
Implementation of algorithms and data structures
8. seminar

Jirka Fink
https://ktiml.mff.cuni.cz/˜fink/

Department of Theoretical Computer Science and Mathematical Logic
Faculty of Mathematics and Physics

Charles University in Prague

Summer semestr 2021/22
Last change 13. dubna 2022

Licence: Creative Commons BY-NC-SA 4.0

Jirka Fink Implementation of algorithms and data structures 1 / 20

https://ktiml.mff.cuni.cz/~fink/
https://creativecommons.org/licenses/by-nc-sa/4.0/


Linked lists

Termination
Last element points to NULL/nullptr/None (Null-terminated)

Last element points to the first one (Circular)

How to store next/previous pointers
Pointers are stored inside object (Intrusive)

1 class MyClass {
2 string name; # Variables we need in the class
3 node *next, *prev;
4 };

Pointers are stored outside object (Non-intrusive)
1 class MyClass {
2 string name;
3 };
4 list<MyClass> my_list;

Goal
We can easily add pointers into a class, but we do not want to repetitively write
functions working with pointers.
How to design a general API?

Jirka Fink Implementation of algorithms and data structures 2 / 20



Linked lists

Termination
Last element points to NULL/nullptr/None (Null-terminated)

Last element points to the first one (Circular)

How to store next/previous pointers
Pointers are stored inside object (Intrusive)

1 class MyClass {
2 string name; # Variables we need in the class
3 node *next, *prev;
4 };

Pointers are stored outside object (Non-intrusive)
1 class MyClass {
2 string name;
3 };
4 list<MyClass> my_list;

Goal
We can easily add pointers into a class, but we do not want to repetitively write
functions working with pointers.
How to design a general API?

Jirka Fink Implementation of algorithms and data structures 2 / 20



Linked lists

Termination
Last element points to NULL/nullptr/None (Null-terminated)

Last element points to the first one (Circular)

How to store next/previous pointers
Pointers are stored inside object (Intrusive)

1 class MyClass {
2 string name; # Variables we need in the class
3 node *next, *prev;
4 };

Pointers are stored outside object (Non-intrusive)
1 class MyClass {
2 string name;
3 };
4 list<MyClass> my_list;

Goal
We can easily add pointers into a class, but we do not want to repetitively write
functions working with pointers.
How to design a general API?

Jirka Fink Implementation of algorithms and data structures 2 / 20



Linked lists

Termination
Last element points to NULL/nullptr/None (Null-terminated)

Last element points to the first one (Circular)

How to store next/previous pointers
Pointers are stored inside object (Intrusive)

1 class MyClass {
2 string name; # Variables we need in the class
3 node *next, *prev;
4 };

Pointers are stored outside object (Non-intrusive)
1 class MyClass {
2 string name;
3 };
4 list<MyClass> my_list;

Goal
We can easily add pointers into a class, but we do not want to repetitively write
functions working with pointers.
How to design a general API?

Jirka Fink Implementation of algorithms and data structures 2 / 20



Linked list: NULL-terminated lists

1 struct node {
2 node *next, *prev;
3 };
4 struct list {
5 node *first, *last;
6 };
7 void list_add_tail(list *l, node *n) {
8 n->next = NULL;
9 n->prev = l->last;

10 if(l->last)
11 l->last->next = n;
12 else
13 l->first = n;
14 l->last = n;
15 }
16 void list_remove(list *l, node *n) {
17 if(n->prev)
18 n->prev->next = n->next;
19 else
20 l->first = n->next;
21 if(n->next)
22 n->next->prev = n->prev;
23 else
24 l->last = n->prev;
25 }

Jirka Fink Implementation of algorithms and data structures 3 / 20



Linked list: Circular lists

1 struct node {
2 node *next, *prev;
3 };
4 struct list {
5 node head;
6 };
7

8 void list_init(list *l) {
9 l->head.next = l->head.prev = &l->head;

10 }
11

12 void list_insert_after(node *what, node *after) {
13 node *before = after->next;
14 what->next = before;
15 what->prev = after;
16 before->prev = what;
17 after->next = what;
18 }
19

