1}\right.$ and $h\left(x_{2}\right)=z_{2}$ and $h\left(x_{3}\right)=z_{3}$ and $\left.h\left(x_{4}\right)=z_{4}\right]>\frac{c}{m^{4}}$.

Multiply-shift

- Assume that $u=2^{w}$ a $m=2^{\prime}$ where w and $/$ are integers
- $h_{a}(x)=\left(a x \bmod 2^{w}\right) \gg(w-l)$
- $\mathcal{H}=\left\{h_{a}\right.$; a odd w-bit integer $\}$

Example is C

uint 64_t hash (uint64_t x, uint64_t l, uint64_t a) \{ return (a*x) >> (64-l); \}

Universality (without a proof)

Hashing system Multiply-shift is 2-independent.

Jirka Fink Data Structures 1

© \oplus denotes bit-wise exclusive or (XOR).

Jirka Fink Data Structures 1
(1) $T_{i}\left(x_{1}^{i}\right)$ has the uniform distribution on M and random variables $T_{i}\left(x_{1}^{i}\right)$ and $z_{1} \oplus h_{i}\left(x_{1}\right)$ are independent.

(1) x_{0}, \ldots, x_{d} are coefficients of a polynomial of degree d.
(2) Two different polynomials of degree at most d have at most $d+1$ common points, so there are at most $d+1$ colliding values α.

Outline

Splay tree
(3)
a.b)-tree and red-black treeHeaps
(3)

Cache-oblivious algorithms
(6)

Hash tables

- Univeraal hashing
- Linear probing
(3)

Geometrical data structures
Bibliography

Sirk Fink \quad Data Structures 1
Separate chaining
Description
Bucket j stores all elements $x \in S$ with $h(x)=j$ using some data structure, e.g.
- linked list
- dynamic array
- self-balancing tree
Implementations
- std::unordered_map in C++
- Dictionary in C\#
- HashMap in Java
- Dictionary in Python

Jirka Fink Data Structures 1

Separate chaining: Analysis

Definition

- $\alpha=\frac{n}{m}$ is the load factor; we assume that $\alpha=\Theta(1)$
- $l_{i j}$ is a random variable indicating whether i-th element belongs into j-th bucket
- $A_{j}=\sum_{i \in S} l_{i j}$ is the number of elements in j-th bucket
Expected chain length (number of elements in a bucket)
If hashing system is strongly 1 -independent, the number of elements in one bucket
$j \in M$ is $E\left[A_{j}\right]=\alpha$. ©

Observations
If hashing system is strongly 2 -independent, then
(1) $E\left[A_{j}^{2}\right]=\alpha(1+\alpha-1 / m)$ (2)
(2) $\operatorname{Var}\left(\boldsymbol{A}_{j}\right)=\alpha(1-1 / m)$ (3)

Separate chaining: Operation FIND

Expected number of comparisons during a successful operation FIND

- The total number of comparisons to find all elements is divided by the number of elements
- Strongly 2-independent hashing system is considered
- The total number of comparisons is $\sum_{j} \sum_{k=1}^{A_{j}} k=\sum_{j} \frac{A_{j}\left(A_{j}+1\right)}{2}$
- Expected number of comparisons is $1+\frac{\alpha}{2}-\frac{1}{2 m}$

$$
\text { - } E\left[\frac{1}{n} \sum_{j} \frac{A_{j}\left(A_{j}+1\right)}{2}\right]=\frac{1}{2 n}\left(E\left[\sum_{j} A_{j}\right]+\sum_{j} E\left[A_{j}^{2}\right]\right)=\frac{1}{2 n}\left(n+m \alpha\left(1+\alpha-\frac{1}{m}\right)\right)
$$

Expected number of comparisons during an unsuccessful operation FIND

- The number of comparisons during an unsuccessful Findof element x is the number of elements $i \in S$ satisfying $h(i)=h(x)$
- We need to count $E[|\{i \in S ; h(i)=h(x)\}|]$
- c-universal hashing system is considered
- Expected number of comparisons is $c \alpha$
- $E\left[\{\{i \in S ; h(i)=h(x)\} \mid]=\sum_{i \in S} P[h(i)=h(x)] \leq \sum_{i \in S} \frac{c}{m}=c \alpha\right.$

Terminology

We say that a hashing system \mathcal{H} is strongly k-independent, if H is ($k, 1$)-independent. Note that H is ($k, 1$)-independent if randomly chosen $h \in \mathcal{H}$ satisfies
$P\left[h\left(x_{i}\right)=z_{i}\right.$ for every $\left.i=1, \ldots, k\right]=\frac{1}{m^{k}}$ for every pair-wise different elements
$x_{1}, \ldots, x_{k} \in U$ and $z_{1}, \ldots, z_{k} \in M$.

