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Jirka Fink: Optimization methods Outline

o Linear programming

@ A. Schrijver, Theory of linear and integer programming, John Wiley, 1986

@ W. J .Cook, W. H. Cunningham, W. R. Pulleyblank, A. Schrijver, Combinatorial
Optimization, John Wiley, 1997

@ J. Matousek, B. Géartner, Understanding and using linear programming, Springer,

2006.
@ J. Matousek Introduction to Discrete Geometry. ITI Series 2003-150, MFF UK,
2003
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Optimization Notation: Vector and matrix

Mathematical optimization

is the selection of a best element (with regard to some criteria) from some set of A matrix of type m x nis a rectangular array of m rows and n columns of real numbers.
available alternatives. Matrices are written as A, B, C, etc.
i 2 2 2
© Minimize x* + y* where (x,y) € R A vector is an n-tuple of real numbers. Vectors are written as ¢, x, y, etc. Usually,
@ Maximal matching in a graph vectors are column matrices of type n x 1.

@ Minimal spanning tree
@ Shortest path between given two vertices

Optimization problem

Given a set of solutions M and an objective function f : M — R, optimization problem is Special vectors
finding a solution x € M with the maximal (or minimal) objective value f(x) among all
solutions of M.

Duality between minimization and maximization Transpose

If mingem f(x) exists, then also maxyem —f(x) exists and The transpose of a matrix A is matrix AT created by reflecting A over its main diagonal.
— Minyem f(X) = Maxxem —f(X). The transpose of a column vector x is the row vector x”.

V.
Jirka Fink Optimization methods 7 Jirka Fink Optimization methods 8

A scalar is a real number. Scalars are written as a, b, c, etc.

0 and 1 are vectors of zeros and ones, respectively.
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Notation: Matrix product

Notation: System of linear equations and inequalities
Equality and inequality of two vectors

Elements of a vector and a matrix

@ The i-th element of a vector x is denoted by X;. For vectors x, y € R” we denote
@ The (i,j)-th element of a matrix A is denoted by A, ;. o x=yifx;=y foreveryi=1,...,nand
@ The i-th row of a matrix A is denoted by A; .. o x<yifx; <y foreveryi=1,....n

@ The j-th column of a matrix A is denoted by A, ;.

System of linear equations

Given a matrix A € R™*" of type m x n and a vector b € R", the formula Ax = b
The dot product (also called inner product or scalar product) of vectors x,y € R” is the means a system of m linear equations where x is a vector of n real variables.
scalar X"y = 37, Xy,

Given a matrix A € R™*" of type and a vector b € R, the formula Ax < b means a
The product Ax of a matrix A € R™*" of type m x n and a vector x € R" is a vector system of m linear inequalities where x is a vector of n real variables.

y €R"suchthaty, = A xforalli=1,...,m.

Example: System of linear inequalities in two different notations

Product of two matrices »
The product AB of a matrix A € R™" and a matrix B € R™ a matrix C € R™* such 21+ X2 + xg < 14 <§ 15 ;) x| < (;g)
that C,; = AB, jforallj=1,... k. 2x; + Sx2 + 5x3 < 30 X3

Example of linear programming: Optimized diet Example of linear programming: Network flow

Express using linear programming the following problem

||

Find the cheapest vegetable salad from carrots, white cabbage and cucumbers

containing required amount the vitamins A and C and dietary fiber. Network flow problem
Food Carrot White Cabbage Cucumber | Required per meal ; ) ; " = ;
Vitamin A [mg/kg] 35 05 05 0.5mg Given direct graph (V, E) with capacities ¢ € R® and a source s € V and asink t € V,
Vitamin C [mg/kg] 80 300 10 15 mg find the maximal flow from s to t satisfying the flow conservation and capacity
Dietary Fiber [g/kg] | 30 20 10 49 constrains.
Price [EUR/kg] 0.75 0.5 0.15