20 void list_remove(node *n) {
21 node *before = n->prev;
22 node *after = n->next;
23 before->next = after;
24 after->prev = before;
25 }

Jirka Fink Implementation of algorithms and data structures 4 / 20



Non-intrusive Null-terminated list: C++ using templates

1 template<class T>
2 class list {
3 struct node {
4 T data;
5 node *next, *prev;
6 };
7 node *first, *last;
8

9 public:
10 using iterator = node*;
11 iterator insert(iterator pos, const T& value);
12 iterator erase(iterator pos);
13 // ...
14 };
15

16 std::list<std::string> fruits {"orange", "apple", "raspberry"};
17

18 // To store one instance in multiple lists, create lists of pointers
19 std::list<MyClass*> list1, list2;

Jirka Fink Implementation of algorithms and data structures 5 / 20



Intrusive list without templates

1 struct node { node *next, *prev; };
2 struct list { node head; };
3

4 node* list_get_first(list *l) {
5 return l->head.next;
6 }
7

8 struct company {
9 char *name;

10 list employees, consumers;
11 };
12

13 struct employee {
14 node n; // Assume that this node can be the first member variable
15 char *name;
16 }
17

18 void company_add_employee(company *c, employee *e) {
19 list_add_tail(&c->employees, &e->n);
20 }
21

22 employee* company_get_first_employee(company *c) {
23 return (employee*) list_get_first(&c->employees);
24 }

Jirka Fink Implementation of algorithms and data structures 6 / 20



Intrusive list without templates

1 #define offsetof(TYPE, MEMBER) ((size_t)&((TYPE *)0)->MEMBER)
2

3 #define container_of(PTR, TYPE, MEMBER) \
4 ((TYPE *)((char *)PTR - offsetof(TYPE, MEMBER)))
5

6 struct company {
7 char *name;
8 list employees, consumers;
9 };

10

11 struct consumer {
12 char *name;
13 node n; // Assume that this node cannot be the first member variable
14 };
15

16 consumer* consumer_from_node(node *node_in_consumer) {
17 return container_of(node_in_consumer, consumer, n);
18 }
19

20 consumer* company_get_first_consumer(company *c) {
21 return consumer_from_node(list_get_first(&c->consumers));
22 }

Jirka Fink Implementation of algorithms and data structures 7 / 20



Intrusive NULL-terminated list without memory magic

1 template <class T>
2 struct node {
3 T *next, *prev;
4 };
5

6 template <class T, node<T> T::*M> // Member pointer
7 class list {
8 T *first = nullptr, *last = nullptr;
9

10 public:
11 T* begin() {
12 return first;
13 }
14

15 void add_head(T *n) {
16 if(first)
17 (first->*M).prev = n;
18 (n->*M).next = first;
19 first = n;
20 }
21 }

Jirka Fink Implementation of algorithms and data structures 8 / 20



Intrusive circular list using templates

1 struct node {
2 node *next = nullptr, *prev = nullptr;
3 };
4

5 template <class T, node T::*M>
6 class list {
7 node head;
8

9 T* container_of(node *n) {
10 const size_t offset = (size_t)(&(((T*)nullptr)->*M));
11 return (T*)((char *)n - offset);
12 }
13

14 public:
15 T* begin() {
16 return head.next != &head ? container_of(head.next) : nullptr;
17 }
18 }

Jirka Fink Implementation of algorithms and data structures 9 / 20



Using intrusive lists: Sparse matrix

1 class matrix_element {
2 node row, column;
3 };
4

5 class matrix_row {
6 node n;
7 list<matrix_element, &matrix_element::row> row;
8 };
9

10 class matrix_column {
11 node n;
12 list<matrix_element, &matrix_element::column> column;
13 };
14

15 class matrix {
16 list<matrix_row, &matrix_row::n> rows;
17 list<matrix_column, &matrix_column::n> columns;
18 };

Jirka Fink Implementation of algorithms and data structures 10 / 20



Using intrusive lists: Tree

Example in C

1 struct tree_node{
2 list children;
3 node siblings; // Node for the list of children
4 struct tree_node *parent;
5 };
6