Jirka Fink Dala Stuctures 1

(1) $E\left[A_{j}\right]=E\left[\sum_{i \in S} l_{i j}\right]=\sum_{i \in S} E\left[l_{i j}\right]=\sum_{i \in S} P[h(i)=j]=\sum_{i \in S} \frac{1}{m}=\frac{n}{m}$ where the second equality follows from the linearity of expectation, the third one from the definition of expectation and the last one from 1 -independence.
(2) $E\left[A_{j}^{2}\right]=E\left[\left(\sum_{i \in S} l_{i j}\right)\left(\sum_{k \in S} l_{k j}\right)\right]=\sum_{i \in S} E\left[l_{i j}\right]+\sum_{i, k \in S, i \neq k} E\left[l_{i j} l_{k j}\right]=$ $=\sum_{i \in S} P[h(i)=j]+\sum_{i, k \in S, i \neq k} E[h(i)=j$ and $h(k)=j]=\alpha+\frac{n(n-1)}{m^{2}}$
(0) $\operatorname{Var}\left(A_{j}\right)=E\left[A_{j}^{2}\right]-E^{2}\left[A_{j}\right]=\alpha(1+\alpha-1 / m)-\alpha^{2}$

Separate chaining: The longest chain

Proof: $\max _{j \in M} A_{j}=\mathcal{O}\left(\frac{\log n}{\log \log n}\right)$ with high probability

- Consider $\epsilon>0$ a $c=(1+\epsilon) \frac{\log n}{\mu \log \log n}$. So, $c \mu=\left(1+\epsilon \frac{\log n}{\log \log n}\right.$

$$
P\left[\max _{j} A_{j}>c \mu\right]<m e^{-\mu} e^{c_{\mu}-c_{\mu} \log c}
$$

$$
\begin{aligned}
& =m e^{-\mu} e^{(1+\epsilon) \frac{\log n}{\log \log n}-(1+\epsilon) \frac{\log n}{\log g \log n} \log \left(\frac{(1+\epsilon \log n}{\mu \log 9 \log n}\right)} \\
& =m e^{-\mu} e^{(1+\epsilon) \frac{\log n}{\log \log n}-(1+\epsilon) \log n+(1+\epsilon) \frac{\log n}{\log \log n} \log \left(\frac{\mu}{1+\epsilon} \log \log n\right)} \\
& =m e^{-\mu} e^{(1+\epsilon) \frac{\log n}{\log \log n}-(1+\epsilon) \log n+(1+\epsilon) \frac{\log n}{\log \log n} \log \left(\frac{\mu}{1+\epsilon} \log \log n\right)} \\
& =m e^{-\mu} \frac{1+\epsilon}{l^{\log \log n} n}-(1+\epsilon)+\frac{1+\epsilon}{\log \log n} \log \left(\frac{\mu}{1+\epsilon} \log \log n\right) \\
& =\frac{m}{n^{1+\frac{\epsilon}{2}}} e^{-\mu} n^{-\frac{\epsilon}{2}+\frac{1+\tan }{\log \operatorname{tog} n}+(1+\epsilon)} \frac{\log \left(\frac{\mu}{1 \operatorname{tag}} \log \log n\right)}{\log \log n} \\
& <\frac{1}{\alpha n^{\frac{\varepsilon}{2}}} e^{-\mu} n^{0}<\frac{1}{n^{\frac{\varepsilon}{3}}} \quad \ldots \text { for sufficiently large } n
\end{aligned}
$$

Since $-\frac{\epsilon}{2}+\frac{1+\epsilon}{\log \log n}+(1+\epsilon) \frac{\log \left(\frac{\mu}{t+\log \log n)}\right.}{\log \log n}<0$ for sufficiently large n.

