
Data Structures 1
NTIN066

Jirka Fink

Department of Theoretical Computer Science and Mathematical Logic
Faculty of Mathematics and Physics

Charles University in Prague

Winter semester 2017/18
Last change on January 11, 2018

License: Creative Commons BY-NC-SA 4.0

Jirka Fink Data Structures 1 1

https://creativecommons.org/licenses/by-nc-sa/4.0/

Jirka Fink: Data Structures 1

General information
E-mail fink@ktiml.mff.cuni.cz

Homepage https://ktiml.mff.cuni.cz/˜fink/

Consultations Thursday, 17:15, office S305

Examination
Implement given data structures

Pass the exam

Jirka Fink Data Structures 1 2

Content

1 Amortized analysis

2 Splay tree

3 (a,b)-tree and red-black tree

4 Heaps

5 Cache-oblivious algorithms

6 Hash tables

7 Geometrical data structures

8 Bibliography

Jirka Fink Data Structures 1 3

Literatura

A. Koubková, V. Koubek: Datové struktury I. MATFYZPRESS, Praha 2011.

T. H. Cormen, C.E. Leiserson, R. L. Rivest, C. Stein: Introduction to Algorithms.
MIT Press, 2009

K. Mehlhorn: Data Structures and Algorithms I: Sorting and Searching.
Springer-Verlag, Berlin, 1984

D. P. Mehta, S. Sahni eds.: Handbook of Data Structures and Applications.
Chapman & Hall/CRC, Computer and Information Series, 2005

E. Demaine: Cache-Oblivious Algorithms and Data Structures. 2002.

R. Pagh: Cuckoo Hashing for Undergraduates. Lecture note, 2006.

M. Thorup: High Speed Hashing for Integers and Strings. lecture notes, 2014.

M. Thorup: String hashing for linear probing (Sections 5.1-5.4). In Proc. 20th
SODA, 655-664, 2009.

Jirka Fink Data Structures 1 4

Outline

1 Amortized analysis

2 Splay tree

3 (a,b)-tree and red-black tree

4 Heaps

5 Cache-oblivious algorithms

6 Hash tables

7 Geometrical data structures

8 Bibliography

Jirka Fink Data Structures 1 5

Amortized complexity

Motivation
Consider a data structure which is usually very fast

However in rare cases, it needs to reorganize its internal structure

So, the worst-case complexity is quite slow

This data structure may used by an algorithm

We are interested in the total complexity or average complexity of many operations

Jirka Fink Data Structures 1 6

Incrementing binary counter

Problem description
Consider an n-bit binary counter with an arbitrary initial value

Operation Increment changes the last false bit to true and all following bits to false

The number changed bits is at most n

What is the maximal number of bits changed during k operations Increment?

Aggregate analysis
The last bit is changed during every operation; i.e. k -times

The last but one bit is changed during every other operation; i.e. at most
dk/2e-times

The i-th least significant bit is changed during every 2i -th operation; i.e. at most⌈
k/2i⌉-times

The number of changed bits during k operations Increment is at most∑n−1
i=0

⌈
k/2i⌉ ≤∑n−1

i=0 (1 + k/2i) ≤ n + k
∑n−1

i=0 1/2i ≤ n + 2k

Jirka Fink Data Structures 1 7

Incrementing binary counter

Accounting method
Change of one bit costs one coin

We keep one coin on every true bit, so the initialization costs at most n coins

For the operation Increment, changing true bits to false is pre-payed and we pay
the change of the last false bit and its pre-payment, so one operation costs 2 coins

The total cost of k operations is at most n + 2k

Potential method
The potential of a false bit is 0 and the potential of a true bit is 1

The potential of the counter is the sum of potentials of all bits

Let Ti be the number of changed bits during i-th operation and Φi be the potential
of the counter after i-th operation

Observe that Ti + Φi − Φi−1 ≤ 2

The number of changed bit during k operations Increment is at most∑k
i=1 Ti ≤

∑k
i=1(2 + Φi−1 − Φi) ≤ 2k + Φ0 − Φk ≤ 2k + n since 0 ≤ Φi ≤ n

Jirka Fink Data Structures 1 8

Dynamic array

Problem description
We have an array of length p storing n elements and we need to implement
operations Insert and Delete

If n = p and an element has to be inserted, then the length of the array is doubled

If 4n = p and an element has to be deleted, then the length of the array is halved

What is the number of copied elements during k operations Insert and Delete?

Aggregated analysis

Let ki be the number of operations between (i − 1)-th and i-th reallocation

The first reallocation copies at most n0 + k1 elements where n0 is the initial
number of elements

The i-th reallocation copies at most 2ki elements for i ≥ 2

Every operation without reallocation copies at most 1 element

The total number of copied elements is at most k + (n0 + k1) +
∑

i≥2 2ki ≤ n0 + 3k

Jirka Fink Data Structures 1 9

Dynamic array

Potential method
Consider the potential

Φ =


0 if p = 2n
n if p = n
n if p = 4n

and piece-wise linear function in other cases

Explicitly,

Φ =

{
2n − p if p ≤ 2n
p/2− n if p ≥ 2n

Change of the potential without reallocation is Φi − Φi−1 ≤ 2 1

Let Ti be the number of elements copied during i-th operation

Hence, Ti + Φi − Φi−1 ≤ 3

The total number of copied elements during k operations is∑k
i=1 Ti ≤ 3k + Φ0 − Φk ≤ 3k + n0

Jirka Fink Data Structures 1 10

1

Φ′ − Φ =


2 Insert and p ≤ 2n
−2 Delete and p ≤ 2n
−1 Insert and p ≥ 2n
1 Delete and p ≥ 2n

Jirka Fink Data Structures 1 10

Amortized complexity

Average of the aggregated analysis
The amortized complexity of an operation is the total time of k operations over k
assuming that k is sufficiently large.

For example, the amortized complexity of operations Insert and Delete in the

dynamic array is
∑k

i=1 Ti
k ≤ 3k+n0

k ≤ 4 = O(1) assuming that k ≥ n0.

Potential method
Let Φ a potential which evaluates the internal representation of a data structure

Let Ti be the actual time complexity of i-th operation

Let Φi be the potential after i-th operation

The amortized complexity of the operation is O(f (n)) if Ti + Φi − Φi−1 ≤ f (n) for
every operation i in an arbitrary sequence of operations

For example in dynamic array, Ti + Φi − Φi−1 ≤ 3, so the amortized complexity of
operations Insert and Delete is O(1)

Jirka Fink Data Structures 1 11

Binary search tree

Properties
Entities are stored in nodes (vertices) of a rooted tree

Each node contains a key and two sub-trees (children), the left and the right

The key in each node must be greater than all keys stored in the left sub-tree, and
smaller than all keys in right sub-tree

Example

10

5

2 7

6 9

13

12 14

Complexity
Space: O(n)

Time: Linear in the depth of the tree

Height in the worst case: n − 1

Jirka Fink Data Structures 1 12

Weight balanced trees: BB[α]-tree

Description (Jürg Nievergelt, Edward M. Reingold [11])
A binary search tree satisfying the following weight-balanced condition

Let su be the number of nodes in a subtree of a node u 1

For every node u it holds that the subtree of both children of u has at most αsu

nodes 2

Clearly, make sense only for 1
2 < α < 1

Height

The subtree of every grandson of the root has at most α2n vertices

The subtree of every node in the i-th level is at most αin vertices

αin ≥ 1 only for i ≤ log 1
α

(n)

The height of BB[α]-tree is Θ(log n)

Operation Build: Create BB[α]-tree from an array of sorted elements
Create a root and set the middle element to be the key in the root

Create both subtree of the root using recursing

Time complexity is O(n)

Jirka Fink Data Structures 1 13

1 The node u is also counted in su .
2 Readers may find various variants conditions. The goal is to require that both

children has similar number of nodes in their subtrees.

Jirka Fink Data Structures 1 13

Weight balanced trees: BB[α]-tree

Operations Insert and Delete 1

Insert/Delete given node similarly as in (non-balanced) binary search trees 2

When a node u violates the weight condition, rebuild whole subtree in time O(su).

Amortized cost of rebalancing
Between two consecutive rebuilds of a node u, there are at least Ω(su) updates in
the subtree of u

Therefore, amortized cost of rebuilding a subtree is O(1)

Update contributes to amortized costs of all nodes on the path from the root to leaf

The amortized cost of operations Insert and Delete is O(log n).

Jirka Fink Data Structures 1 14

1 It is possible to use rotations to keep the BB[α]-tree balanced. However in range
trees, a rotation in the x-tree leads to rebuilding many y -trees.

2 Complexity is O(log n) since tree has height O(log n).

Jirka Fink Data Structures 1 14

Weight balanced trees: BB[α]-tree

Potential method
The potencial of a node u is

Φ(u) =

{
0 if |sl(u) − sr(u)| ≤ 1
|sl(u) − sr(u)| otherwise

where l(u) and r(u) is left and right child of u, respectively

The potential Φ of whole tree is the sum of potentials of all nodes

Without reconstruction, Φ increases by O(log(n))

If node u requires a reconstruction, then Φ(u) ≥ αsu − (1− α)su ≥ (2α− 1)su

So, the reconstruction is paid by the decreasement of the potential

Every node in the new subtree has potential zero

Jirka Fink Data Structures 1 15

Outline

1 Amortized analysis

2 Splay tree

3 (a,b)-tree and red-black tree

4 Heaps

5 Cache-oblivious algorithms

6 Hash tables

7 Geometrical data structures

8 Bibliography

Jirka Fink Data Structures 1 16

Statically optimal tree

Goal
For a given sequence of operations FIND construct a binary search tree minimizing the
total search time.

Formally

Consider elements x1, . . . , xn with weights w1, . . . ,wn. The cost of a tree is
∑n

i=1 wihi

where hi is the depth of an element xi . The statically optimal tree is a binary search
with minimal cost.

Construction (Exercise)

O
(
n3) – straightforward dynamic programming

O
(
n2) – improved dynamic programming (Knuth, 1971 [9])

What we can do if the search sequence is unknown?
Using rotations we keep recently searched elements closed to the root

Operation SPLAY “rotates” a given element to the root

Operation FIND finds a given element and calls operation Splay

Jirka Fink Data Structures 1 17

Splay tree (Sleator, Tarjan, 1985 [19]): Operation SPLAY of a node x

Zig step: If the parent p of x is the root
p

x

A B

C

x

A
p

B C

Zig-zig step: x and p are either both right children or are both left children
g

p

x

A B

C

D

x

A
p

B
g

C D

Zig-zag step: x is a right child and p is a left child or vice versa
g

p

A
x

B C

D

x

p

A B

g

C D

Jirka Fink Data Structures 1 18

Splay tree: Operation SPLAY of a node x

Zig-zag step consists of two simple rotations of x with its parent
g

p

A
x

B C

D

g

x

p

A B

C

D

x

p

A B

g

C D

Zig-zig step consists of two simple rotations,
g

p

x

A B

C

D

x

A
p

B
g

C D

p

x

A B

g

C D

however two simple rotations of x with its parent lead to a different tree
g

p

x

A B

C

D

g

x

A
p

B C

D

x

A
g

p

B C

D

Jirka Fink Data Structures 1 19

Splay trees: Amortized analysis of operation SPLAY

Lemma
For a, b, c ∈ R+ satisfying a + b ≤ c it holds that log2(a) + log2(b) ≤ 2 log2(c)− 2.

Proof

Observe that 4ab = (a + b)2 − (a− b)2

From (a− b)2 ≥ 0 and a + b ≤ c it follows that 4ab ≤ c2

Applying the logarithm we obtain log2(4) + log2(a) + log2(b) ≤ log2(c2)

Notation
Size s(x) is the number of nodes in the subtree rooted at node x (including x)

Potential of a node x is Φ(x) = log2(s(x))

Potential Φ is the sum of potentials of all nodes in the tree

First, we will analyze the change of potential during a single step (rotation)

Let si a Φi be sizes and potentials after the i-th step

Let Ti be the number of rotations during one step

Jirka Fink Data Structures 1 20

Splay trees: Zig step

p

x

A B

C

x

A
p

B C

Analysis
1 Φi (x) = Φi−1(p)

2 Φi (p) < Φi (x)

3 Φi (u) = Φi−1(u) for every other nodes u

4 Φi − Φi−1 =
∑

nodes u

(Φi (u)− Φi−1(u))

= Φi (p)− Φi−1(p) + Φi (x)− Φi−1(x)

≤ Φi (x)− Φi−1(x)

5 Hence, Φi − Φi−1 ≤ Φi (x)− Φi−1(x)

Jirka Fink Data Structures 1 21

Splay trees: Zig-zag step

g

p

A
x

B C

D

x

p

A B

g

C D

Analysis
1 Φi (x) = Φi−1(g)

2 Φi−1(x) < Φi−1(p)

3 Φi (p) + Φi (g) ≤ 2Φi (x)− 2
Observe that si (p) + si (g) ≤ si (x)
From lemma it follows that log2(si (p)) + log2(si (g)) ≤ 2 log(si (x))− 2

4 Φi − Φi−1 = Φi (g)− Φi−1(g) + Φi (p)− Φi−1(p) + Φi (x)− Φi−1(x)

≤ 2(Φi (x)− Φi−1(x))− 2

Jirka Fink Data Structures 1 22

Splay trees: Zig-zig step

g

p

x

A B

C

D

x

A
p

B
g

C D

Analysis
1 Φi (x) = Φi−1(g)

2 Φi−1(x) < Φi−1(p)

3 Φi (p) < Φi (x)

4 si−1(x) + si (g) ≤ si (x)

5 Φi−1(x) + Φi (g) ≤ 2Φi (x)− 2
6 Φi − Φi−1 = Φi (g)− Φi−1(g) + Φi (p)− Φi−1(p) + Φi (x)− Φi−1(x)

≤ 3(Φi (x)− Φi−1(x))− 2

Jirka Fink Data Structures 1 23

Splay trees: Analysis

Amortized complexity
Zig-zig or zig-zag step:
Ti + Φi − Φi−1 ≤ 2 + 3(Φi (x)− Φi−1(x))− 2 = 3(Φi (x)− Φi−1(x))

Zig step:
Ti + Φi − Φi−1 ≤ 1 + Φi (x)− Φi−1(x) ≤ 1 + 3(Φi (x)− Φi−1(x))

Amortized complexity of one operation SPLAY (the sum of all steps):∑
i-th step

(Ti + Φi − Φi−1) ≤ 1 +
∑

i-th step

3(Φi (x)− Φi−1(x))

≤ 1 + 3(Φlast(x)− Φ0(x))

≤ 1 + 3 log2 n

= O(log n)

1

Amortized complexity of operation SPLAY is O(log n)

Worst-case complexity of k operations SPLAY

Potential always satisfies 0 ≤ Φ ≤ n log2 n

The difference between the final and the initial potential is at most n log2 n

Complexity of k operations SPLAY is O((n + k) log n)

Jirka Fink Data Structures 1 24

1 Zig step is used at most once during operation SPLAY, so we add “+1” once. After
applying telescopic cancellation, only the initial Φ0(x) and final Φlast(x) potential
remains. From the definition it follows that Φ0(x) ≥ 0 and Φlast = log2 n.