7 struct tree {
8 tree_node head;
9 };

Example in C++

1 class tree {
2 struct tree_node {
3 tree_node *parent;
4 node<tree_node> siblings;
5 list<tree_node, &tree_node::siblings> children;
6 };
7 tree_node head;
8 };

Jirka Fink Implementation of algorithms and data structures 11 / 20



Summary

Circular vs. NULL-terminated
If it is possible to use a circular linked list, it is better than NULL-terminated

Non-intrusive list<MyClass*>

Element can be in multiple lists

Iterator cannot be obtained from a pointer to MyClass (e.g. to remove it from a list)

Requires more memory and worser cache-efficiency

Non-intrusive list<MyClass>

Element is in one list only

Some languages does not support obtaining an iterator from an instance

Unsupported by some languages

Intrusive
Element can be in as many lists as it contains next pointers

May require memory magic which is not available in some languages

Appropriate for advanced algorithms which encapsulate lists

Inappropriate between modules of complex programs

Jirka Fink Implementation of algorithms and data structures 12 / 20



Summary

Circular vs. NULL-terminated
If it is possible to use a circular linked list, it is better than NULL-terminated

Non-intrusive list<MyClass*>

Element can be in multiple lists

Iterator cannot be obtained from a pointer to MyClass (e.g. to remove it from a list)

Requires more memory and worser cache-efficiency

Non-intrusive list<MyClass>

Element is in one list only

Some languages does not support obtaining an iterator from an instance

Unsupported by some languages

Intrusive
Element can be in as many lists as it contains next pointers

May require memory magic which is not available in some languages

Appropriate for advanced algorithms which encapsulate lists

Inappropriate between modules of complex programs

Jirka Fink Implementation of algorithms and data structures 12 / 20



Summary

Circular vs. NULL-terminated
If it is possible to use a circular linked list, it is better than NULL-terminated

Non-intrusive list<MyClass*>

Element can be in multiple lists

Iterator cannot be obtained from a pointer to MyClass (e.g. to remove it from a list)

Requires more memory and worser cache-efficiency

Non-intrusive list<MyClass>

Element is in one list only

Some languages does not support obtaining an iterator from an instance

Unsupported by some languages

Intrusive
Element can be in as many lists as it contains next pointers

May require memory magic which is not available in some languages

Appropriate for advanced algorithms which encapsulate lists

Inappropriate between modules of complex programs

Jirka Fink Implementation of algorithms and data structures 12 / 20



Summary

Circular vs. NULL-terminated
If it is possible to use a circular linked list, it is better than NULL-terminated

Non-intrusive list<MyClass*>

Element can be in multiple lists

Iterator cannot be obtained from a pointer to MyClass (e.g. to remove it from a list)

Requires more memory and worser cache-efficiency

Non-intrusive list<MyClass>

Element is in one list only

Some languages does not support obtaining an iterator from an instance

Unsupported by some languages

Intrusive
Element can be in as many lists as it contains next pointers

May require memory magic which is not available in some languages

Appropriate for advanced algorithms which encapsulate lists

Inappropriate between modules of complex programs

Jirka Fink Implementation of algorithms and data structures 12 / 20



Do not use linked lists for everything

Array
Significantly smaller overhead

Better usage of cache, especially for small elements

Sequential access does not require conditional jumps

Hashing

Expected complexity O(1) for operations find, insert and delete

Requires a good hashing function

Search trees
Worst-case complexity O(log n)

Requires fast comparison of elements

Support interval queries, finding successor element, etc.

Many other data structures
Heaps

Union-find

. . .

Jirka Fink Implementation of algorithms and data structures 13 / 20



Do not use linked lists for everything

Array
Significantly smaller overhead

Better usage of cache, especially for small elements

Sequential access does not require conditional jumps

Hashing

Expected complexity O(1) for operations find, insert and delete

Requires a good hashing function

Search trees
Worst-case complexity O(log n)

Requires fast comparison of elements

Support interval queries, finding successor element, etc.