- Hence, $P\left[\max _{j} A_{j} \leq(1+\epsilon) \frac{\log n}{\log \log n}\right]>1-\frac{1}{n^{\frac{5}{3}}}$.

Jirka Fink Data Structures 1
Separate chaining: Length of the longest chain (5 experiments)

Jirka Fink Data Stuctures 1 129

Outline

(1) Amortized analysis
(2) Splay tree
(3) (a,b)-tree and red-black tree
(4) Heaps
(5) Cache-oblivious algorithms
(6) Hash tables

- Universal hashing - Linear probing
(7) Geometrical data structures
(8) Bibliography

Linear probing: Complexity

Assumptions

- $m \geq(1+\epsilon) n$ for some $\epsilon>0$
- No operation Delete

Expected number of comparisons during operation INSERT

- $\mathcal{O}\left(\frac{1}{\epsilon^{2}}\right)$ for totally random hashing systems (Knuth, 1963 [10])
- constant for $\log (n)$-independend hashing systems (Schmidt, Siegel, 1990 [16])
- $\mathcal{O}\left(\frac{1}{\epsilon \frac{13}{6}}\right)$ for 5 -independent hashing systems (Pagh, Pagh, Ruzic, 2007 [12])
- $\Omega(\log n)$ for some 4 -independent hashing system (Pǎtraşcu, Thorup, 2010 [14]) (1)
- $\mathcal{O}\left(\frac{1}{\epsilon^{2}}\right)$ for tabular hashing system (Pătraşcu, Thorup, 2012 [15])

Separate chaining: Multiple-choice hashing

2-choice hashing

Element x can be stored in buckets $h_{1}(x)$ or $h_{2}(x)$ and INSERT chooses the one with smaller number of elements where h_{1} and h_{2} are two hash functions.

2-choice hashing: Longest chain
The expected length of the longest chain is $\mathcal{O}(\log \log n)$.

d-choice hashing
 Element x can be stored in buckets $h_{1}(x), \ldots, h_{d}(x)$ and INSERT chooses the one with smallest number of elements where h_{1}, \ldots, h_{d} are d hash functions.

d-choice hashing: Longest chain

The expected length of the longest chain is $\frac{\log \log n}{\log d}+\mathcal{O}(1)$.

Jirka Fink Data Structures 1

Linear probing

Goal

Store elements directly in the table to reduce overhead

Linear probing: Operation INSERT
Insert a new element x into the empty bucket $h(x)+i$ mod m with minimal $i \geq 0$ assuming $n \leq m$.

Operation FIND

Iterate until the given key or empty bucket is fount.

Operation DeLete

- A lazy version: Flag the bucket of deleted element to ensure that the operation Find continues searching.
- A version without flags: Check and move elements in a chain (Exercise)

Jirka Fink Data Structures 1
(1) There exists a 4-independent hashing system and a sequence of operations INSERT such that for a randomly chosen hashing function from the system the expected complexity of is $\Omega(\log n)$.

The number of elements from a given bucket to closest empty one

If $\alpha<1$ and a hashing system is totally independent, then the expected number of key comparisons during operation INSERT is $\mathcal{O}(1)$.

Jirka Fink Data Structures 1

Outline

0
Amortized analysis
(2)

Splay tree
(3)
a,b)-tree and red-black tree
(4)

Heaps
(3) Cache-oblivious algorithms
(6) Hash tables

- Universal hashing
- Separate chaining
on
- Cuckoo hashing
(3
Geometrical data structures
(3)

Bibliography

Cuckoo hashing: Algorithm for Insert

Insert an element x into a hash table T

1 pos $\leftarrow h_{1}(x)$

2 for n times do
if $T[p o s]$ is empty the
T [pos] $\leftarrow x$
return
swap(x, T[pos])
if pos $==h_{1}(x)$ then
pos $\leftarrow h_{2}(x)$ else
$\left\lfloor\right.$ pos $\leftarrow h_{1}(x)$
11 rehash()
12 insert(x)

Rehashing

- Randomly choose new hash functions h_{1} and h_{2}
- Increase the size of the table if necessary
- Insert all elements to the new table
- Here, we consider elements that are mapped into given buckets by a hashing function (not inserted by linear probing).
(2) Hence, buckets $b-s$ to $b+k-1$ are occupied for some s and $b-s-1$ and $b+k-1$ are empty buckets. All indices of buckets are counted modulus m.