Jirka Fink Data Structures 1 24

Splay trees: Operation INSERT

INSERT a key x
1 Find a node u with the closest key to x
2 Splay the node u
3 Insert a new node with key x

u

L R

u

x

L

R

Amortized complexity
Amortized complexity of FIND and SPLAY: O(log n)

The potential Φ is increased by at most Φ(x) + Φ(u) ≤ 2 log n

Amortized complexity of operation INSERT is O(log n)

Jirka Fink Data Structures 1 25

Splay trees: DELETE

Algorithm

1 Find and splay x
2 L← the left subtree of x
3 if L is empty then
4 Remove node x
5 else
6 Find and splay the largest key a in L
7 L′ ← the left subtree of a

a have no right child now
8 Merge nodes x and a

L is non-empty

x

L R

x

a

L’

R

a

L’ R

Jirka Fink Data Structures 1 26

The first homework: Splay trees

Overview of the problem
Implement Splay tree with operations SPLAY, FIND, INSERT

Implement “a naive” version, which uses simple rotations only

Measure the average depth of search elements during operations FINDand SPLAY

Study the dependency of the average depth on the size of a set of searched
elements

Study the average depth in a sequential test

Deadline: October 29, 2017

For a data generator and more details visit
https://ktiml.mff.cuni.cz/˜fink/

Jirka Fink Data Structures 1 27

https://ktiml.mff.cuni.cz/~fink/

Outline

1 Amortized analysis

2 Splay tree

3 (a,b)-tree and red-black tree

4 Heaps

5 Cache-oblivious algorithms

6 Hash tables

7 Geometrical data structures

8 Bibliography

Jirka Fink Data Structures 1 28

Search tree

Properties
Inner nodes have arbitrary many children (usually at least 2)

Inner node with k children has k − 1 sorted keys

The i-th key is greater than all keys in the i-th subtree and smaller than all keys in
the (i + 1)-th subtree for every key i
Two ways of storing elements:

Elements are stored in leaves only
Elements are stored in all nodes (i.e. inner nodes contain element for every key)

Example

20

3 5 8 15

1 4 7 9 17

30 35

22

21 23

33 99

Jirka Fink Data Structures 1 29

(a,b)-tree (Bayer, McCreight [1])

Properties
(a, b)-tree is a search tree satisfying the following properties

1 a, b are integers such that a ≥ 2 and b ≥ 2a− 1
2 All internal nodes except the root have at least a and at most b children
3 The root has at most b children
4 All leaves are at the same depth
5 Elements are stored in leaves (simplifies the explanation)

Example: (2,4)-tree

20

3 5 8

1 4 7 9

30 35

22 33 99

Operation FIND

Search from the root using keys stored in internal nodes

Jirka Fink Data Structures 1 30

(a,b)-tree: Operation INSERT

Insert 4 into the following (2,4)-tree

3

1

1 3

5 6 7

5 6 7 8

Add a new leaf into the proper parent

3

1

1 3

4 5 6 7

4 5 6 7 8

Recursively split node if needed

3 5

1

1 3

4

4 5

6 7

6 7 8

Jirka Fink Data Structures 1 31

(a,b)-tree: Operation INSERT

Algorithm

1 Find the proper parent v of the inserted element
2 Add a new leaf into v
3 while deg(v) > b do

Find parent u of node v
4 if v is the root then
5 Create a new root with v as its only child
6 else
7 u ← parent of v

Split node v into v and v ′

8 Create a new child v ′ of u immediately to the right of v
9 Move the rightmost b(b + 1)/2c children of v to v ′ 1 2

10 v ← u

Time complexity
Linear in height of the tree

Jirka Fink Data Structures 1 32

1 It is also necessary to update the list of keys and children of the parent u.
2 We should verify that we the resulting tree after the operation INSERT satisfies all

properties required by the definition of (a, b)-tree. Indeed, we check that split
nodes have at least a children (other conditions are trivial). A node requiring a split
has b + 1 children and it is split into two nodes with

⌊ b+1
2

⌋
a
⌈ b+1

2

⌉
children. Since

b ≥ 2a− 1, each new node has at least
⌊ b+1

2

⌋
≥
⌊ 2a−1+1

2

⌋
= bac = a children as

required.

Jirka Fink Data Structures 1 32

(a,b)-tree: Operation DELETE

Delete 4 from the following (2,4)-tree

3 5

1

1 3

4

4 5

6 7

6 7 8

Find and delete the proper leaf

3 5

1

1 3

.

5

6 7

6 7 8

Recursively either share nodes from a sibling or fuse the parent

3 6

1

1 3

5

5 6

7

7 8

5

1 3

1 3 5

6 7

6 7 8

Jirka Fink Data Structures 1 33

(a,b)-tree: Operation DELETE

Algorithm

1 Find the leaf l containing the deleted key
2 v ← parent of l
3 Delete l
4 while deg(v) < a and v is not the root do
5 u ← an adjacent sibling of v
6 if deg(u) > a then
7 Move the proper child from u to v
8 else
9 Move all children of u to v

10 Remove u
11 if If v has no sibling then
12 Remove the root (= parent of v) and make v the new root
13 else
14 v ← parent of v

Jirka Fink Data Structures 1 34

(a,b)-tree: Analysis

Height

(a,b)-tree of height d has at least ad−1 and at most bd leaves.

Height of (a,b)-tree satisfies logb n ≤ d ≤ 1 + loga n.

Complexity
Time complexity of operations FIND, Insert and DELETE is O(log n).

The number of modified nodes when (a,b)-tree is created using INSERT

We create (a,b)-tree using operation INSERT

We ask what the number of balancing operations (split) is 1

Every split creates a new node

A tree with n elements has at most n inner nodes

The total number of splits is at most n

The amortized number of modified nodes during one operation INSERT is O(1) 2

Jirka Fink Data Structures 1 35

1 One balancing operation (node split) modifies a bounded number of nodes (split
node, parent, children). Hence, the numbers of splits and modified nodes are
asymptotically equal.

2 Note that operation INSERT has to find the proper leaf for the new element, so
complexity of operation INSERT is O(log n).

Jirka Fink Data Structures 1 35

(a,b)-tree: Parallel access

Goal
Efficient parallelization of operations FIND, INSERT and DELETE (assuming b ≥ 2a).

Operation INSERT

Split every node with b children on path from the root to the inserted leaf.

Operation DELETE

Update (move a child or merge with a sibling) every node with a children on path from
the root to the deleted leaf.

Jirka Fink Data Structures 1 36

(a,b)-tree: Parallel access: Example

INSERT element with a key 6 into the following (2,4)-tree
10 20 35

3 5 8

1 4 7 9

13 15 18

11 14 17 19

30

22 32

42

40 50

First, we split the root
20

10

3 5 8

1 4 7 9

13 15 18

11 14 17 19

35

30

22 32

42

40 50

Then, we continue to its left child which we also split
20

5 10

3

1 4

8

7 9

13 15 18

11 14 17 19

35

30

22 32

42

40 50

Now, a node with key 8 does not require split and a new node can be added
20

5 10

3

1 4

7 8

6 7 9

13 15 18

11 14 17 19

35

30

22 32

42

40 50

Jirka Fink Data Structures 1 37

A-sort (Guibas, McCreight, Plass, Roberts [7])

Goals
Sort “almost” sorted list of elements

Modification of (a,b)-tree
The (a,b)-tree also stores the pointer to the most-left leaf.

Example: INSERT element xi = 16
Walk from the leaf with
minimal key to the root
while xi does not
belong to the subtree of
the current element

INSERT xi into
the subtree where xi

belongs

Height of that subtree is
Θ(log fi), where fi is
the number of key
smaller than xi

20 40

12

8

6 9

15

13 18

Subtree where
element xi = 16
belongs to

The minimal key Height of
the subtree

Jirka Fink Data Structures 1 38

A-sort: Algorithm

Input: list x1, x2, . . . , xn

1 T ← an empty (a,b)-tree
2 for i ← n to 1 # Elements are processed from the (almost) largest
3 do

Modified operation insert of xi to T
4 v ← the leaf with the smallest key
5 while v is not the root and the smallest key stored in v’s parent is greater than xi do
6 v ← parent of v

7 INSERT xi but start searching for the proper parent at v
Output: Walk through whole (a,b)-tree T and print all elements

Jirka Fink Data Structures 1 39

A-sort: Complexity

The inequality between arithmetic and geometric means
If a1, . . . , an are non-negative real numbers, then

∑n
i=1 ai

n
≥ n

√√√√ n∏
i=1

ai .

Time complexity
Let fi = | {j > i ; xj < xi} | be the number of keys smaller than xi stored in the tree
when xi is inserted

Let F =
∑n

i=1 fi be the number of inversions

Finding the starting vertex v for one key xi : O(log fi)

Finding starting vertices for all keys: O(n log(F/n))∑
i log fi = log

∏
i fi = n log n

√∏
i fi ≤ n log

∑
i fi

n = n log F
n .

Splitting nodes during all operations insert: O(n)

Total time complexity: O(n + n log(F/n))

Worst case complexity: O(n log n) since F ≤
(n

2

)
If F ≤ n log n, then the complexity is O(n log log n)

Jirka Fink Data Structures 1 40

(a,b)-tree: Applications

The number of modified nodes during a sequence of operations INSERT and
DELETE (Huddleston, Mehlhorn, 1982 [8])

Assume that b ≥ 2a

Consider a sequence of l operations INSERT and k operations DELETE

The number of modified nodes is O(k + l + log n)

The amortized number of modified nodes during INSERT or DELETE is O(1)

Similar data structures
B-tree, B+ tree, B* tree

2-4-tree, 2-3-4-tree, etc.

Applications
A-sort

File systems e.g. Ext4, NTFS, HFS+

Databases

Jirka Fink Data Structures 1 41

Red-black tree: Definition

Definition
Binary search tree with elements stored in inner nodes

Every node is either red or black

Paths from the root to all leaves contain the same number of black nodes

Parent of a red node must be black

Leaves are black 1

Example

50

20

10

NIL NIL

25

22

NIL NIL

28

NIL NIL

80

66

NIL NIL

97

NIL 99

NIL NIL

Jirka Fink Data Structures 1 42

1 The last condition is not necessary but it simplifies operations. Note that we can
also require that the root is black.

Jirka Fink Data Structures 1 42

Red-black tree: Equivalence to (2,4)-tree

A node with no red child

2

1 3

2

1 3

A node with one red child 1

10

5 20

15 25

10 20

5 15 25

A node with two red children

3 5 8

1 4 7 9

5

3

1 4

8

7 9

Jirka Fink Data Structures 1 43

1 This equivalence is not unique. In this example, node with key 10 can also be red
left child of a black node with key 20.

Jirka Fink Data Structures 1 43

Red-black tree: Insert

Creating new node
Find the position for the new element n and add it

p

NIL NIL

p

NIL n

NIL NIL

If the parent p is red, balance the tree

Balancing
Node n and its parent p are red. All other properties is satisfied.

The grandparent g is black.

The uncle u is red or black.

Jirka Fink Data Structures 1 44

Red-black tree: INSERT — uncle is black

g

p

n

1 2

3

u

p

n

1 2

g

3 u

n p g

1 2 3 u

Note
The order of elements in (2,4)-tree depends on whether n is left or right child of p and
whether p is left or right child of g.

Jirka Fink Data Structures 1 45

Red-black tree: INSERT — uncle is red

g

p

n

1 2

3

u

4 5

g

p

n

1 2

3

u

4 5

. . . g . . .

n p

1 2 3

u

4 5

n p g u

1 2 3 4 5

Note
Splitting a node in (2,4)-tree moves the key g to the parent node which contains other
keys and children. The last balancing operation has two cases.

Jirka Fink Data Structures 1 46

Red-black tree: Properties

Corollary of the equivalence to (2,4)-tree
Height of a red-black tree is Θ(log n)

Complexity of operations FIND, INSERT and DELETEis O(log n)

Amortized number of modified nodes during operations INSERT and DELETE is
O(1)

Parallel access (top-down balancing)

Applications
Associative array e.g. std::map and std::set in C++, TreeMap in Java

The Completely Fair Scheduler in the Linux kernel

Computational Geometry Data structures

Jirka Fink Data Structures 1 47

Outline

1 Amortized analysis

2 Splay tree

3 (a,b)-tree and red-black tree

4 Heaps
d-regular heap
Binomial heap
Lazy binomial heap
Fibonacci heap

5 Cache-oblivious algorithms

6 Hash tables

7 Geometrical data structures

8 Bibliography

Jirka Fink Data Structures 1 48

Heap

Basic operations
INSERT

FINDMIN

DELETEMIN

DECREASE

Applications
Priority queue

Heapsort

Dijkstra’s algorithm (find the shortest path between given two vertices)

Jarnı́k’s (Prim’s) algorithm (find the minimal spanning tree)

Properties

An element has its priority which can be be decreased 1

Elements stored in all nodes of a tree

Priority of every node is always smaller than or equal than priorities of its children
2

Jirka Fink Data Structures 1 49

1 Since priority may change and it does not identify elements. Therefore in heaps,
we use the work priority instead of key.