Formulation using linear programming

Let x1, x> and x3 be real variables denoting the amount of carrots, white cabbage and
cucumbers, respectively. The linear programming problem is

Formulation using linear programming

Variables: flow f. for every edge e € E
Capacity constrains: 0 < f< ¢

Minimize ~ 0.75x; + 0.5xz + 0.15X Flow conservation: 3=,,cg fur = 32 ce fuw for every v e V\ {s, t}

subjectto 35x; + 05x» + 05x3 > 05 o ) &=
60x; + 300x + 10x3 > 15 Objective function: Maximize >, g fow — > e fus
30x1 + 20x2 + 10xz > 4
X1,X2,Xs > 0
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Example of integer linear programming: Vertex cover Linear Programming

Canonical form

Linear programming problem in the canonical form is an optimization problem to find
x € R" which maximizes ¢"x and satisfies Ax < bwhere A€ R™" and b € R™.

Vertex cover problem Equation form

Given undirected graph (V, E), find the smallest set of vertices U C V covering every Linear programming problem in the equation form is a problem to find x € R” which
edge of E; thatis, UU e # () for every e € E. maximizes ¢"x and satisfies Ax = b and x > 0 where A € R"*" and b € R".

Conversions

@ Every x € R” satisfies Ax = b if and only if it satisfies Ax > b and Ax < b.

@ Every x € R” satisfies Ax < b if and only if there exists z € R” satisfying
Ax+z=bandz >0.

@ Every occurrence of a variable x can be replaced by x* — x~ when contains
Variables: cover x, € {0, 1} for every vertex v € V x*,x~ > 0 are added.

Covering: xy + Xy > 1 for every edge uv € E
Objective function: Minimize 17x

Formulation using integer linear programming

Example: Conversion from the canonical form into the equation form

@ maxc'x such that Ax < b
@ maxc'x suchthat Ax +z=bandz >0
o maxc'x" — ¢"x~ suchthat Ax* — Ax~ +z=bandz,x",x~ >0
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Related problems @ Show that binary linear programming is a special case of integer linear
programming.

Integer linear programming

Integer linear programming problem is an optimization problem to find x € Z" which
maximizes ¢"x and satisfies Ax < b where A€ R™" and b € R™.

Mix integer linear programming

Some variables are integer and others are real.
Binary linear programming

Every variable is either 0 or 1. ©

@ A linear programming problem is efficiently solvable, both in theory and in practice.

@ The classical algorithm for linear programming is the Simplex method which is fast
in practice but it is not known whether it always run in polynomial time.

@ Polynomial time algorithms the ellipsoid and the interior point methods.
@ No strongly polynomial-time algorithms for linear programming is known.
@ Integer linear programming is NP-hard.
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Terminology

Graphical method: Set of feasible solutions

Draw the set of all feasible solutions (x1, x2) satisfying the following conditions.

Basic terminology

X X1 + 6x2 < 15
@ Number of variables: n 4x; — x2 < 10
@ Number of constrains: m X1 + x2 < 1
@ Solution: x Xi,X2 =

@ Objective function: e.g. max c'x .
@ Feasible solution: a solution satisfying all constrains, e.g. Ax > b
@ Optimal solution: a feasible solution maximizing ¢"x X1 >0 Mxo —x1 <1
@ Infeasible problem: a problem having no feasible solution :

@ Unbounded problem: a problem having a feasible solution with arbitrary large
value of given objective function

@ Polyhedron: a set of points x € R” satisfying Ax > b for some A € R™*" and
beR™

@ Polytope: a bounded polyhedron

(0,0) :
4xy — xp2 < 10 |
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Graphical method: Optimal solution

Graphical method: Multiple optimal solutions

Find the optimal solution of the following problem. Find all optimal solutions of the following problem.
Maximize X1 + X Maximize {x1 + Xz
X1 + 6xp, < 15 X4 + 6x2 < 15
4x; — x2 < 10 41 — x2 < 10
X1 + X2 < 1 X1 + x2 < 1
X1, X2 > 0 X1,x2 > 0

@R=0 \

@r=il

c'x=0

— | \% 0 /
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Graphical method: Unbounded problem Graphical method: Infeasible problem

Show that the following problem is unbounded.