Jirka Fink \quad Data Stuctures 1

Linear probing: Why 2-independent hashing system is insufficient?

Combination of Multiply-shift and linear probing

- Consider element $x \in S$ such that $\left\|h_{a}^{\prime}(x)\right\| \leq \frac{1}{2}$
- Elements $x, 2 x, \ldots, k x$ belong into $0,1, \ldots,\left\lfloor\frac{1}{2} k\right\rfloor$, where $k=\left\lfloor\frac{n}{x}\right\rfloor$
- We have at most x groups, each having at least k elements
- Complexity of operation INSERT is $\Omega\left(\frac{n}{x}\right)$, if $\left\|h_{a}^{\prime}(x)\right\| \leq \frac{1}{2}$

Linear probing and hashing systems (Pătraşcu, Thorup, 2010 [14])

- FIND using Multiply-shift has expected complexity $\Theta(\log n)$
- There exists 2 -independent hashing system such that FIND has complexity $\Theta(\sqrt{n})$

Jirka Fink Data Structures 1

Cuckoo hashing (Pagh, Rodler, 2004 [13])

Description

Given two hash functions h_{1} and h_{2}, a key x can be stored in $h_{1}(x)$ or $h_{2}(x)$.
One position can store at most one element.

Operations FIND and DeLete

Trivial, complexity is $\mathcal{O}(1)$ in worst case.

INSERT: Example

- Successful INSERT of element x into $h_{1}(x)$ after three reallocations.
- Impossible INSERT of element y into $h_{1}(y)$.

$$
\begin{aligned}
& h_{1}(x) \quad h_{1}(y)
\end{aligned}
$$

$$
\begin{aligned}
& h_{1}(a) \text { or } h_{2}(a)
\end{aligned}
$$

Jirka Fink Data Structures 1

Cuckoo hashing: Analysis

Undirected cuckoo graph G

- Vertices are positions in the hash table.
- Edges are pairs $\left\{h_{1}(x), h_{2}(x)\right\}$ for all $x \in S$.

Properties of the cuckoo graph

- Operation Insert follows a path from $h_{1}(x)$ to an empty position.
- New element cannot be inserted into a cycle.
- When the path from $h_{1}(x)$ goes to a cycle, rehash is needed.

Lemma

Let $c>1$ and $m \geq 2 c$. For given positions i and j, the probability that there exists a path from i to j of length k is at most $\frac{1}{m c^{c}}$.

Complexity of operation Insert without rehashing

Let $c>1$ and $m \geq 2 c n$. Expected number of swaps during operation INSERT is $\mathcal{O}(1)$.

Number of rehashes to build Cuckoo hash table

Let $c>2$ and $m \geq 2 c n$. Expected number of rehashes to insert n elements is $\mathcal{O}(1)$.

Proof of the lemma by induction on k :
$k=1$ For one element x, the probability that x creates an edges between vertices i and j is $P[\{i, j\}=\{h(x), h(y)\}]=\frac{2}{m^{2}}$. So, the probability that there is an edge $i j$ is at most $\frac{2 n}{m^{2}} \leq \frac{1}{m c}$.
$k>1$ There exists a path between i and j of length k if there exists a path from i to u of length $k-1$ and an edge $u j$. For one position u, the $i-u$ path exists with probability $\frac{1}{m c^{k-1}}$. The conditional probability that there exists the edge $u j$ if there exists $i-u$ path is at most $\frac{1}{m c}$ because some elements are used for the $i-u$ path. By summing over all positions u, the probability that there exists $i-j$ path is at most $m \frac{1}{m c^{k-1}} \frac{1}{m c}=\frac{1}{m c^{k}}$.
Insert without rehashing:

- The probability that there exists a path from $i=h_{1}(x)$ to some position j of length k is at most $m \frac{1}{m c^{k}}=\frac{1}{c^{k}}$.
- The expected length of the path starting at $h_{1}(x)$ is at most $\sum_{k=1}^{n} k \frac{1}{c^{k}} \leq \sum_{k=1}^{\infty} \frac{k}{c^{k}}=\frac{c}{(c-1)^{2}}$.
Number of rehashes:
- If rehashes is needed, then the Cuckoo contains a cycle.
- The probability that the graph contains a cycle is at most is the probability that there exists two positions i and j joined by an edge and there there exists a path between i and j of length $k \geq 2$. So, the Cuckoo graph contains a cycle with probability at most $\left.\begin{array}{c}m \\ 2\end{array}\right) \sum_{k=2}^{\infty} \frac{1}{m c} \frac{1}{m c^{k}} \leq \sum_{k=1}^{\infty} \frac{1}{c^{k}}=\frac{1}{c-1}$.

Cuckoo hashing: Analysis

Complexity operation Insert without rehashing

Let $c>1$ and $m \geq 2 c n$. The expected length of the path is $\mathcal{O}(1)$.
Amortized complexity of rehashing
Let $c>2$ and $m \geq 2 c n$. The expected number of rehashes is $\mathcal{O}(1)$.
Therefore, operation Insert has the expected amortized complexity $\mathcal{O}(1)$.

Pagh, Rodler [13]

If $c>1$ and $m \geq 2 c n$ and hashing system is $\log n$-independent then expected amortized complexity of INSERT is $\mathcal{O}(1)$.

Pătraşcu, Thorup [15]

If $c>1$ and $m \geq 2 c n$ and tabular hashing is used, then time complexity to build a static Cuckoo table is $\mathcal{O}(n)$ with high probability.

Outline
(1) Amorized analysis
(3) Splay tree
(3) (a,b)-tree and red-black tree
(4) Heaps
(5) Cache-oblivious algorithms
(7) Geometrical data structures

- Range trees
- k-d trees
(3) Biblography

Outline
(1) Amortized analysis
(2) Splay tree
(3) (a,b)-tree and red-black tree
(4) Heaps
(5) Cache-oblivious algorithms
(6) Hash tables
(7) Geometrical data structures - Range trees
(8) Bibliography

- The probability that z rehashes are needed to build the table is at most $\frac{1}{(c-1)^{2}}$.
- The expected number of rehashes is at most $\sum_{z=0}^{\infty} z \frac{1}{(c-1)^{2}}=\frac{c-1}{(c-2)^{2}}$.

Hash tables: Other methods

Quadratic probing

Insert a new element x into the empty bucket $h(x)+a i+b i^{2} \bmod m$ with minimal $i \geq 0$ where a, b are fix constants.

Double hashing

Insert a new element x into the empty bucket $h_{1}(x)+i h_{2}(x) \bmod m$ with minimal $i \geq 0$ where h_{1} and h_{2} are two hash functions.

Brent's variation for operation Insert

If the bucket

- $b=h_{1}(x)+i h_{2}(x) \bmod m$ is occupied by an element y and
- $b+h_{2}(x) \bmod m$ is also occupied but
- $c=b+h_{2}(y) \bmod m$ is empty,
then move element y to c and insert x to b. This reduces the average search time.

Jirka Fink Data Structures 1

Range query

Problem description

- Given set S of n points in \mathbb{R}^{d}
- A range means a d-dimensional rectangle
- Operation QUERY: Find all points of S in a given range
- Operation Count: Determine the number of points of S in a given range

Applications

- Computer graphics, computational geometry
- Database queries, e.g. list all employees in age 20-35 and salary 20-30 thousands

Static version

Store all points in an array in the increasing order
BUILD: $\mathcal{O}(n \log n)$
COUNT: $\mathcal{O}(\log n)$
QUERY: $\mathcal{O}(k+\log n)$ where k is the number of points in the range

Dynamic version

Store all points in a balanced search tree
BuILD: $\mathcal{O}(n \log n)$
INSERT: $\mathcal{O}(\log n)$
Delete: $\mathcal{O}(\log n)$
COUNT: $\mathcal{O}(\log n)$
QUERY: $\mathcal{O}(k+\log n)$

Let a and b be the smallest and the largest elements of S in the range, resp., and c be the deepest common predecessor of a and b.