2 This condition implies that an element with the smallest priority is stored in the
root, so it can be fount in time O(1).

Jirka Fink Data Structures 1 49

Outline

1 Amortized analysis

2 Splay tree

3 (a,b)-tree and red-black tree

4 Heaps
d-regular heap
Binomial heap
Lazy binomial heap
Fibonacci heap

5 Cache-oblivious algorithms

6 Hash tables

7 Geometrical data structures

8 Bibliography

Jirka Fink Data Structures 1 50

d-regular heap

Definition
Every node has at most d children

Every level except the last is completely filled

The last level is filled from the left

Example of a binary heap

2

8

10

13 11

12

19

3

6 15

Height

Height of a d-regular heap is Θ(logd n).

Jirka Fink Data Structures 1 51

d-regular: Representation

Binary heap stored in a tree

2

8

10

13 11

12

19

3

6 15

Binary heap stored in an array
A node at index i has its parent at b(i − 1)/2c and children at 2i + 1 and 2i + 2.

2 8 3 10 12 6 15 13 11 19

Parent
Children

Jirka Fink Data Structures 1 52

d-regular heap: Operation INSERT

Example: Insert 5

2

8

10

13 11

12

19 5

3

6 15

2 8 3 10 12 6 15 13 11 19 5

Jirka Fink Data Structures 1 53

d-regular heap: Operations INSERT and DECREASE

Insert: Algorithm

Input: A new element with priority x
1 v ← the first empty block in the array
2 Store the new element to the block v
3 while v is not the root and the parent p of v has a priority greater than x do
4 Swap elements v and p
5 v ← p

Operation DECREASE of a given node
Decrease priority and swap the element with parents when necessary (likewise in the
operation INSERT).

Complexity
O(logd n)

Jirka Fink Data Structures 1 54

d-regular heap: Operation DELETEMIN

2

8

10

13 11

12

19

3

6 15

Algorithm

1 Move the last element to the root v
2 while Some children of v has smaller priority than v do
3 u ← the child of v with the smallest priority
4 Swap elements u and v
5 v ← u

Complexity
If d is a fix parameter: O(log n)
If d is a part of the input: O(d logd n)

Jirka Fink Data Structures 1 55

d-regular heap: Building

Goal
Initialize a heap from a given array of elements

Algorithm

1 for r ← the last block to the first block do
Heapify likewise in the operation delete

2 v ← r
3 while Some children of v has smaller priority than v do
4 u ← the child of v with the smallest priority
5 Swap elements u and v
6 v ← u

Correctness
After processing node r , its subtree satisfies the heap property.

Jirka Fink Data Structures 1 56

d-regular heap: Building

Lemma
∞∑

h=0

h
dh =

d
(d − 1)2

Complexity
1 Processing a node with a subtree of height h: O(dh)

2 A complete subtree of height h has dh leaves
3 Every leaf belong in at most one complete subtree of height h.
4 The number of nodes with a subtree of height h is at most n

dh + 1 ≤ 2n
dh

1

5 The total time complexity is

dlogd ne∑
h=0

2n
dh dh ≤ 2nd

∞∑
h=0

h
dh = 2n

(
d

d − 1

)2

≤ 2n22 = O(n)

Jirka Fink Data Structures 1 57

1 We add “+1” to count at most one incomplete subtree.

Jirka Fink Data Structures 1 57

Outline

1 Amortized analysis

2 Splay tree

3 (a,b)-tree and red-black tree

4 Heaps
d-regular heap
Binomial heap
Lazy binomial heap
Fibonacci heap

5 Cache-oblivious algorithms

6 Hash tables

7 Geometrical data structures

8 Bibliography

Jirka Fink Data Structures 1 58

Binomial tree

Definition
A binomial tree B0 of order 0 is a single node.

A binomial tree Bk of order k has a root node whose children are roots of binomial
trees of orders 0, 1, . . . , k − 1.

Alternative definition
A binomial tree of order k is constructed from two binomial trees of order k − 1 by
attaching one of them as the rightmost child of the root of the other tree.

Recursions for binomial heaps

B0 B1

. . .

Bk−2 Bk−1

Bk−1

Bk−1

Jirka Fink Data Structures 1 59

Binomial tree: Example

Recursions for binomial heaps

B0 B1

. . .

Bk−2 Bk−1

Bk−1

Bk−1

Binomial trees of order 0, 1, 2 and 3

B0 B1

B0

B2

B0 B1

B3

B0 B1 B2

Jirka Fink Data Structures 1 60

Binomial tree: Properties

Recursions for binomial heaps

B0 B1

. . .

Bk−2 Bk−1

Bk−1

Bk−1

Observations
A binomial tree Bk of order k has

2k nodes,

height k ,

k children in the root,

maximal degree k and(k
d

)
nodes at depth d .

The subtree of a node with k children is isomorphic to Bk .

Jirka Fink Data Structures 1 61

Set of binomial trees

Observations
For every n there exists a set of binomial trees of pairwise different order such that the
total number of nodes is n.

Relation between a binary number and a set of binomial trees

Binary number n

Binomial tree contains:

= 1

B7

0 0 1

B4

1

B3

0 1

B1

0

Example of a set of binomial trees on 10102 nodes

5

9

2

10 3

12

6

8 11

15

Jirka Fink Data Structures 1 62

Binomial heap

Binomial heap
A binomial heap is a set of binomial trees that satisfies

Every element is stored in one node of one tree.

Each binomial tree obeys the minimum-heap property: the priority of a node is
greater than or equal to the priority of its parent.

There is at most one binomial tree for each order.

Example

5

9

2

10 3

12

6

8 11

15

Jirka Fink Data Structures 1 63

Binomial heap: Height and size

Observation
Binomial heap contains at most log2(n + 1) trees and each tree has height at most
log2 n.

Relation between a binary number and a set of binomial trees

Binary number n

Binomial tree contains:

= 1

B7

0 0 1

B4

1

B3

0 1

B1

0

Jirka Fink Data Structures 1 64

Binomial heap: Representation

A node in a binomial tree contains
an element (priority and value),

a pointer to its parent,

a pointer to its most-left and the most-right children, 1

a pointer to its left and right sibling and 2

the number of children (order).

Binomial heap
Binomial trees are stored in a double linked list using pointers to siblings.

Binomial heap keeps a pointer to an element of the smallest priority.

Trivial operations
FINDMIN in O(1)

DECREASE: Similar as in regular heaps, complexity O(log n)

Jirka Fink Data Structures 1 65

1 Actually, one pointer to any child is sufficient. In order to understand the analysis
of Fibonacci heap, it is easier to assume that a parent has access to the first and
the last children and new child is appended to the end of the list of children when
two trees are joined.

2 Pointers for a double linked list of all children which is sorted by orders.

Jirka Fink Data Structures 1 65

Binomial heap: Joining two heaps

Joining two binomial trees in time O(1)

u

B0 B1

. . .

Bk−2

v
Bk−1

rank+1

Joining two binomial heaps in time O(log n)

Join works as an analogy to binary addition. We start from the lowest orders, and
whenever we encounter two trees of the same order, we join them.

Example

Binomial trees B6 B5 B4 B3 B2 B1 B0

First heap 0 1 1 0 1 1 0
Second heap 0 1 1 0 1 0 0
Join 1 1 0 1 0 1 0

Jirka Fink Data Structures 1 66

Binomial heap: Operations INSERTand DECREASE

Operation INSERT

INSERTis implemented as join with a new tree of order zero containing new
element.

Complexity of INSERT is similar to the binary counter.

The worst-case complexity is O(log n).

The amortized complexity is O(1).

DELETEMIN

Split the tree with the smallest priority into a new heap by deleting its root and join the
new heap with the rest of the original heap. The complexity is O(log n).

Minimal priority

New heap

Rest of the original heap

Jirka Fink Data Structures 1 67

Outline

1 Amortized analysis

2 Splay tree

3 (a,b)-tree and red-black tree

4 Heaps
d-regular heap
Binomial heap
Lazy binomial heap
Fibonacci heap

5 Cache-oblivious algorithms

6 Hash tables

7 Geometrical data structures

8 Bibliography

Jirka Fink Data Structures 1 68

Lazy binomial heap

Difference
Lazy binomial heap is a set of binomial trees, i.e. different orders of binomial trees in a
lazy binomial heap is not required.

Operaions Join and INSERT

Just concatenate lists of binomial trees, so the worst-case complexity is O(1).

Delete min
Delete the minimal node

Append its children to the list of heaps

Reconstruct to the proper binomial heap

Find element with minimal priority

Jirka Fink Data Structures 1 69

Lazy binomial heap: Reconstruction to the proper binomial heap

Idea
While the lazy binomial heap contains two heaps of the same order, join them.

Use an array indexed by the order to find heaps of the same order.

Algorithm

1 Initialize an array of pointers of size dlog2(n + 1)e
2 for each tree h in the lazy binomial heap do
3 o ← order of h
4 while array[o] is not NIL do
5 h← the join of h and array[o]
6 array[o]← NIL
7 o ← o + 1

8 array[o]← h

9 Create a binomial heap from the array

Jirka Fink Data Structures 1 70

Heap: Overview

Complexity table

Binary Binomial Lazy binomial
worst worst amort worst amort

INSERT log n log n 1 1 1
DECREASE log n log n log n log n log n
DELETEMIN log n log n log n n log n

Question
Can we develop a heap with faster DELETEMIN than O(log n) and INSERT in time
O(1)?

Next goal
We need faster operation DECREASE.

How?
If we relax the condition on trees in a binomial heap to be isomorphic to binomial trees,
is there a faster method to decrease priority of a given node?

Jirka Fink Data Structures 1 71

Outline

1 Amortized analysis

2 Splay tree

3 (a,b)-tree and red-black tree

4 Heaps
d-regular heap
Binomial heap
Lazy binomial heap
Fibonacci heap

5 Cache-oblivious algorithms

6 Hash tables

7 Geometrical data structures

8 Bibliography

Jirka Fink Data Structures 1 72

Fibonacci heap (Fredman, Tarjan, 1987 [5])

Basic properties and legal operations 1

1 Fibonacci heap is a list of trees satisfying the heap invariant 2

2 The order of a tree is the number of children of its root 3

3 We are allowed to join two trees of the same order 4

4 We are allowed to disconnect one child from any node (except the root)
The structure of a node contains a bit (mark) to remember whether it has lost a child

5 Roots may loose arbitrary many children
If a node become a root, it is unmarked
If a root is joined to a tree, it can loose at most one child until it become a root again

6 We are allowed to create new tree with a single element 5

7 We are allowed to delete the root of a tree 6

Operations which same in lazy binomial heaps
INSERT, FINDMIN, DELETEMIN

Jirka Fink Data Structures 1 73

1 Data structures studied so far are defined by structural invariants and operations
are designed to keep these invariants. However, Fibonacci heap is defined by
elementary operations and the structure is derived from these operations.

2 This is similar as binomial heap but trees are not required to be isomorphic to
binomial heaps.

3 This is similar as binomial heap but relations to the number of nodes and height
are different.

4 Similarly as in binomial heaps, we append the root of one tree to the list of children
of the root of the other tree.

5 Similar as in lazy binomial heaps.
6 Operation DELETEMIN is the same as in lazy binomial heaps including the

reconstruction.

Jirka Fink Data Structures 1 73

Fibonacci heap: Operation DECREASE

Idea
Decrease priority of a given node and disconnect it from its parent

If the parent is marked, disconnect it from the grandparent

If the grandparent is marked, disconnect it

Repeat until an unmarked node or a root is reached

Example

1

A
3

4

C
7

D
8

E F

B

1

A
3

B

4

C

7

D

6

E F

Decrease to 6

Jirka Fink Data Structures 1 74

Fibonacci heap: DECREASE

Algorithm

Input: A node u and new priority k
1 Decrease priority of the node u
2 if u is a root or the parent of u has priority at most k then
3 return # The minimal heap property is satisfied

4 p ← the parent of u
5 Unmark the flag in u
6 Remove u from its parent p and append u to the list of heaps
7 while p is not a root and the flag in p is set do
8 u ← p
9 p ← the parent of u

10 Unmark the flag in u
11 Remove u from its parent p and append u to the list of heaps

12 if p is not a root then
13 Set the flag in p

Jirka Fink Data Structures 1 75

Fibonacci heap: Structure

Invariant
For every node u and its i-th child v holds that v has at least

i − 2 children if v is marked and

i − 1 children if v is not marked. 1

Proof (The invariant always holds.)
We analyze the initialization and all basic operations allowed by the definition of
Fibonacci heap.

1 Initialization: An empty heap satisfies the invariant.
2 INSERT: A tree with a single node satisfies the invariant.
3 Delete a root: Children of remaining nodes are unchanged.
4 Join: A node u of order k is appended as a (k + 1)-th child of a node p of order k
5 Removing i-th child x from a node u of order k which is a root
6 Removing i-th child x from an unmarked node u of order k which is j-th child of p

Jirka Fink Data Structures 1 76

1 We assume that later inserted child has a larger index.

Jirka Fink Data Structures 1 76

Fibonacci heap: Structure

Invariant
For every node u and its i-th child v holds that v has at least

i − 2 children if v is marked and

i − 1 children if v is not marked.

Size of a subtree
Let sk be the minimal number of nodes in a subtree of a node with k children.
Observe that sk ≥ sk−2 + sk−3 + sk−4 + · · ·+ s2 + s1 + s0 + s0 + 1.