Show that the following problem has no feasible solution.
Maximize xi + X2
—X1 + X2

X1, X2

Maximize x; + X2
X1 + Xz
X1,X2

1
0

IV IA
IV IA

N X2 >0
X1 >0 i
(0,0)
< -2
J
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Definition
A set L C R"is linear (also called a linear space) if
e Linear, affine and convex sets °0€lL,
@ x+yelLforeveryx,y e Land
@ ax c Lforeveryx € Land a € R.

If L C R"is alinear space and a € R" is a vector, then L + a = {x + a; x € L} is called
an affine space.

Observation
An affine space A C R” is linear if and only if A contains the origin 0.

Observation

If AC R" is an affine space, then A — x is a linear space for for every x € A.
Furthermore, all spaces A — x are the same for all x € A.
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Convex set Linear, affine and convex hulls

Observation

Definition @ The intersection of arbitrary many linear spaces is also a linear space.
A set S C R"is convexif S contains whole segment between every two points of S. O MihiEszain o eblify Mey il SPEees B elHo an ilie spaee.
@ The intersection of arbitrary many convex sets is also a convex set.

Definition
Example @ The linear hull span(S) of S C R” is the intersection of all linear sets containing S.
’ @ The affine hull aff(S) of S C R" is the intersection of all affine sets containing S.

@ The convex hull conv(S) of S C R" is the intersection of all convex sets
containing S.

Informally

a
The linear, the affine and the convex hull of a set S C R" is the smallest (with respect
to inclusion) linear, affine and convex set containing S, respectively.

Observation
o Aset S C R"is linear if and only if S = span(S).
@ Aset S C R"is affine if and only if S = aff(S).
@ Aset S C R"is convex if and only if S = conv(S).
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Convex hull and convex combinations

Linear, affine and convex combinations

Observation

Definition The set of all convex combinations of a set C C R” is convex. @

@ The sum XX, a;a; is called a linear combination of S C R" if
keN,aeSanda;eRfori=1,... k.

@ The sum XX, a;a; is called an affine combination of S C R” if
keNa €S aicRand Yl aj=1fori=1,... k.

@ The sum Y%, a;a; is called a convex combination of S C R" if
keN,aeS a>0and Yk aj=1fori=1,... k

Observation
If C C R"is a convex set and X C C, then C contains all convex combinations of X.

The convex hull of a set S C R” is the set of all convex combinations of S.

@ The linear hull of a set S C R" is the set of all linear combinations of S. @ Let Z be the set of all convex combinations of S.

@ The affine hull of a set S C R” is the set of all affine combinations of S. @ conv(S) C Z: Observe that Z is a convex set containing S.

@ The convex hull of a set S C R is the set of all convex combinations of S. @ Z C conv(S): Observe that convex combinations of points of S belong into
conv(S).

@ Leta=3 aja;and b =" 3;b; be convex combinations of C. The point Independence and base
X = aa+ (b on the segment between a and b is also a convex combination of C

since x = Y- aad + 3= A3
@ By induction by k, we prove for every X C C that every convex combinations of k P . . . n
points of X belong into C. Let > o;a; be a convex combination of points of X. ° ?o?:lt)i?\!t/ieo(:oorfsotshegrf SlizeaijaenepdeptiipalectoolisSialin=ay

WL i .

For?(G:aé t>heo statement follows from the definition of convexity. @ A set of vectors S C R” is affinely independent if no vector of S is an affine

Fork >2,leta’ = ar + oz and & = S+as + 22a,. Since & is a point on the combination of others.

segment between a; and a it follows that & € C. Now, o’a’ + ZLS wai =y o, —

is a convex combination of k — 1 points of X U {&'}, so it is contained in C by the
induction hypotheses. @ A set of vectors B C R" is a (linear) base of a linear space S if vectors of B are

linearly independent and span(B) = S.