Construction

- Build a binary search tree according to the x coordinate (called x -tree).
- Let S_{u} be the set of all points of S in the subtree of a node u.
- For every node u of x-tree build a binary search tree according to y-coordinate containing points of S_{u} (called y-tree).
Example

Jirka Fink Dala Stuctures 1

Range trees in \mathbb{R}^{2} : QUERY $\left\langle a_{x}, b_{x}\right\rangle \times\left\langle a_{y}, b_{y}\right\rangle$

Range query

(1) Search for keys a_{x} and b_{x} in the x-tree.
(2) Identify nodes in the x-tree storing points with x-coordinate in the interval $\left\langle a_{x}, b_{x}\right\rangle$.
(0) Run $\left\langle a_{y}, b_{y}\right\rangle$-query in all corresponding y-trees.

Complexity

$\mathcal{O}\left(k+\log ^{2} n\right)$, since $\left\langle a_{y}, b_{y}\right\rangle$-query is run in $\mathcal{O}(\log n) y$-trees
(1) Given an array of sorted elements, most balanced search trees can be built in $\mathcal{O}\left(\left|S^{\prime}\right|\right)$.
(2) Use master theorem, or observe that building one level of x-tree takes $\mathcal{O}(n)$-time.

Faster approach

First, create two arrays of points sorted by x and y coordinates. Then, recursively of a set of points S^{\prime} :
(1) Let p be the median of S^{\prime} by x-coordinate
(2) Create a node u for p in x-tree.
(Create y-tree of points S^{\prime} assigned to u. (1)

- Split both sorted arrays by x-coordinate of p.
(0) Recursively create both children of u.

Complexity
 - Recurrence formula $T(n)=2 T(n / 2)+\mathcal{O}(n)$ (2)
 - Complexity is $\mathcal{O}(n \log n)$.

Interval trees in \mathbb{R}^{d} (assuming $d \geq 2$)

Description
 - i-tree is a binary search tree by i-th coordinate for $i=1, \ldots, d$
 - For $i<d$ every node u of i-tree has a pointer to the ($i+1$)-tree containing points of S_{u}
 - Range tree means a system of all i-trees for all $i=1, \ldots, d$

Representation

Structure for a node in range tree stores
Element: point stored in the node
Left, Right pointers to the left and the right child
Tree pointer to the root of assigned $(i+1)$-tree

[^1]
Jirka Fink \quad Data Stuctures 1

Range tree in \mathbb{R}^{d} : Structure

Observations

- Number of i-trees is at most number nodes in $(i-1)$-trees for $i=2, \ldots, d$.
- If an $(i-1)$-tree T contains a point p, then p is contained in $\mathcal{O}(\log n) i$-trees assigned to nodes of T for $i=2, \ldots, d$.

Number of trees and nodes assuming that trees are balanced			
	1-tree	2-tree	d-tree
Number of trees containing a given point	1	$\mathcal{O}(\log n)$	$\mathcal{O}\left(\log ^{d-1} n\right)$
Number of trees	1	n	$\mathcal{O}\left(n \log ^{d-2} n\right)$
Number of nodes	n	$\mathcal{O}(n \log n)$	$\mathcal{O}\left(n \log ^{d-1} n\right)$

Range tree in \mathbb{R}^{d} : Complexity of BuILD

Building all d-trees

- Number of nodes in all d-trees is $\mathcal{O}\left(n \log ^{d-1} n\right)$
- Complexity of creations of all d-trees is $\mathcal{O}\left(n \log ^{d-1} n\right)$

Building all i-trees for some $i=1, \ldots, d-1$ (excluding ($i+1$)-trees

- Number of nodes in all i-trees is $\mathcal{O}\left(n \log ^{i-1} n\right)$
- Time complexity of one i-tree T on n_{T} nodes in $\mathcal{O}\left(n_{T} \log n_{T}\right)$
- Time complexity of all i-trees is (up-to multiplicative constant)

$$
\sum_{i-\text { tree } T} n_{T} \log n_{T} \leq \log n \sum_{i \text {-tree } T} n_{T}=\log n \cdot n \log ^{i-1} n=n \log ^{i} n
$$