Example

s4

s0 s0

M

s1

M

s2

M

M

Jirka Fink Data Structures 1 77

Fibonacci heap: Structure

Size of a subtree
Let sk be the minimal number of nodes in a subtree of a node with k children.
Observe that sk ≥ sk−2 + sk−3 + sk−4 + · · ·+ s2 + s1 + s0 + s0 + 1

Fibonacci numbers
1 F0 = 0 and F1 = 1
2 Fk = Fk−1 + Fk−2

3
∑k

i=1 Fi = Fk+2 − 1

4 Fk = (1+
√

5)k−(1−
√

5)k

2k
√

5

5 Fk ≥
(

1+
√

5
2

)k

6 sk ≥ Fk+2

Corollary

A tree of order k has at least sk ≥ Fk+2 ≥
(

1+
√

5
2

)k+2
nodes. Therefore,

root of a tree on m nodes has O(log m) children and

Fibonacci heap has O(log n) trees after operation DELETEMIN.

Jirka Fink Data Structures 1 78

Fibonacci heap: Complexity

Worst-case complexity
Operation INSERT: O(1)

Operation DECREASE: O(n)

Operation DELETEMIN: O(n)

Amortized complexity: Potential
Φ = t + 2m where t is the number of trees and m is the number of marked nodes

Amortized complexity: Insert
cost: O(1)

∆Φ = 1

Amortized complexity: O(1)

Jirka Fink Data Structures 1 79

Fibonacci heap: Amortized complexity of DECREASE

Single iteration of the while-loop (unmark and cut)
Cost: O(1)

∆Φ = 1− 2 = −1

Amortized complexity: Zero

Remaining parts

Cost: O(1)

∆Φ ≤ 1

Amortized complexity: O(1)

Total amortized complexity
O(1)

Jirka Fink Data Structures 1 80

Fibonacci heap: Amortized complexity of DELETE

Delete root and append its children
Cost: O(log n)

∆Φ ≤ O(log n)

Amortized complexity: O(log n)

Single iteration of the while-loop (join)

Cost: O(1)

∆Φ = −1

Amortized complexity: Zero

Remaining parts

Cost: O(log n)

∆Φ = 0

Amortized complexity: O(log n)

Total amortized complexity
O(log n)

Jirka Fink Data Structures 1 81

Appending all children of the root can be done in O(1) by a simple concatenating of
linked lists. However, some of these children can be marked, so unmarking takes
O(log n)-time as required by our definition. In a practical implementation, it is not
important when flags of roots are unmarked.

Jirka Fink Data Structures 1 81

Heap: Overview

Complexity table

Binary Binomial Lazy binomial Fibonacci
worst worst amort worst amort worst amort

INSERT log n log n 1 1 1 1 1
DECREASE log n log n log n log n log n n 1
DELETEMIN log n log n log n n log n n log n

Jirka Fink Data Structures 1 82

Outline

1 Amortized analysis

2 Splay tree

3 (a,b)-tree and red-black tree

4 Heaps

5 Cache-oblivious algorithms

6 Hash tables

7 Geometrical data structures

8 Bibliography

Jirka Fink Data Structures 1 83

Techniques for memory hierarchy

Example of sizes and speeds of different types of memory

size speed
L1 cache 32 KB 223 GB/s
L2 cache 256 KB 96 GB/s
L3 cache 8 MB 62 GB/s
RAM 32 GB 23 GB/s
SDD 112 GB 448 MB/s
HDD 2 TB 112 MB/s
Internet ∞ 10 MB/s

A trivial program

Initialize an array A of 32-bit integers of length n
1 for (i=0; i+d<n; i+=d) do
2 A[i] = i+d # Create a loop using every d-th position

3 A[i]=0 # Close the loop

4 for (j=0; j< 228; j++) do
5 i=A[i] # Repeatedly walk on the loop

Jirka Fink Data Structures 1 84

Memory hierarchy: Trivial program

10 12 14 16 18 20 22 24 26 28 30
0

5

10

15

log2 n

Ti
m

e
[s

]

d=211

d=210

d=29

d=28

d=27

d=26

d=25

d=24

d=23

d=22

d=21

d=20

Jirka Fink Data Structures 1 85

Memory models

Two level memory model
1 For simplicity, consider only two types of memory called a disk and a cache.
2 Memory is split into pages of size B. 1

3 The size of the cache is M, so it can store P = M
B pages.

4 CPU can access data only in cache. 2

5 The number of page transfers between disk and cache in counted. 3

Cache-oblivious model (Frigo, Leiserson, Prokop, Ramachandran, 1999 [6])
Design external-memory algorithms without knowing M and B. Hence,

a cache oblivious algorithm works well between any two adjacent levels of the
memory hierarchy,

no parameter tuning is necessary which makes programs portable,

algorithms in the cache-oblivious model cannot explicitly manage the cache.

Cache is assumed to be fully associative. 4

Jirka Fink Data Structures 1 86

1 Also called a block or a line.
2 Whole block must be loaded into cache when data are accessed.
3 For simplicity, we consider only loading pages from disk to cache, which is also

called page faults.
4 We assume that every block from disk can be stored in any position of cache. This

assumtion makes analysis easier, although it does not hold in practice, see e.g.
https://en.wikipedia.org/wiki/CPU_cache#Associativity.

Jirka Fink Data Structures 1 86

https://en.wikipedia.org/wiki/CPU_cache#Associativity

Cache-oblivious analysis: Scanning

Scanning of an array (finding maximum, sum, etc.)
Traverse all elements in an array, e.g. to compute sum or maximum.

Element Block Memory

n
B

The number of page transfers is at most dn/Be+ 1.

We are allowed to use O(1) registers to store iterators, sum, etc.

Array reversal
Assuming P ≥ 2, the number of page transfers is at most dn/Be+ 1.

Jirka Fink Data Structures 1 87

Cache-oblivious analysis: Binary heap and search

Binary heap: A walk from the root to a leaf

Accessed nodes PageBeginning of the heap

1 The path has Θ(log n) nodes.
2 First Θ(log B) nodes on the path are stored in at most two pages. 1

3 Remaining nodes are stored in pair-wise different pages.
4 Θ(log n − log B) = Θ(log n

B) pages are transfered. 2

Binary search
Θ(log n) elements are compared with a given key.

Last Θ(log B) nodes are stored in at most two pages.

Remaining nodes are stored in pair-wise different pages.

Θ(log n − log B) pages are transfered.

Jirka Fink Data Structures 1 88

1 One page stores B nodes, so the one page stores a tree of height log2(B) +O(1),
if the root is well aligned.

2 More precisely: Θ(max {1, log n − log B})

Jirka Fink Data Structures 1 88

Cache-oblivious analysis: Mergesort

Case n ≤ M/2

Whole array fits into cache, so 2n/B +O(1) page are transfered. 1

Schema

n
n/2
n/4

...
z

...
1

Length of merged array

log2 n

log2(n/z)

log2 z

Height of the recursion tree

Case n > M/2
1 Let z be the maximal block in the recursion that can be sorted in cache.
2 Observe: z ≤ M

2 < 2z
3 Merging one level requires 2 n

B + 2 n
z +O(1) = O

(n
B

)
page transfers. 2

4 Hence, the number of page transfers is O
(n

B

) (
1 + log2

n
z

)
= O

(n
B log n

M

)
. 3

Jirka Fink Data Structures 1 89

1 Half cache is for two input arrays and the other half is for the merged array.
2 Merging all blocks in level i into blocks in level i − 1 requires reading whole array

and writing the merged array. Furthermore, misalignments may cause that some
pages contain elements from two blocks, so they are accessed twice.

3 Funnelsort requires O
(n

B logP
n
B

)
page transfers.

Jirka Fink Data Structures 1 89

Cache-oblivious analysis: Matrix transposition: Simple approach

Page replacement strategies
Optimal: The future is known, off-line

LRU: Evicting the least recently used page

FIFO: Evicting the oldest page

Simple algorithm for a transposing matrix A of size k × k

1 for i ← 2 to k do
2 for j ← i + 1 to k do
3 Swap(Aij , Aji)

Assumptions
For simplicity, we assume that

B < k : One page stores at most one row of the matrix.

P < k : Cache cannot store all elements of one column at once.

Jirka Fink Data Structures 1 90

Cache-oblivious analysis: Matrix transposition: Simple approach

Representation of a matrix 5× 5 in memory and an example of memory pages

11 12 13 14 15 21 22 23 24 25 31 32 33 34 35 41 42 43 44 45 51 52 53 54 55

LRU or FIFO page replacement

All the column values are evicted from the cache before they can be reused, so Ω(k2)
pages are transfered.

Optimal page replacement
1 Transposing the first row requires at least k transfers.
2 Then, at most P elements of the second column is cached.
3 Therefore, transposing the second row requires at least k − P − 1 transfers.
4 Transposing the i-th row requires at least max {0, k − P − i} transfers.
5 The total number of transfers is at least

∑k−P
i=1 i = Ω

(
(k − P)2).

Jirka Fink Data Structures 1 91

Cache-oblivious analysis: Matrix transposition: Cache-aware approach

Cache-aware algoritmus for transposition of a matrix A of size k × k

We split the matrix A into submatrices of size z × z
1 for (i = 0; i < k ; i+ = z) do
2 for (j = i ; j < k ; j+ = z) do

We transpose the submatrix starting on position (i , j)
3 for (ii = i ; ii < min(k , i + z); ii + +) do
4 for (jj = max(j , ii + 1); jj < min(k , j + z); jj + +) do
5 Swap(Aii,jj , Ajj,ii)

Notes
Assuming 4B ≤ P, we choose z = B

Every submatrix is stored in at most 2z blocks and two submatrices are stored in
cache for transposition

The number of transfered block is at most
(k

z

)2 2z = O
(

k2

B

)
Optimal value of the parameter z depend on computer

We efficiently use only one level of cache

This approach is usually faster than cache-oblivious if z is chosen correctly

Jirka Fink Data Structures 1 92

Cache-oblivious analysis: Matrix transposition: Recursive approach

Idea
Recursively split the matrix into sub-matrices:

A =

(
A11 A12

A21 A22

)
AT =

(
AT

11 AT
21

AT
12 AT

22

)
Matrices A11 and A22 are transposed using the same scheme, while A12 and A21 are
swapped during their recursive transposition.

Jirka Fink Data Structures 1 93

Cache-oblivious analysis: Matrix transposition: Recursive approach

1 Procedure transpose on diagonal(A)
2 if matrix A is small then
3 Transpose matrix A using the trivial approach
4 else
5 A11,A12,A21,A22 ← coordinates of submatrices
6 transpose on diagonal(A11)
7 transpose on diagonal(A22)
8 transpose and swap(A12,A21)

9 Procedure transpose and swap(A,B)
10 if matrices A and B are small then
11 Swap and transpose matrices A and B using the trivial approach
12 else
13 A11,A12,A21,A22,B11,B12,B21,B22 ← coordinates of submatrices
14 transpose and swap(A11,B11)
15 transpose and swap(A12,B21)
16 transpose and swap(A21,B12)
17 transpose and swap(A22,B22)

Jirka Fink Data Structures 1 94

Cache-oblivious analysis: Matrix transposition: Recursive approach

Number of page transfers
1 Tall cache assumption: M ≥ 4B2

2 Let z be the maximal size of a sub-matrix in the recursion that fit into cache
3 Observe: z ≤ B ≤ 2z
4 One submatrix z × z is stored in at most 2z ≤ 2B blocks
5 Two submatrices z × z can be stored in cache and their transposition requires at

most 4z transfers
6 There are (k/z)2 sub-matrices of size z × z
7 The number of transfers is O

(
k2/B

)
8 This approach is optimal up-to a constant factor

Jirka Fink Data Structures 1 95

Cache-oblivious analysis: Representation of binary trees

Goals
Construct a representation of binary trees efficiently using cache.
We count the number of transfered blocks during a walk from a leaf to the root.

Representation of a binary heap in an array

Very inefficient: The number of transfered blocks is Θ(log n − log B) = Θ(log n
B)

B-regular heap (similarly B-tree)

The height of a tree is logB(n) + Θ(1) 1

One node is stored in at most two blocks

The number of transfered blocks is Θ(log n
log B) = Θ(logB(n)) 2

Disadvantage: cache-aware and we want a binary tree

Convert to a binary tree
Every node of a B-regular heap can be replaced by a binary subtree.

Jirka Fink Data Structures 1 96

1 B-tree has height Θ(logB(n).
2 This is asymptotically optimal — proof is based on Information theory.

Jirka Fink Data Structures 1 96

Cache-oblivious analysis: Cache-aware representation

a1 a a2

b1 b b2

f1 f f2 g1 g g2

c1 c c2 d1 d d2 e1 e e2

y1 y y2 z1 z z2. . . skipped . . .

a

a1 a2

b

b1 b2

c

c1 c2

d

d1 d2

e

e1 e2

f

f1 f2

g

g1 g2

y

y1 y2

z

z1 z2
. . . skipped . . .

a a1 a2 b b1 b2 c c1 c2 d d1 d2 e e1 e2 f f1 f2 ... z z1 z2

Path from the root to the leaf f2

Jirka Fink Data Structures 1 97

Cache-oblivious analysis: The van Emde Boas layout

Recursive description
Van Emde Boas layout of order 0 is a single node.

The layout of order k has one “top” copy of the layout of order k − 1 and every leaf
of the “top” copy has attached roots of two “bottom” copies of the layout of order
k − 1 as its children.

All nodes of the tree are stored in an array so that the “top” copy is the first followed by
all “bottom” copies.

The order of nodes in the array

0

1 2

0

1

3

4 5

6

7 8

2

9

10 11

12

13 14

Jirka Fink Data Structures 1 98

Cache-oblivious analysis: The van Emde Boas layout

. . .

h

⌊ h
2

⌋

⌈ h
2

⌉

Number of page transfers
Let h = log2 n be the height of the tree.

Let z be the maximal height of a subtree in the recursion that fits into one page.

Observe: z ≤ log2 B ≤ 2z.

The number of subtrees of height z on the path from the root to a leaf is
h
z ≤

2 log2 n
log2 B = 2 logB n

Hence, the number of page transfers is O(logB n).

Jirka Fink Data Structures 1 99

Cache-oblivious analysis: Comparison of LRU and OPT strategies

Theorem (Sleator, Tarjan, 1985 [18])
Let s1, . . . , sk be a sequence of pages accessed by an algorithm.