Many other data structures
Heaps

Union-find

. . .

Jirka Fink Implementation of algorithms and data structures 13 / 20



Do not use linked lists for everything

Array
Significantly smaller overhead

Better usage of cache, especially for small elements

Sequential access does not require conditional jumps

Hashing

Expected complexity O(1) for operations find, insert and delete

Requires a good hashing function

Search trees
Worst-case complexity O(log n)

Requires fast comparison of elements

Support interval queries, finding successor element, etc.

Many other data structures
Heaps

Union-find

. . .

Jirka Fink Implementation of algorithms and data structures 13 / 20



Do not use linked lists for everything

Array
Significantly smaller overhead

Better usage of cache, especially for small elements

Sequential access does not require conditional jumps

Hashing

Expected complexity O(1) for operations find, insert and delete

Requires a good hashing function

Search trees
Worst-case complexity O(log n)

Requires fast comparison of elements

Support interval queries, finding successor element, etc.

Many other data structures
Heaps

Union-find

. . .

Jirka Fink Implementation of algorithms and data structures 13 / 20



Exception handling

Popis
Exception handling is the process of responding to the occurrence of exceptions –
anomalous or exceptional conditions requiring special processing – during the
execution of a program.

Examples of exceptions
Index out of range of an array

Retrieve the first element of an empty list

Searched element does not exist

Square root of a negative number

Determine a circle from three colinear points

File access without sufficient permission

Error in reading data

Invalid user input

Insufficient amount of memory

Jirka Fink Implementation of algorithms and data structures 14 / 20



Exception handling

Popis
Exception handling is the process of responding to the occurrence of exceptions –
anomalous or exceptional conditions requiring special processing – during the
execution of a program.

Examples of exceptions
Index out of range of an array

Retrieve the first element of an empty list

Searched element does not exist

Square root of a negative number

Determine a circle from three colinear points

File access without sufficient permission

Error in reading data

Invalid user input

Insufficient amount of memory

Jirka Fink Implementation of algorithms and data structures 14 / 20



Exception handling

Methods of handling exceptions
Ignore, leads to an undefined behavior
vector::operator[], list::pop_front

Throw an exception, call longjmp
vector::at

Call a function
set_terminate, signal handling

Set a status variable, e.g. errno
fopen, scanf

Return an invalid value, e.g. NULL, a dummy object
find

Return a valid value
double sqrt(double x){ if(x < 0)return 0; ... }

Return a pair of a status and a result
pair<bool, int> find(x){ return exist(x)? make_pair(true,

search(x)): make_pair(false, 0); }

Use goto to an error label

Terminate the program, e.g. using functions abort or assert

Jirka Fink Implementation of algorithms and data structures 15 / 20



Exception handling: Improper and rare solutions

Return a valid value
A calling function cannot recognize an error

The error is propagated which makes it harder to find

Set a status variable
Hard to manage

Requires detailed documentation

Data race conditions

Use goto to an error label
Can be used only inside a function

In rare situations, it may simplify a complex if-else statements

Call a function
Only for asynchronous or external events, e.g. signal handling.

Jirka Fink Implementation of algorithms and data structures 16 / 20



Exception handling: Improper and rare solutions

Return a valid value
A calling function cannot recognize an error

The error is propagated which makes it harder to find

Set a status variable
Hard to manage

Requires detailed documentation

Data race conditions

Use goto to an error label
Can be used only inside a function

In rare situations, it may simplify a complex if-else statements

Call a function
Only for asynchronous or external events, e.g. signal handling.

Jirka Fink Implementation of algorithms and data structures 16 / 20



Exception handling: Improper and rare solutions

Return a valid value
A calling function cannot recognize an error

The error is propagated which makes it harder to find

Set a status variable
Hard to manage

Requires detailed documentation

Data race conditions

Use goto to an error label
Can be used only inside a function

In rare situations, it may simplify a complex if-else statements

Call a function
Only for asynchronous or external events, e.g. signal handling.