Time complexity of operation BUILD

$\mathcal{O}\left(\log ^{\alpha-1} n\right)$

Jirka Fink Data Structures 1

Range tree in \mathbb{R}^{d} : Complexity of COUNT and QuERY

Complexity of operation COUNT

- In every tree, at most $\mathcal{O}(\log n)$ nodes are accessed
- From every visited i-tree at most $\mathcal{O}(\log n)$ assigned $(i+1)$-trees are visited
- The number of visited i-trees is $\mathcal{O}\left(\log ^{i-1} n\right)$
- Complexity of operation COUNT is $\mathcal{O}\left(\log ^{d} n\right)$

Complexity of operation Query

- Complexity printing all points is $\mathcal{O}(k)$, where k is the number of listed points
- Complexity of operation QUERY is $\mathcal{O}\left(k+\log ^{d} n\right)$

(1) A straightforward solution gives complexity $\mathcal{O}(m \log n)$.
(2) Elements $S_{i} \backslash S_{i-1}$ point to their predecessors or successors.

Complexity of a search in m sets

$\mathcal{O}(m+\log n)$

Layered range trees

Range trees: Further improvements

Using fractional cascading

- Every $(d-1)$-tree has assigned one fractional cascade instead of d-trees.
- Every element of the cascade has two pointers (for left and right children).

Complexity of QUERY
- QuERY in one $(d-1)$-tre
- There are $\mathcal{O}\left(\log ^{d-2} n\right)$ a
- Complexity of QuERY is O
Outline
(1) Amortized analysis
(2) Splay tree
(3) (a,b)-tree and red-black tree
(9) Heaps
(5) Cache-oblivious algorithms
(6) Hash tables
(7) Geometrical data structures
- k-d trees
(3) Bibliography

k-d trees: Operation Query	
Algorithm	
Procedure Query (node v, range R) if $v=$ NIL then return if v in R then Output: v if R is "left" from the point stored in v according to the levels' coordinate then Query (left child of v, R) else if R is "right" from the point stored in v according to the levels' coordinate then Query (right child of v, R) else Query (left child of v, R) Query (right child of v, R)	

Outline

Using fractional cascading

QUERY: $\mathcal{O}\left(k+\log ^{d-1} n\right)$
Memory: $\mathcal{O}\left(n \log ^{d-1} n\right)$

Chazelle [2, 3]

$$
\text { Query: } \mathcal{O}\left(k+\log ^{d-1} n\right)
$$

Memory: $\mathcal{O}\left(n\left(\frac{\log n}{\log \log n}\right)^{d-1}\right)$

Chazelle, Guibas [4] pro $d \geq 3$

Query: $\mathcal{O}\left(k+\log ^{d-2} n\right)$
Memory: $\mathcal{O}\left(n \log ^{d} n\right)$

Jirka Fink Data Structures 1

k-d trees

Description

- Points are stored in a binary tree
- In the root r, we store the median point m according to the first coordinate
- In the left subtree of r, we store all points having the first coordinate smaller than median
- In the right subtree of r, we store all points having the first coordinate larger than median
- Points in second level are split analogously by the second coordinate, etc.
- Points in i-th level are split are split by i mod d coordinate
- Height of the tree is $\log _{2} n+\Theta(1)$
- Space complexity is $\mathcal{O}(n)$
- Complexity of operation BUILD is $\mathcal{O}(n \log n)$
k-d trees: Complexity of operation QuERY

The worst-case example in \mathbb{R}^{2}

- Consider a set of points $S=\{(x, y) ; x, y \in[m]\}$ where $n=m^{2}$
- Consider a range $\langle 1,2 ; 1,8\rangle \times \mathbb{R}$
- In every level spliting by y coordinate both subtrees of every must be explored
- There are $\frac{1}{2} \log _{2} n+\Theta(1)$ levels separating by y coordinates
- Total number of visited leaves is $2^{\frac{1}{2} \log _{2} n+\Theta(1)}=\Theta(\sqrt{n})$