Let POPT and PLRU be the number of pages in cache for OPT and LRU, resp
(POPT < PLRU).

Let FOPT and FLRU be the number of page faults during the algorithm.

Then, FLRU ≤ PLRU
PLRU−POPT

FOPT + POPT.

Corollary
If LRU can use twice as many cache pages as OPT, then LRU transports at most twice
many pages than OPT does (plus POPT).

The asymptotic number of page faults for some algorithms
In most cache-oblivious algorithms, doubling/halving cache size has no impact on the
asymptotic number of page faults, e.g.

Scanning: O(n/B)

Mergesort: O
(n

B log n
M

)
Funnelsort: O

(n
B logP

n
B

)
The van Emde Boas layout: O(logB n)

Jirka Fink Data Structures 1 100

Cache-oblivious analysis: Comparison of LRU and OPT strategies

Proof (FLRU ≤ PLRU
PLRU−POPT

FOPT + POPT)

1 If LRU transfers f ≤ PLRU blocks in a sequence s, then OPT transfers at least
f − POPT blocks in s

If LRU reads f different blocks in s, then s contains at least f different blocks
If LRU reads one block twice in s, then s contains at least PLRU ≥ f different blocks
OPT stores at most POPT blocks of s in cache before processing s, so at least f − POPT
must be read to cache when s is processed

2 Split sequence s1, . . . , sk into subsequences so that LRU transfers PLRU blocks in
every subsequence (except the last one)

3 If F ′OPT and F ′LRU denotes the number of transfered blocks in a subsequence, then
F ′LRU ≤

PLRU
PLRU−POPT

F ′OPT (except the last one)
OPT transfers F ′OPT ≥ PLRU − POPT blocks in every subsequence

Hence, F ′LRU
F ′OPT

≤ PLRU
PLRU−POPT

4 The last subsequence satisfies F ′′LRU ≤
PLRU

PLRU−POPT
F ′′OPT + POPT

So, F ′′OPT ≥ F ′′LRU − POPT a 1 ≤ PLRU
PLRU−POPT

Therefore, F ′′LRU ≤ F ′′OPT + POPT ≤
PLRU

PLRU−POPT
F ′′OPT + POPT

Jirka Fink Data Structures 1 101

Comparison of reading and writing data

Reading from memory

Initialize an array A of 32-bit integers of length n
1 for (i=0; i+d<n; i+=d) do
2 A[i] = i+d # Create a loop using every d-th position

3 A[i]=0 # Close the loop

4 for (j=0; j< 228; j++) do
5 i=A[i] # Repeatedly walk on the loop

Writing into memory

1 for (j=0; j< 228; j++) do
2 A[(j*d) % n] = j # Repeated operation write on d-th position 1

Jirka Fink Data Structures 1 102

1 Actually, we tested A[(j*d) & (n-1)] = j as discussed later.

Jirka Fink Data Structures 1 102

Comparison of reading and writing data

10 12 14 16 18 20 22 24 26 28 30
0

0.5

1

1.5

2 max=18s max=3.4s

log2 n

Ti
m

e
[s

]

Read, d=1024
Read, d=32

Write, d=1024
Write, d=32
Read, d=1
Write, d=1

Jirka Fink Data Structures 1 103

Few more thicks

Which version is faster and how much?

Modulo

1 for (j=0; j< 228; j++) do
2 A[(j*d) % n] = j

Bitwise conjunction
3 mask = n − 1 # Assume that n is a power of two

4 for (j=0; j< 228; j++) do
5 A[(j*d) & mask] = j

How fast is the computation if we skip the last line?

1 for (i=0; i+d<n; i+=d) do
2 A[i] = i+d

3 A[i]=0
4 for (j=0; j< 228; j++) do
5 i = A[i]

6 printf(”%d\n”, i);

Jirka Fink Data Structures 1 104

Outline

1 Amortized analysis

2 Splay tree

3 (a,b)-tree and red-black tree

4 Heaps

5 Cache-oblivious algorithms

6 Hash tables
Universal hashing
Separate chaining
Linear probing
Cuckoo hashing

7 Geometrical data structures

8 Bibliography

Jirka Fink Data Structures 1 105

Hash tables

Basic terms
Universe U = {0, 1, . . . , u − 1} of all elements

Represent a subset S ⊆ U of size n

Store S in an array of size m using a hash function h : U → M where
M = {0, 1, . . . ,m − 1}
Collision of two elements x , y ∈ S means h(x) = h(y)

Hash function h is perfect on S if h has no collision on S

Adversary subset
If u ≥ mn, then for every hashing function h there exists S ⊆ U of size n such that all
elements of S are hashed to the same position.

Notes
There is no function “well hashing” every subset S ⊆ U.

For a given subset S ⊆ U we can construct a perfect hashing function.

We construct a system of hashing functions H such that for every subset S the
expected number of collisions is small for randomly chosen h ∈ H.

Jirka Fink Data Structures 1 106

Outline

1 Amortized analysis

2 Splay tree

3 (a,b)-tree and red-black tree

4 Heaps

5 Cache-oblivious algorithms

6 Hash tables
Universal hashing
Separate chaining
Linear probing
Cuckoo hashing

7 Geometrical data structures

8 Bibliography

Jirka Fink Data Structures 1 107

Universal hashing

Goal
We construct a system H of hashing functions f : U → M such that uniformly chosen
function h ∈ H has for every subset S small expected number of collisions.

Totally random hashing system
The system H contains all functions f : U → M

Hence, P[h(x) = z] = 1
m for every x ∈ U and z ∈ M

Positions h(x) a h(y) are independent for two different keys x , y ∈ U

Impractical: encoding one function from H requires Θ(u log m) bits

We use it in proofs

Hashing random data
If we need to store a uniformly chosen subset S ⊆ U.

Every reasonable function f : U → S is sufficient e.g. f (x) = x mod m.

Useful in proofs considering totally random hashing system.

Keys have uniform distributions only in rare practical situations

Jirka Fink Data Structures 1 108

Universal hashing

c-universal hashing system
A system H of hashing functions is c-universal, if for every x , y ∈ U with x 6= y the
number of functions h ∈ H satisfying h(x) = h(y) is at most c|H|

m where c ≥ 1.
Equivalently, a system H of hashing functions is c-universal, if uniformly chosen h ∈ H
satisfies P[h(x) = h(y)] ≤ c

m for every x , y ∈ U with x 6= y . 1

(2, c)-independent hashing system

A set H of hash functions is (2, c)-independent if for every x1, x2 ∈ U with x1 6= x2 and
z1, z2 ∈ M the number of functions h ∈ H satisfying h(x1) = z1 and h(x2) = z2 is at
most c|H|

m2 . 2

Equivalently, a set H of hash functions is (2, c)-independent if randomly chosen h ∈ H
satisfies P[h(x1) = z1 and h(x2) = z2] ≤ c

m2 for every x1 6= x2 elements of U and
z1, z2 ∈ M.

(k , c)-independent hashing system

A set H of hash functions is (k , c)-independent if randomly chosen h ∈ H satisfies
P[h(xi) = zi for every i = 1, . . . , k] ≤ c

mk for every pair-wise different elements
x1, . . . , xk ∈ U and z1, . . . , zk ∈ M.
A set H of hash functions is k -independent if it is (k , c)-independent for some c ≥ 1.

Jirka Fink Data Structures 1 109

1 Furthermore, we usually require that h ∈ H is computable in O(1) time and h can
be encoded using O(1) bits.

2 Buckets z1 and z2 can be the same but elements x1 and x2 must be distinct.

Jirka Fink Data Structures 1 109

Universal hashing: Relations

Example of c-universal system (Exercise)
H = {ha(x) = (ax mod p) mod m; 0 < a < p}, where p > u is a prime

Relations
1 If a hashing system is (k , c)-independent, then it is (k − 1, c)-independent. 1

2 If a hashing system is (2, c)-independent, then it is also c-universal.
3 1-independent hashing system may not be c-universal. 2

4 If P[h(xi) = zi for every i = 1, . . . , k] ≤ 1
mk for every z1, . . . , zk ∈ M, then

P[h(xi) = zi for every i = 1, . . . , k] = 1
mk for every z1, . . . , zk ∈ M

5 There exists z1, . . . , zk ∈ M such that P[h(xi) = zi for every i = 1, . . . , k] ≥ 1
mk .

Jirka Fink Data Structures 1 110

1 P[h(xi) = zi for every i = 1, . . . , k − 1]
= P[h(xi) = zi for every i = 1, . . . , k − 1 and ∃zk : h(xk) = zk]
=
∑

zk∈M P[h(xi) = zi for every i = 1, . . . , k] ≤ m c
mk

2 Consider H = {x 7→ a; a ∈ M}. Then, P[h(x) = z] = P[a = z] = 1
m but

P[h(x1) = h(x2)] = P[a = a] = 1.

Jirka Fink Data Structures 1 110

Universal hashing: Multiply-mod-prime

Definition
p is a prime greater than u and [p] denotes {0, . . . , p − 1}
ha,b(x) = (ax + b mod p) mod m 1

H = {ha,b; a, b ∈ [p], a 6= 0}
System H is 1-universal and 2-independent, ale but it is not 3-independent

Notation
We write a ≡c b if a mod c = b mod c where a, b ∈ Z and c ∈ N.

Lemma
For every different x1, x2 ∈ [p], equations

y1 = ax1 + b mod p

y2 = ax2 + b mod p

define a bijection between (a, b) ∈ [p]2 and (y1, y2) ∈ [p]2. 2

Furthermore, these equations define a bijection between
{

(a, b) ∈ [p]2; a 6= 0
}

and{
(y1, y2) ∈ [p]2; y1 6= y2

}
. 3

Jirka Fink Data Structures 1 111

1 By convention, operator mod has lower priority than addition and multiplication.
2 Subtracting these equations, we get a(x1 − x2) ≡p y1 − y2. Hence, for given pair

(y1, y2) there exists exactly one a = (y1 − y2)(x1 − x2)−1 in the field GF(p).
Similarly, there exists exactly one b = y1 − ax1 in the field GF(p).

3 Indeed, y1 = y2 if and only if a = 0.

Jirka Fink Data Structures 1 111

Universal hashing: Multiply-mod-prime

Definition
ha,b(x) = (ax + b mod p) mod m where p is a prime larger than u

H = {ha,b; a, b ∈ [p], a 6= 0}

Lemma
For every different x1, x2 ∈ [p], equations

y1 = ax1 + b mod p

y2 = ax2 + b mod p

define a bijection between
{

(a, b) ∈ [p]2; a 6= 0
}

and
{

(y1, y2) ∈ [p]2; y1 6= y2
}

.

The multiply-mod-prime set of functions H is 1-universal
1 For x1 6= x2 we have a collision ha,b(x1) = ha,b(x2)⇔ y1 ≡m y2 and y1 6= y2.
2 For given y1 there are at most

⌈ p
m

⌉
− 1 values y2 6= y1 such that y1 ≡m y2.

3 The number such a pairs (y1, y2) is at most p(
⌈ p

m

⌉
− 1) ≤ p(p+m−1

m − 1) ≤ p(p−1)
m .

4 There are at most p(p−1)
m pairs from

{
(a, b) ∈ [p]2; a 6= 0

}
causing a collision

ha,b(x1) = ha,b(x2).
5 Hence, P[ha,b(x1) = ha,b(x2)] ≤ p(p−1)

m|H| ≤
1
m .

Jirka Fink Data Structures 1 112

Universal hashing: Multiply-mod-prime

Definition
ha,b(x) = (ax + b mod p) mod m where p is a prime larger than u

H = {ha,b; a, b ∈ [p], a 6= 0}

Lemma
For every different x1, x2 ∈ [p], equations

y1 = ax1 + b mod p

y2 = ax2 + b mod p

define a bijection between (a, b) ∈ [p]2 and (y1, y2) ∈ [p]2.

The multiply-mod-prime set of functions H is 2-independent
1 The number of y1 with z1 = y1 mod m is at most

⌈ p
m

⌉
.

2 The number of (y1, y2) with z1 = y1 mod m and z2 = y2 mod m is at most
⌈ p

m

⌉2.

3 The number of (x1, x2) with ha,b(x1) = z1 and ha,b(x2) = z2 is at most
⌈ p

m

⌉2.

4 P[ha,b(x1) = z1 and ha,b(x2) = z2] ≤
⌈ p

m

⌉2 1
p(p−1)

≤
(p+m

m

)2 2
p2 ≤

(
2p
m

)2
2

p2 = 8
m2

Jirka Fink Data Structures 1 113

Universal hashing: Multiply-mod-prime

Definition
ha,b(x) = (ax + b mod p) mod m where p is a prime larger than u

H = {ha,b; a, b ∈ [p], a 6= 0}

System H is not 3-independent
1 For simplicity, assume that p ≥ 4u.
2 Choose arbitrary z1, z2 ∈ [p].
3 Let x1 = 1, x2 = 3, x3 = 2 and z3 = (z1 + z2)2−1 where 2−1 ∈ GF (p).
4 Note that 3a + b < p for every a, b ∈ [p].
5 If h(x1) = z1 and h(x2) = z2, then h(x3) = z3.

2h(x3) ≡p 2(2a + b) = (a + b) + (3a + b) ≡p z1 + z2 ≡p 2z3

6 Conditional probability: P[h(x3) = z3|h(x1) = z1 and h(x2) = z2] = 1
7 P[h(x3) = z3 and h(x1) = z1 and h(x2) = z2]

= P[h(x3) = z3|h(x1) = z1 and h(x2) = z2] P[h(x1) = z1 and h(x2) = z2]
= P[h(x1) = z1 and h(x2) = z2] ≥ 1

m2 for some z1, z2 ∈ [p]

8 Hence, for every c ≥ 1 there exists m ∈ N and p ≥ 4u ≥ 4m and z1, z2, z3 ∈ [p]
such that P[h(x1) = z1 and h(x2) = z2 and h(x3) = z3] > c

m3 .