Jirka Fink Implementation of algorithms and data structures 16 / 20



Exception handling: Improper and rare solutions

Return a valid value
A calling function cannot recognize an error

The error is propagated which makes it harder to find

Set a status variable
Hard to manage

Requires detailed documentation

Data race conditions

Use goto to an error label
Can be used only inside a function

In rare situations, it may simplify a complex if-else statements

Call a function
Only for asynchronous or external events, e.g. signal handling.

Jirka Fink Implementation of algorithms and data structures 16 / 20



Exception handling: Invalid arguments in public methods (bugs)

Throw an exception
Safe

Checking conditions delays computation

Requires catching exceptions

Requires documentation of used exceptions

Assert in a debug mode, ignore in a release mode
Fast (in release mode)

May lead to an undefined behavior

Requires documentation of conditions on arguments

Jirka Fink Implementation of algorithms and data structures 17 / 20



Exception handling: Invalid arguments in public methods (bugs)

Throw an exception
Safe

Checking conditions delays computation

Requires catching exceptions

Requires documentation of used exceptions

Assert in a debug mode, ignore in a release mode
Fast (in release mode)

May lead to an undefined behavior

Requires documentation of conditions on arguments

Jirka Fink Implementation of algorithms and data structures 17 / 20



Exception handling: Unavoidable situations

Return an invalid value
Prefer when

the calling function is expected to handle

the exception is a natural output (e.g. no element satisfies a given condition)

If an invalid values does not exist, return a pair with a status.

Throw an exception
Prefer when

the exception may jump through many functions

the situation is very rare

many different types of errors may occur

Jirka Fink Implementation of algorithms and data structures 18 / 20



Exception handling: Unavoidable situations

Return an invalid value
Prefer when

the calling function is expected to handle

the exception is a natural output (e.g. no element satisfies a given condition)

If an invalid values does not exist, return a pair with a status.

Throw an exception
Prefer when

the exception may jump through many functions

the situation is very rare

many different types of errors may occur

Jirka Fink Implementation of algorithms and data structures 18 / 20



Exception handling: Unavoidable situations

Assert in a debug mode, ignore in a release mode
Fast

Easy to debug

Cause undefined behavior in release mode

A general rule
Write documentation

Always follow a project policy!

Jirka Fink Implementation of algorithms and data structures 19 / 20



Exception handling: Unavoidable situations

Assert in a debug mode, ignore in a release mode
Fast

Easy to debug

Cause undefined behavior in release mode

A general rule
Write documentation

Always follow a project policy!

Jirka Fink Implementation of algorithms and data structures 19 / 20



Exception handling: Exception safety

Example of an issue
Consider a function push_back inserting into a vector<MyClass> when its array is full.
Reallocation moves all element into a new memory but move constructor throws an
exception. What the function push_back should do?

Exception safety
No-throw guarantee: Operations are guaranteed to succeed and satisfy all
requirements even in exceptional situations. If an exception occurs, it will be
handled internally and not observed by clients.

Strong exception safety: Operations can fail, but failed operations are guaranteed
to have no side effects, so all data retains their original values.

Basic exception safety: Partial execution of failed operations can cause side
effects, but all invariants are preserved and there are no resource leaks (including
memory leaks). Any stored data will contain valid values, even if they differ from
what they were before the exception.

No exception safety: No guarantees are made.

Jirka Fink Implementation of algorithms and data structures 20 / 20



Exception handling: Exception safety

Example of an issue
Consider a function push_back inserting into a vector<MyClass> when its array is full.
Reallocation moves all element into a new memory but move constructor throws an
exception. What the function push_back should do?

Exception safety
No-throw guarantee: Operations are guaranteed to succeed and satisfy all
requirements even in exceptional situations. If an exception occurs, it will be
handled internally and not observed by clients.

Strong exception safety: Operations can fail, but failed operations are guaranteed
to have no side effects, so all data retains their original values.

Basic exception safety: Partial execution of failed operations can cause side
effects, but all invariants are preserved and there are no resource leaks (including
memory leaks). Any stored data will contain valid values, even if they differ from
what they were before the exception.

No exception safety: No guarantees are made.

Jirka Fink Implementation of algorithms and data structures 20 / 20