The worst-case example in \mathbb{R}^{d}

- Consider a set of points $S=[m]^{d}$ where $n=m^{d}$
- Consider a range $\langle 1,2 ; 1,8\rangle \times \mathbb{R}^{d-1}$
- In every level not spliting by the first coordinate, both subtrees of every must be explored
- Both subtrees are explored in all nodes of $\frac{d-1}{d} \log _{2} n+\Theta(1)$ levels
- The total number of visited leaves is $2^{\frac{d-1}{d} \log _{2} n+\Theta(1)}=\Theta\left(n^{1-\frac{1}{d}}\right)$
[1] R Bayer and E McCreight.
Organization and maintenance of large ordered indexes.
Acta Informatica, 1:173-189, 1972.
[2] Bernard Chazelle.
Lower bounds for orthogonal range searching: I. the reporting case. Journal of the ACM (JACM), 37(2):200-212, 1990.
[3] Bernard Chazelle.
Lower bounds for orthogonal range searching: part ii. the arithmetic model. Journal of the ACM (JACM), 37(3):439-463, 1990.
[4] Bernard Chazelle and Leonidas J Guibas. Fractional cascading: I. a data structuring technique. Algorithmica, 1(1-4):133-162, 1986.
[5] Michael L Fredman and Robert Endre Tarjan.
Fibonacci heaps and their uses in improved network optimization algorithms. Journal of the ACM (JACM), 34(3):596-615, 1987.
[6] Matteo Frigo, Charles E Leiserson, Harald Prokop, and Sridhar Ramachandran. Cache-oblivious algorithms.
In Foundations of Computer Science, 1999. 40th Annual Symposium on, pages 285-297, 1999 .
[7] Leo J Guibas, Edward M McCreight, Michael F Plass, and Janet R Roberts.

A new representation for linear lists.
In Proceedings of the ninth annual ACM symposium on Theory of computing, pages 49-60. ACM, 1977.
[8] Scott Huddleston and Kurt Mehlhorn.
A new data structure for representing sorted lists.
Acta informatica, 17(2):157-184, 1982.
[9] Donald E. Knuth.
Optimum binary search trees.
Acta informatica, 1(1):14-25, 1971.
[10] Donald Ervin Knuth.
Notes on "open" addressing.
http://algo.inria.fr/AofA/Research/11-97.html, 1963.
[11] Jürg Nievergelt and Edward M Reingold. Binary search trees of bounded balance. SIAM journal on Computing, 2(1):33-43, 1973.
[12] Anna Pagh, Rasmus Pagh, and Milan Ruzic.
Linear probing with constant independence.
In Proceedings of the thirty-ninth annual ACM symposium on Theory of computing, pages 318-327, 2007.
[13] Rasmus Pagh and Flemming Friche Rodler.
Cuckoo hashing.
Journal of Algorithms, 51(2):122-144, 2004.
[14] Mihai Pǎtraşcu and Mikkel Thorup.
On the k-independence required by linear probing and minwise independence.
In International Colloquium on Automata, Languages, and Programming, pages 715-726, 2010.
[15] Mihai Pǎtraşcu and Mikkel Thorup.
The power of simple tabulation hashing.
Journal of the ACM (JACM), 59(3):14, 2012.
[16] Jeanette P Schmidt and Alan Siegel.
The spatial complexity of oblivious k-probe hash functions.
SIAM Journal on Computing, 19(5):775-786, 1990.
[17] Jeanette P Schmidt, Alan Siegel, and Aravind Srinivasan. Chernoff-hoeffding bounds for applications with limited independence. SIAM Journal on Discrete Mathematics, 8(2):223-250, 1995.
[18] Daniel D Sleator and Robert E Tarjan.
Amortized efficiency of list update and paging rules. Communications of the ACM, 28(2):202-208, 1985.
[19] Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search trees.

[^0]: Algorithm
 Move the last element to the root v
 while Some children of v has smaller priority than v do
 $u \leftarrow$ the child of v with the smallest priority
 Swap elements u and v
 $v \leftarrow u$

[^1]: Note
 Let u be a node of i-tree for some $i=1, \ldots, d$. Let T be the set of all nodes reachable from u by a sequence of pointers Left, Right and Tree. Then, T forms a range tree of points S_{u} in coordinates i, \ldots, d.