Jirka Fink Data Structures 1 114

Universal hashing: Poly-mod-prime

Hashing system Poly-mod-prime
Let p be a prime larger than u and k ≥ 2 be an interger

ha0,...,ak−1 (x) = (
∑k−1

i=0 aix i mod p) mod m

H =
{

ha0,...,ak−1 ; a0, . . . , ak−1 ∈ [p]
}

Note that Poly-mod-prime for k = 2 is the same as Mupliply-mod-prime

k -independence (exercise)
Hashing system Poly-mod-prime is k -independent but it is not (k + 1)-independent

Jirka Fink Data Structures 1 115

Universal hashing: Multiply-shift

Multiply-shift

Assume that u = 2w a m = 2l where w and l are integers

ha(x) = (ax mod 2w) >> (w − l)

H = {ha; a odd w-bit integer }

Example is C
uint64_t hash(uint64_t x, uint64_t l, uint64_t a)
{ return (a*x) >> (64-l); }

Universality (without a proof)
Hashing system Multiply-shift is 2-independent.

Jirka Fink Data Structures 1 116

Universal hashing: Tabular hashing

Tabular hashing

Assume that u = 2w and m = 2l and w is a multiple of an integer d

Binary code of x ∈ U is split to d parts x0, . . . , xd−1 by w
d bits

For every i ∈ [d] generate a totally random hashing function Ti : [2w/d]→ M

Hashing function is h(x) = T0(x0)⊕ · · · ⊕ Td−1(xd−1) 1

Example

x0 x1 x2 x3

h(x) = T0(x0)⊕ T1(x1)⊕ T2(x2)⊕ T3(x3)

One bit
One part

Universality
Tabular hashing is 3-independent, but it is not 4-independent.

Jirka Fink Data Structures 1 117

1 ⊕ denotes bit-wise exclusive or (XOR).

Jirka Fink Data Structures 1 117

Universal hashing: Tabular hashing

Tabular hashing

Assume that u = 2w and m = 2l and w is a multiple of an integer d

Binary code of x ∈ U is split to d parts x0, . . . , xd−1 by w
d bits

For every i ∈ [d] generate a totally random hashing function Ti : [2w/d]→ M

Hashing function is h(x) = T0(x0)⊕ · · · ⊕ Td−1(xd−1)

Universality
Tabular hashing is 3-independent, but it is not 4-independent.

Proof of 2-independence
Consider two elements x1 a x2 which differ in i-th parts

Let hi (x) = T0(x0)⊕ · · · ⊕ Ti−1(x i−1)⊕ Ti+1(x i+1)⊕ · · · ⊕ Td−1(xd−1)

P[h(x1) = z1] = P[hi (x1)⊕ Ti (x i
1) = z1] = P[Ti (x i

1) = z1 ⊕ hi (x1)] = 1
m

1

Random events h(x1) = z1 and h(x2) = z2 are independent
Random variables Ti (x i

1) and Ti (x i
2) are independent

Random events Ti (x i
1) = z1 ⊕ hi (x1) and Ti (x i

2) = z2 ⊕ hi (x2) are independent

P[h(x1) = z1 and h(x2) = z2] = P[h(x1) = z1]P[h(x2) = z2] = 1
m2

Jirka Fink Data Structures 1 118

1 Ti (x i
1) has the uniform distribution on M and random variables Ti (x i

1) and
z1 ⊕ hi (x1) are independent.

Jirka Fink Data Structures 1 118

Universal hashing: Tabular hashing

Tabular hashing is not 4-independent
1 Consider elements x1, x2, x3 and x4 such that

x1 satisfies x0
1 = 0, x1

1 = 0, x i
1 = 0 for i ≥ 2

x2 satisfies x0
2 = 1, x1

2 = 0, x i
2 = 0 for i ≥ 2

x3 satisfies x0
3 = 0, x1

3 = 1, x i
3 = 0 for i ≥ 2

x4 satisfies x0
4 = 1, x1

4 = 1, x i
4 = 0 for i ≥ 2

2 Observe that h(x4) = h(x1)⊕ h(x2)⊕ h(x3)

3 Choose arbitrary z1, z2, z3 ∈ M and let z4 = z1 ⊕ z2 ⊕ z3

4 Conditional probability
P[h(x4) = z4|h(x1) = z1 and h(x2) = z2 and h(x3) = z3] = 1

5 P[h(x4) = z4 and h(x1) = z1 and h(x2) = z2 and h(x3) = z3] =
P[h(x1) = z1 and h(x2) = z2 and h(x3) = z3] ≥ 1

m3 for some z1, z2, z3 ∈ M
6 Hence, for every c ≥ 1 there exists m ∈ N and z1, z2, z3, z4 ∈ M such that

P[h(x1) = z1 and h(x2) = z2 and h(x3) = z3 and h(x4) = z4] > c
m4 .

Jirka Fink Data Structures 1 119

Universal hashing: Multiply-shift for vectors

Multiply-shift for fix-length vectors

Hash a vector x1, . . . , xd ∈ U = [2w] into M = [2l] and let v ≥ w + l − 1

ha1,...,ad ,b(x1, . . . , xd) = ((b +
∑d

i=1 aixi) >> (l − v)) mod m

H =
{

ha1,...,ad ,b; a1, . . . , ad , b ∈ [2v]
}

H is 2-universal

Multiply-mod-prime for variable-length string

Hash a string x0, . . . , xd ∈ U into [p] where p ≥ u is a prime.

ha(x0, . . . , xd) =
∑d

i=0 xiai mod p 1

H = {ha; a ∈ [p]}
P[ha(x0, . . . , xd) = ha(x ′0, . . . , x

′
d′)] ≤ d+1

p for two different strings with d ′ ≤ d . 2

Multiply-mod-prime for variable-length string II

Hash a string x0, . . . , xd ∈ U into [m] where p ≥ m is a prime.

ha,b,c(x0, . . . , xd) =
(

b + c
∑d

i=0 xiai mod p
)

mod m

H = {ha,b,c ; a, b, c ∈ [p]}
P[ha,b,c(x0, . . . , xd) = ha,b,c(x ′0, . . . , x

′
d′)] ≤ 2

m for different strings with d ′ ≤ d ≤ p
m .

Jirka Fink Data Structures 1 120

1 x0, . . . , xd are coefficients of a polynomial of degree d .
2 Two different polynomials of degree at most d have at most d + 1 common points,

so there are at most d + 1 colliding values α.

Jirka Fink Data Structures 1 120

Outline

1 Amortized analysis

2 Splay tree

3 (a,b)-tree and red-black tree

4 Heaps

5 Cache-oblivious algorithms

6 Hash tables
Universal hashing
Separate chaining
Linear probing
Cuckoo hashing

7 Geometrical data structures

8 Bibliography

Jirka Fink Data Structures 1 121

Separate chaining

Description
Bucket j stores all elements x ∈ S with h(x) = j using some data structure, e.g.

linked list

dynamic array

self-balancing tree

Implementations
std::unordered map in C++

Dictionary in C#

HashMap in Java

Dictionary in Python

Jirka Fink Data Structures 1 122

Separate chaining: Example

Using illustrative hash function h(x) = x mod 11

0, 22, 55

2
14, 80

5, 27
17

8, 30

21

Terminology
We say that a hashing system H is strongly k -independent, if H is (k , 1)-independent.
Note that H is (k , 1)-independent if randomly chosen h ∈ H satisfies
P[h(xi) = zi for every i = 1, . . . , k] = 1

mk for every pair-wise different elements
x1, . . . , xk ∈ U and z1, . . . , zk ∈ M.

Jirka Fink Data Structures 1 123

Separate chaining: Analysis

Definition
α = n

m is the load factor; we assume that α = Θ(1)

Iij is a random variable indicating whether i-th element belongs into j-th bucket

Aj =
∑

i∈S Iij is the number of elements in j-th bucket

Expected chain length (number of elements in a bucket)
If hashing system is strongly 1-independent, the number of elements in one bucket
j ∈ M is E [Aj] = α. 1

Observations
If hashing system is strongly 2-independent, then

1 E [A2
j] = α(1 + α− 1/m) 2

2 Var(Aj) = α(1− 1/m) 3

Jirka Fink Data Structures 1 124

1 E [Aj] = E [
∑

i∈S Iij] =
∑

i∈S E [Iij] =
∑

i∈S P[h(i) = j] =
∑

i∈S
1
m = n

m where the
second equality follows from the linearity of expectation, the third one from the
definition of expectation and the last one from 1-independence.

2 E [A2
j] = E [(

∑
i∈S Iij)(

∑
k∈S Ikj)] =

∑
i∈S E [I2

ij] +
∑

i,k∈S,i 6=k E [Iij Ikj] =

=
∑

i∈S P[h(i) = j] +
∑

i,k∈S,i 6=k E [h(i) = j and h(k) = j] = α + n(n−1)

m2

3 Var(Aj) = E [A2
j]− E2[Aj] = α(1 + α− 1/m)− α2

Jirka Fink Data Structures 1 124

Separate chaining: Operation FIND

Expected number of comparisons during a successful operation FIND

The total number of comparisons to find all elements is divided by the number of
elements

Strongly 2-independent hashing system is considered

The total number of comparisons is
∑

j

∑Aj
k=1 k =

∑
j

Aj (Aj +1)

2

Expected number of comparisons is 1 + α
2 −

1
2m

E
[

1
n
∑

j
Aj (Aj +1)

2

]
= 1

2n (E [
∑

j Aj] +
∑

j E [A2
j]) = 1

2n (n + mα(1 + α− 1
m))

Expected number of comparisons during an unsuccessful operation FIND

The number of comparisons during an unsuccessful FINDof element x is the
number of elements i ∈ S satisfying h(i) = h(x)

We need to count E [| {i ∈ S; h(i) = h(x)} |]
c-universal hashing system is considered
Expected number of comparisons is cα

E [| {i ∈ S; h(i) = h(x)} |] =
∑

i∈S P[h(i) = h(x)] ≤
∑

i∈S
c
m = cα

Jirka Fink Data Structures 1 125

Separate chaining: The longest chain

Definition
An event En whose probability depends on a number n occurs with high probability if
there exists a c > 0 and n0 ∈ N such that for every n ≥ n0 holds P[En] ≥ 1− 1

nc .

Length of the longest chain
If α = Θ(1) and the hashing system is totally independent, then the length of the
longest chain is maxj∈M Aj = Θ(log n

log log n) with high probability. This also holds for
log n

log log n -independent hashing system (Schmidt, Siegel, Srinivasan, 1995 [17])

tabular hashing (Pǎtraşcu, Thorup, 2012 [15])

Expected length of the longest chain (Exercise)

If α = Θ(1) and the hashing system is totally independent, then the expected length of
the longest chain is Θ(log n

log log n) elements.

Chernoff Bound
Suppose X1, . . . ,Xn are independent random variables taking values in {0, 1}. Let X
be their sum and let µ = E [X] denote the sum’s expected value. Then for any c > 1
holds P[X > cµ] < e(c−1)µ

ccµ .

Jirka Fink Data Structures 1 126

Separate chaining: The longest chain

Length of the longest chain

If α = Θ(1) and the hashing system is totally independent, then the length of the
longest chain is maxj∈M Aj = Θ(log n

log log n) with high probability.

Chernoff Bound
Suppose X1, . . . ,Xn are independent random variables taking values in {0, 1}. Let X
be their sum and let µ = E [X] denote the sum’s expected value. Then for any c > 1
holds P[X > cµ] < e(c−1)µ

ccµ .

Proof: maxj∈M Aj = O
(

log n
log log n

)
with high probability

Consider ε > 0 a c = (1 + ε) log n
µ log log n . So, cµ = (1 + ε) log n

log log n

It holds P[maxj Aj > cµ] = P[∃j : Aj > cµ] ≤
∑

j P[Aj > cµ] = mP[A1 > cµ]

Using the Chernoff bound on Ii1 for i ∈ S: µ = E [A1] = α

It holds P[maxj Aj > cµ] ≤ mP[A1 > cµ] < me−µecµ−cµ log c

Jirka Fink Data Structures 1 127

Separate chaining: The longest chain

Proof: maxj∈M Aj = O
(

log n
log log n

)
with high probability

Consider ε > 0 a c = (1 + ε) log n
µ log log n . So, cµ = (1 + ε) log n

log log n

P[max
j

Aj > cµ] < me−µecµ−cµ log c

= me−µe(1+ε)
log n

log log n−(1+ε)
log n

log log n log
(

(1+ε)log n
µ log log n

)

= me−µe(1+ε)
log n

log log n−(1+ε)log n+(1+ε)
log n

log log n log(µ
1+ε

log log n)

= me−µe(1+ε)
log n

log log n−(1+ε)log n+(1+ε)
log n

log log n log(µ
1+ε

log log n)

= me−µn
1+ε

log log n−(1+ε)+ 1+ε
log log n log(µ

1+ε
log log n)

=
m

n1+ ε
2

e−µn−
ε
2 + 1+ε

log log n +(1+ε)
log(µ

1+ε
log log n)

log log n

<
1
αn

ε
2

e−µn0 <
1

n
ε
3

. . . for sufficiently large n

Since − ε
2 + 1+ε

log log n + (1 + ε)
log(µ

1+ε
log log n)

log log n < 0 for sufficiently large n.

Hence, P[maxj Aj ≤ (1 + ε) log n
log log n] > 1− 1

n
ε
3

.

Jirka Fink Data Structures 1 128

Separate chaining: Length of the longest chain (5 experiments)

101 102 103 104 105 106 107 108 109
0

2

4

6

8

10

12

Total number of elements = the number of buckets

Th
e

m
ax

im
al

nu
m

be
ro

fe
le

m
en

ts
in

a
bu

ck
et

Jirka Fink Data Structures 1 129

Separate chaining: Multiple-choice hashing

2-choice hashing

Element x can be stored in buckets h1(x) or h2(x) and INSERT chooses the one with
smaller number of elements where h1 and h2 are two hash functions.

2-choice hashing: Longest chain
The expected length of the longest chain is O(log log n).

d-choice hashing
Element x can be stored in buckets h1(x), . . . , hd (x) and INSERT chooses the one with
smallest number of elements where h1, . . . , hd are d hash functions.

d-choice hashing: Longest chain

The expected length of the longest chain is log log n
log d +O(1).

Jirka Fink Data Structures 1 130

Outline

1 Amortized analysis

2 Splay tree

3 (a,b)-tree and red-black tree

4 Heaps

5 Cache-oblivious algorithms

6 Hash tables
Universal hashing
Separate chaining
Linear probing
Cuckoo hashing

7 Geometrical data structures

8 Bibliography

Jirka Fink Data Structures 1 131

Linear probing

Goal
Store elements directly in the table to reduce overhead.

Linear probing: Operation INSERT

Insert a new element x into the empty bucket h(x) + i mod m with minimal i ≥ 0
assuming n ≤ m.

Operation FIND

Iterate until the given key or empty bucket is fount.

Operation DELETE

A lazy version: Flag the bucket of deleted element to ensure that the operation
Find continues searching.

A version without flags: Check and move elements in a chain (Exercise)

Jirka Fink Data Structures 1 132

Linear probing: Complexity

Assumptions
m ≥ (1 + ε)n for some ε > 0

No operation DELETE

Expected number of comparisons during operation INSERT

O
(1
ε2

)
for totally random hashing systems (Knuth, 1963 [10])

constant for log(n)-independend hashing systems (Schmidt, Siegel, 1990 [16])

O
(

1

ε
13
6

)
for 5-independent hashing systems (Pagh, Pagh, Ruzic, 2007 [12])

Ω(log n) for some 4-independent hashing system (Pǎtraşcu, Thorup, 2010 [14]) 1

O
(1
ε2

)
for tabular hashing system (Pǎtraşcu, Thorup, 2012 [15])

Jirka Fink Data Structures 1 133

1 There exists a 4-independent hashing system and a sequence of operations
INSERT such that for a randomly chosen hashing function from the system the
expected complexity of is Ω(log n).

Jirka Fink Data Structures 1 133

Linear probing: Analysis

The number of elements from a given bucket to closest empty one
If α < 1 and a hashing system is totally independent, then the expected number of key
comparisons during operation INSERT is O(1).

Proof

1 Let 1 < c < 1
α

and q =
(

ec−1

cc

)α
Observe that 0 < q < 1

2 Let pt = P[| {x ∈ S; h(x) ∈ T} | = t] be the probability that t elements are hashed
into a given set of T buckets. Then, pt < qt . 1

Let Xi be the random variable indication whether an element i is hashed into T
Let X =

∑
i∈S Xi and µ = E [X] = tα

Observe that cµ = cαt < t
Chernoff: pt = P[X = t] ≤ P[X > cµ] <

(
ec−1

cc

)µ
= q

µ
α = qt

3 Let b be a bucket. Let p′k be the probability that buckets b to b + k − 1 are
occupied and b + k is the first empty bucket. Then p′k <

qk

1−q . 2

p′k <
∑∞

s=0 ps+k < qk ∑∞
s=0 qs = qk

1−q

4 The expected number of key comparisons is∑m
k=0 kp′k <

1
1−q

∑∞
k=0 kqk = 2−q

(1−q)3

Jirka Fink Data Structures 1 134

1 Here, we consider elements that are mapped into given buckets by a hashing
function (not inserted by linear probing).

2 Hence, buckets b − s to b + k − 1 are occupied for some s and b − s − 1 and
b + k − 1 are empty buckets. All indices of buckets are counted modulus m.

Jirka Fink Data Structures 1 134

Linear probing: Why 2-independent hashing system is insufficient?

Combination of multiply-shift and linear probing

Multiply-shift: ha(x) = (ax mod 2w) >> (w − l)

Denote h′a(x) = ax mod 2w

2w−l = ax
2w−l mod 2l

Then ha(x) = bh′a(x)c
What is the complexity of inserting elements
S = {1, . . . , n}?

ha(0)

ha(1)

ha(2)

ha(3)

ha(4)

ha(5)

Properties
1 Denote ||x || = min

{
x , 2l − x

}
, i.e. the distance between 0 and x along the cycle

2 Then, ||h′a(x)− h′a(y)|| = ||h′a(x − 1)− h′a(y − 1)|| = ||h′a(x − y)|| for x ≥ y
3 Hence, ||h′a(ix)|| ≤ i ||h′a(x)|| for every i ∈ {1, . . . , n}
4 If ||h′a(x)|| ≥ 1 for every x ∈ S, then ha is perfect on S
5 P[ha is not perfect] ≤ P[∃x ∈ S : ||h′a(x)|| < 1] ≤

∑
x∈S P[||h′a(x)|| < 1] ≤ 2n

m

6 P[ha is perfect on S] = 1− P[ha is not perfect on S] ≥ 1− 2n
m

Jirka Fink Data Structures 1 135

Linear probing: Why 2-independent hashing system is insufficient?

ha(0) ha(x)

Combination of Multiply-shift and linear probing

Consider element x ∈ S such that ||h′a(x)|| ≤ 1
2

Elements x , 2x , . . . , kx belong into 0, 1, . . . ,
⌊ 1

2 k
⌋
, where k =

⌊ n
x

⌋
We have at most x groups, each having at least k elements

Complexity of operation INSERT is Ω(n
x), if ||h′a(x)|| ≤ 1

2

Linear probing and hashing systems (Pǎtraşcu, Thorup, 2010 [14])
FIND using Multiply-shift has expected complexity Θ(log n)

There exists 2-independent hashing system such that FIND has complexity Θ(
√

n)

Jirka Fink Data Structures 1 136

Outline

1 Amortized analysis

2 Splay tree

3 (a,b)-tree and red-black tree

4 Heaps

5 Cache-oblivious algorithms

6 Hash tables
Universal hashing
Separate chaining
Linear probing
Cuckoo hashing

7 Geometrical data structures

8 Bibliography

Jirka Fink Data Structures 1 137

Cuckoo hashing (Pagh, Rodler, 2004 [13])

Description
Given two hash functions h1 and h2, a key x can be stored in h1(x) or h2(x).
One position can store at most one element.

Operations FIND and DELETE

Trivial, complexity is O(1) in worst case.

INSERT: Example
Successful INSERT of element x into h1(x) after three reallocations.

Impossible INSERT of element y into h1(y).

a c e f h i k l m n o r s

h1(x)

h1(a) or h2(a)

h1(y)

Jirka Fink Data Structures 1 138

Cuckoo hashing: Algorithm for Insert

Insert an element x into a hash table T

1 pos← h1(x)
2 for n times do
3 if T[pos] is empty then
4 T[pos]← x
5 return

6 swap(x, T[pos])
7 if pos == h1(x) then
8 pos← h2(x)
9 else

10 pos← h1(x)

11 rehash()
12 insert(x)

Rehashing
Randomly choose new hash functions h1 and h2

Increase the size of the table if necessary

Insert all elements to the new table

Jirka Fink Data Structures 1 139

Cuckoo hashing: Analysis

Undirected cuckoo graph G
Vertices are positions in the hash table.

Edges are pairs {h1(x), h2(x)} for all x ∈ S.

Properties of the cuckoo graph
Operation Insert follows a path from h1(x) to an empty position.

New element cannot be inserted into a cycle.

When the path from h1(x) goes to a cycle, rehash is needed.

Lemma
Let c > 1 and m ≥ 2cn. For given positions i and j , the probability that there exists a
path from i to j of length k is at most 1

mck .

Complexity of operation Insert without rehashing
Let c > 1 and m ≥ 2cn. Expected number of swaps during operation INSERT is O(1).

Number of rehashes to build Cuckoo hash table
Let c > 2 and m ≥ 2cn. Expected number of rehashes to insert n elements is O(1).

Jirka Fink Data Structures 1 140

Proof of the lemma by induction on k :

k = 1 For one element x , the probability that x creates an edges between vertices i and
j is P[{i , j} = {h(x), h(y)}] = 2

m2 . So, the probability that there is an edge ij is at
most 2n

m2 ≤ 1
mc .

k > 1 There exists a path between i and j of length k if there exists a path from i to u of
length k − 1 and an edge uj . For one position u, the i-u path exists with probability

1
mck−1 . The conditional probability that there exists the edge uj if there exists i-u
path is at most 1

mc because some elements are used for the i-u path. By summing
over all positions u, the probability that there exists i-j path is at most
m 1

mck−1
1

mc = 1
mck .

Insert without rehashing:

The probability that there exists a path from i = h1(x) to some position j of length
k is at most m 1

mck = 1
ck .

The expected length of the path starting at h1(x) is at most∑n
k=1 k 1

ck ≤
∑∞

k=1
k
ck = c

(c−1)2 .

Number of rehashes:

If rehashes is needed, then the Cuckoo contains a cycle.

The probability that the graph contains a cycle is at most is the probability that
there exists two positions i and j joined by an edge and there there exists a path
between i and j of length k ≥ 2. So, the Cuckoo graph contains a cycle with
probability at most

(m
2

)∑∞
k=2

1
mc

1
mck ≤

∑∞
k=1

1
ck = 1

c−1 .
Jirka Fink Data Structures 1 140

The probability that z rehashes are needed to build the table is at most 1
(c−1)z .

The expected number of rehashes is at most
∑∞

z=0 z 1
(c−1)z = c−1

(c−2)2 .

Jirka Fink Data Structures 1 140

Cuckoo hashing: Analysis

Complexity operation Insert without rehashing
Let c > 1 and m ≥ 2cn. The expected length of the path is O(1).

Amortized complexity of rehashing
Let c > 2 and m ≥ 2cn. The expected number of rehashes is O(1).
Therefore, operation Insert has the expected amortized complexity O(1).

Pagh, Rodler [13]
If c > 1 and m ≥ 2cn and hashing system is log n-independent then expected
amortized complexity of INSERT is O(1).

Pǎtraşcu, Thorup [15]
If c > 1 and m ≥ 2cn and tabular hashing is used, then time complexity to build a static
Cuckoo table is O(n) with high probability.

Jirka Fink Data Structures 1 141

Hash tables: Other methods

Quadratic probing

Insert a new element x into the empty bucket h(x) + ai + bi2 mod m with minimal
i ≥ 0 where a, b are fix constants.

Double hashing
Insert a new element x into the empty bucket h1(x) + ih2(x) mod m with minimal i ≥ 0
where h1 and h2 are two hash functions.

Brent’s variation for operation Insert
If the bucket

b = h1(x) + ih2(x) mod m is occupied by an element y and

b + h2(x) mod m is also occupied but

c = b + h2(y) mod m is empty,

then move element y to c and insert x to b. This reduces the average search time.

Jirka Fink Data Structures 1 142

Outline

1 Amortized analysis

2 Splay tree

3 (a,b)-tree and red-black tree

4 Heaps

5 Cache-oblivious algorithms

6 Hash tables

7 Geometrical data structures
Range trees
k-d trees

8 Bibliography

Jirka Fink Data Structures 1 143

Range query

Problem description

Given set S of n points in Rd

A range means a d-dimensional rectangle

Operation QUERY: Find all points of S in a given range

Operation COUNT: Determine the number of points of S in a given range

Applications
Computer graphics, computational geometry

Database queries, e.g. list all employees in age 20–35 and salary 20-30
thousands

Jirka Fink Data Structures 1 144

Outline

1 Amortized analysis

2 Splay tree

3 (a,b)-tree and red-black tree

4 Heaps

5 Cache-oblivious algorithms

6 Hash tables

7 Geometrical data structures
Range trees
k-d trees

8 Bibliography

Jirka Fink Data Structures 1 145

Range query in R1

Static version
Store all points in an array in the increasing order

BUILD: O(n log n)

COUNT: O(log n)

QUERY: O(k + log n) where k is the number of points in the range

Dynamic version
Store all points in a balanced search tree

BUILD: O(n log n)

INSERT: O(log n)

DELETE: O(log n)

COUNT: O(log n)

QUERY: O(k + log n)

Jirka Fink Data Structures 1 146

Range query in R1: Example

c

a b

Let a and b be the smallest and the largest elements of S in the range, resp., and c be
the deepest common predecessor of a and b.

Jirka Fink Data Structures 1 147

Range trees in R2

Construction
Build a binary search tree according to the x coordinate (called x-tree).

Let Su be the set of all points of S in the subtree of a node u.

For every node u of x-tree build a binary search tree according to y-coordinate
containing points of Su (called y-tree).

Example

u

v

a b

w

c d

x-tree y-tree

contains a, b, c, d , u, v ,w

contains a, b, v

contains c, d ,w

contains c

Etc.

Jirka Fink Data Structures 1 148

Range trees in R2: Space complexity

Vertical point of view
Every point p is stored in one node u of the x-tree; and moreover, p is also stored in all
y-trees corresponding to all nodes on the path from u to the root of x-tree.

Horizontal point of view
Every level of x-tree decomposes S by x-coordinates. Therefore, y-trees corresponding
to one level of x-tree contain every point at most once.

Space complexity
Since every point is stored in O(log n) y-trees, the space complexity is O(n log n).

Jirka Fink Data Structures 1 149

Range trees in R2: QUERY 〈ax ,bx〉 × 〈ay ,by 〉

Range query
1 Search for keys ax and bx in the x-tree.
2 Identify nodes in the x-tree storing points with x-coordinate in the interval 〈ax , bx〉.
3 Run 〈ay , by 〉-query in all corresponding y-trees.

Example

c

a b

(illustrative) y -trees

Complexity

O
(

k + log2 n
)

, since 〈ay , by 〉-query is run in O(log n) y -trees.

Jirka Fink Data Structures 1 150

Range trees in R2: BUILD

Straightforward approach

Create x-tree and then all y-trees using operation INSERT. Complexity is O
(

n log2 n
)

.

Faster approach
First, create two arrays of points sorted by x and y coordinates. Then, recursively of a
set of points S′:

1 Let p be the median of S′ by x-coordinate.
2 Create a node u for p in x-tree.
3 Create y-tree of points S′ assigned to u. 1

4 Split both sorted arrays by x-coordinate of p.
5 Recursively create both children of u.

Complexity

Recurrence formula T (n) = 2T (n/2) +O(n) 2

Complexity is O(n log n).

Jirka Fink Data Structures 1 151

1 Given an array of sorted elements, most balanced search trees can be built in
O(|S′|).

2 Use master theorem, or observe that building one level of x-tree takes O(n)-time.

Jirka Fink Data Structures 1 151

Interval trees in Rd (assuming d ≥ 2)

Description
i-tree is a binary search tree by i-th coordinate for i = 1, . . . , d

For i < d every node u of i-tree has a pointer to the (i + 1)-tree containing points
of Su

Range tree means a system of all i-trees for all i = 1, . . . , d

Representation
Structure for a node in range tree stores

Element: point stored in the node.

Left, Right pointers to the left and the right child

Tree pointer to the root of assigned (i + 1)-tree

Note
Let u be a node of i-tree for some i = 1, . . . , d . Let T be the set of all nodes reachable
from u by a sequence of pointers Left, Right and Tree. Then, T forms a range tree of
points Su in coordinates i , . . . , d .

Jirka Fink Data Structures 1 152

Range tree in Rd : Structure

Observations
Number of i-trees is at most number nodes in (i − 1)-trees for i = 2, . . . , d .

If an (i − 1)-tree T contains a point p, then p is contained in O(log n) i-trees
assigned to nodes of T for i = 2, . . . , d .

Number of trees and nodes assuming that trees are balanced

1-tree 2-tree d-tree

Number of trees containing
a given point

1 O(log n) O
(

logd−1 n
)

Number of trees 1 n O
(

n logd−2 n
)

Number of nodes n O(n log n) O
(

n logd−1 n
)

Jirka Fink Data Structures 1 153

Range tree in Rd : BUILD

Algorithm (Points S are stored in an array sorted by the last coordinate)

1 Procedure Build(Set of points S, current coordinate i)
2 if S is empty or i > d then
3 return NIL

4 v ← new node
5 v .element ← median of S by i-th coordinate
6 Sl ,Sr ← points of S having i-th coordinate smaller (larger) than v .element
7 v .tree← Build(S, i + 1)
8 v .left ← Build(Sl , i)
9 v .right ← Build(Sr , i)

10 return v

Complexity of a single call of BUILD (without recursion)
If i < d then complexity is O(|S|).
If i = d then complexity is O(1).

Jirka Fink Data Structures 1 154

Range tree in Rd : Complexity of BUILD

Building all d-trees

Number of nodes in all d-trees is O
(

n logd−1 n
)

Complexity of creations of all d-trees is O
(

n logd−1 n
)

Building all i-trees for some i = 1, . . . ,d − 1 (excluding (i + 1)-trees

Number of nodes in all i-trees is O
(

n logi−1 n
)

Time complexity of one i-tree T on nT nodes in O(nT log nT)

Time complexity of all i-trees is (up-to multiplicative constant)∑
i-tree T

nT log nT ≤ log n
∑

i-tree T

nT = log n · n logi−1 n = n logi n

Time complexity of operation BUILD

O
(

n logd−1 n
)

Jirka Fink Data Structures 1 155

Range tree in Rd : QUERY 〈a1,b1〉 × · · · × 〈ad ,bd〉
1 Procedure Query(node v, current coordinate i)
2 if v = NIL then
3 return
4 if v .key ≤ ai then
5 Query(v .right , i)
6 else if v .key ≥ bi then
7 Query(v .left , i)
8 else
9 Query left(v .left , i)

10 Query right(v .right , i)

11 Procedure Query left(node v, coordinate i)
12 if v = NIL then
13 return
14 if v .key < ai then
15 Query left(v .right , i)
16 else
17 Query left(v .left , i)
18 if i < d then
19 Query(v .right .tree, i + 1)
20 else
21 Print all points in the subtree of v .right

c

a b

(illustrative) y -trees

Jirka Fink Data Structures 1 156

Range tree in Rd : Complexity of COUNT and QUERY

Complexity of operation COUNT

In every tree, at most O(log n) nodes are accessed

From every visited i-tree at most O(log n) assigned (i + 1)-trees are visited

The number of visited i-trees is O
(

logi−1 n
)

Complexity of operation COUNT is O
(

logd n
)

Complexity of operation QUERY

Complexity printing all points is O(k), where k is the number of listed points

Complexity of operation QUERY is O
(

k + logd n
)

Jirka Fink Data Structures 1 157

Range trees in Rd : Dynamization using BB[α]-trees

BB[α]-tree
Binary search tree

Let su be the number of nodes in the subtree of a node u

Subtrees of both children of u contains at most αsu nodes

Operation INSERT (DELETE is analogous)
INSERT/DELETE given node similarly as in (non-balanced) binary search trees

When a node u violates the weight condition, rebuild whole subtree in time O(su).

Amortized cost of rebalancing

Between two consecutive rebuilds of a node u, there are at least Ω(su) updates in
the subtree of u

Therefore, amortized cost of rebuilding a subtree is O(1)

Update contributes to amortized costs of all nodes on the path from the root to leaf

The amortized cost of operations Insert and Delete is O(log n).

Jirka Fink Data Structures 1 158

Range trees in Rd : Dynamization using BB[α]-trees

Using BB[α]-trees in range trees
Every tree in range tree is a BB[α]-tree

If operation INSERT/DELETE requires in BB[α]-tree requires balancing, then all
assigned trees are rebuilded.

Amortized complexity of operations INSERT and DELETE

Without balancing, there are O(log n) accessed nodes in O
(

logi−1 n
)

accessed
i-trees

Complexity without balancing is O
(

logd n
)

; next, we analyze balancing

Rebuild of a node u in i-tree takes O
(

su logd−i su

)
Rebuild of u occurs after Ω(su) operations INSERT/DELETE in the subtree of u

Amortized cost of operations INSERT/DELETE is O
(

logd−i su

)
≤ O

(
logd−i n

)
Amortized time is

∑d
i=1O

(
logi−1 n

)
O(log n)O

(
logd−i n

)
= O

(
logd n

)
Jirka Fink Data Structures 1 159

Fractional cascading

Motivative problem
Given sets S1 ⊆ · · · ⊆ Sm where |Sm| = n, create a data structure for fast searching
elements x ∈ S1 in all sets S1, . . . ,Sm. 1

Fractional cascading
Every set Si is sorted. Furthermore, every element in the array of Si has a pointer to
the same element in Si−1. 2

1 2 3 4 5 6 7 8 9

1 3 4 6 8 9

3 4 8

S3

S2

S1

Complexity of a search in m sets
O(m + log n)

Jirka Fink Data Structures 1 160

1 A straightforward solution gives complexity O(m log n).
2 Elements Si \ Si−1 point to their predecessors or successors.

Jirka Fink Data Structures 1 160

Layered range trees

Using fractional cascading

Every (d − 1)-tree has assigned one fractional cascade instead of d-trees.

Every element of the cascade has two pointers (for left and right children).

u

v

z

(d − 1)-strom Fractional cascading

Complexity of QUERY

QUERY in one (d − 1)-tree takes O(log n)

There are O
(

logd−2 n
)

accessed (d − 1)-trees in one QUERY

Complexity of QUERY is O
(

k + logd−1 n
)

Jirka Fink Data Structures 1 161

Range trees: Further improvements

Using fractional cascading

QUERY: O
(

k + logd−1 n
)

Memory: O
(

n logd−1 n
)

Chazelle [2, 3]

Query: O
(

k + logd−1 n
)

Memory: O
(

n
(

log n
log log n

)d−1
)

Chazelle, Guibas [4] pro d ≥ 3

Query: O
(

k + logd−2 n
)

Memory: O
(

n logd n
)

Jirka Fink Data Structures 1 162

Outline

1 Amortized analysis

2 Splay tree

3 (a,b)-tree and red-black tree

4 Heaps

5 Cache-oblivious algorithms

6 Hash tables

7 Geometrical data structures
Range trees
k-d trees

8 Bibliography

Jirka Fink Data Structures 1 163

k-d trees

Description
Points are stored in a binary tree

In the root r , we store the median point m according to the first coordinate

In the left subtree of r , we store all points having the first coordinate smaller than
median

In the right subtree of r , we store all points having the first coordinate larger than
median

Points in second level are split analogously by the second coordinate, etc.

Points in i-th level are split are split by i mod d coordinate

Height of the tree is log2 n + Θ(1)

Space complexity is O(n)

Complexity of operation BUILD is O(n log n)

Jirka Fink Data Structures 1 164

k-d trees: Operation QUERY

Algorithm

1 Procedure QUERY(node v, range R)
2 if v =NIL then
3 return

4 if v in R then
Output: v

5 if R is “left” from the point stored in v according to the levels’ coordinate then
6 QUERY(left child of v, R)
7 else if R is “right” from the point stored in v according to the levels’ coordinate then
8 QUERY(right child of v, R)
9 else

10 QUERY(left child of v, R)
11 QUERY(right child of v, R)

Jirka Fink Data Structures 1 165

k-d trees: Complexity of operation QUERY

The worst-case example in R2

Consider a set of points S = {(x , y); x , y ∈ [m]} where n = m2

Consider a range 〈1, 2; 1, 8〉 × R
In every level spliting by y coordinate both subtrees of every must be explored

There are 1
2 log2 n + Θ(1) levels separating by y coordinates

Total number of visited leaves is 2
1
2 log2 n+Θ(1) = Θ(

√
n)

The worst-case example in Rd

Consider a set of points S = [m]d where n = md

Consider a range 〈1, 2; 1, 8〉 × Rd−1

In every level not spliting by the first coordinate, both subtrees of every must be
explored

Both subtrees are explored in all nodes of d−1
d log2 n + Θ(1) levels

The total number of visited leaves is 2
d−1

d log2 n+Θ(1) = Θ(n1− 1
d)

Jirka Fink Data Structures 1 166

Outline

1 Amortized analysis

2 Splay tree

3 (a,b)-tree and red-black tree

4 Heaps

5 Cache-oblivious algorithms

6 Hash tables

7 Geometrical data structures

8 Bibliography

Jirka Fink Data Structures 1 167

[1] R Bayer and E McCreight.
Organization and maintenance of large ordered indexes.
Acta Informatica, 1:173–189, 1972.

[2] Bernard Chazelle.
Lower bounds for orthogonal range searching: I. the reporting case.
Journal of the ACM (JACM), 37(2):200–212, 1990.

[3] Bernard Chazelle.
Lower bounds for orthogonal range searching: part ii. the arithmetic model.
Journal of the ACM (JACM), 37(3):439–463, 1990.

[4] Bernard Chazelle and Leonidas J Guibas.
Fractional cascading: I. a data structuring technique.
Algorithmica, 1(1-4):133–162, 1986.

[5] Michael L Fredman and Robert Endre Tarjan.
Fibonacci heaps and their uses in improved network optimization algorithms.
Journal of the ACM (JACM), 34(3):596–615, 1987.

[6] Matteo Frigo, Charles E Leiserson, Harald Prokop, and Sridhar Ramachandran.
Cache-oblivious algorithms.
In Foundations of Computer Science, 1999. 40th Annual Symposium on, pages
285–297, 1999.

[7] Leo J Guibas, Edward M McCreight, Michael F Plass, and Janet R Roberts.

Jirka Fink Data Structures 1 167

A new representation for linear lists.
In Proceedings of the ninth annual ACM symposium on Theory of computing,
pages 49–60. ACM, 1977.

[8] Scott Huddleston and Kurt Mehlhorn.
A new data structure for representing sorted lists.
Acta informatica, 17(2):157–184, 1982.

[9] Donald E. Knuth.
Optimum binary search trees.
Acta informatica, 1(1):14–25, 1971.

[10] Donald Ervin Knuth.
Notes on ”open” addressing.
http://algo.inria.fr/AofA/Research/11-97.html, 1963.

[11] Jürg Nievergelt and Edward M Reingold.
Binary search trees of bounded balance.
SIAM journal on Computing, 2(1):33–43, 1973.

[12] Anna Pagh, Rasmus Pagh, and Milan Ruzic.
Linear probing with constant independence.
In Proceedings of the thirty-ninth annual ACM symposium on Theory of
computing, pages 318–327, 2007.

[13] Rasmus Pagh and Flemming Friche Rodler.

Jirka Fink Data Structures 1 167

http://algo.inria.fr/AofA/Research/11-97.html

Cuckoo hashing.
Journal of Algorithms, 51(2):122–144, 2004.

[14] Mihai Pǎtraşcu and Mikkel Thorup.
On the k-independence required by linear probing and minwise independence.
In International Colloquium on Automata, Languages, and Programming, pages
715–726, 2010.

[15] Mihai Pǎtraşcu and Mikkel Thorup.
The power of simple tabulation hashing.
Journal of the ACM (JACM), 59(3):14, 2012.

[16] Jeanette P Schmidt and Alan Siegel.
The spatial complexity of oblivious k-probe hash functions.
SIAM Journal on Computing, 19(5):775–786, 1990.

[17] Jeanette P Schmidt, Alan Siegel, and Aravind Srinivasan.
Chernoff-hoeffding bounds for applications with limited independence.
SIAM Journal on Discrete Mathematics, 8(2):223–250, 1995.

[18] Daniel D Sleator and Robert E Tarjan.
Amortized efficiency of list update and paging rules.
Communications of the ACM, 28(2):202–208, 1985.

[19] Daniel Dominic Sleator and Robert Endre Tarjan.
Self-adjusting binary search trees.

Jirka Fink Data Structures 1 167

Journal of the ACM (JACM), 32(3):652–686, 1985.

Jirka Fink Data Structures 1 167

	Amortized analysis
	Splay tree
	(a,b)-tree and red-black tree
	Heaps
	d-regular heap
	Binomial heap
	Lazy binomial heap
	Fibonacci heap

	Cache-oblivious algorithms
	Hash tables
	Universal hashing
	Separate chaining
	Linear probing
	Cuckoo hashing

	Geometrical data structures
	Range trees
	k-d trees

	Bibliography