@ A set of vectors B C R" is an (affine) base of an affine space S if vectors of B are
affinely independent and aff(B) = S.

Is it possible to analogously define a convex independence and a convex base?

Observation

@ All linear bases of a linear space have the same cardinality.
@ All affine bases of an affine space have the same cardinality.
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Dimension Carathéodory

Observation

Vectors Xo, . . ., X are affinely independent if and only if vectors x1 — Xo, ..., Xx — Xo
are linearly independent.

N
&

Theorem (Carathéodory)

Observation

Let S be a linear space and B C S\ {0}. Then, Bis a linear base of S if and only if Let S C R". Every point of conv(S) is a convex combinations of affinely independent
BU {0} is an affine base of S. points of S. ©

| \

Definition
@ The dimension of a linear space is the cardinality of its linear base.
@ The dimension of an affine space is the cardinality of its affine base minus one.
@ The dimension dim(S) of a set S C R” is the dimension of affine hull of S.

Let S C R” be a set of dimension d. Then, every point of conv(S) is a convex
combinations of at most d + 1 points of S.

Observation
@ A set of vectors S is linearly independent if and only if 0 is not a non-trivial linear
combination of S.
@ A set of vectors S is affinely independent if and only if 0 is not a non-trivial
combination >~ «,a; of Ssuchthat Y~ a; =0 and a # 0.

\,

Jirka Fink Optimization methods 29 Jirka Fink Optimization methods 30



@ Let x € conv(S). Let x = 3% | cix; be a convex combination of points of S with
the smallest k. If x4, ..., x, are affinely dependent, then there exists a combination
0 =" fBix; such that > 3 = 0 and B # 0. Since this combination is non-trivial,

there exists j such that 8; > 0 and %; is minimal. Let v = o — "/’;’. Observe that
0 X =3 X
o >iyvi=1
o y;>0foralli#j
which contradicts the minimality of k.
Mathematical analysis
Definition
@ Aset SC R"is closedif S contains the limit of every converging sequence of
points of S .

@ Aset S C R"is bounded if max {||x||; x € S} < b for some b € R.

@ Aset S C R"is compact if every sequence of points of S contains a converging
subsequence with limit in S.

A set S C R” is compact if and only if S is closed and bounded.

If f: S — R is a continuous function on a compact set S C R”, then S contains a point
x maximizing f over S; that is, f(x) > f(y) forevery y € S.

Infimum and supremum

@ Infimum of a set S C Ris inf(S) = max{b e R; b < xVx € S}.

@ Supremum of aset S C Rissup(S) =min{beR; b> xVx € S}.
@ inf(0) = oo and sup(#) = —occ

@ inf(S) = — if S has no lower bound
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@ Find ¢ € C and d € D with minimal distance ||d — ¢]|.
Letm=inf{||d —¢||; c€ C,d € D}.
For every n € N there exists ¢, € C and dn, € D such that [|dp — ¢n|| < m+ 1n
Since C is compact, there exists a subsequence {c:kn};";1 convergingto ¢ € C.
There exists z € R such that for every n € N the distance ||d, — ¢|| is at most z:
||dn —c¢l|| < ||dn —¢nl| + |len —¢|| < m+ 1+ max{||c’ —c"||; ¢/,c" € C} =2z
Since the set DN {x € R"; ||x — ¢|| < z} is compact, the sequence {dj, } ,hasa
subsequence {d;, } -, converging to d € D.

O Since ||[d —¢l|| < ||d —d,, || +|ld), — ¢,,|| + l|e;, — ¢|| = m, the distance ||d —¢|| = m

is minimal.
@ The required hyperplane is a'x = bwherea=d —cand b = % since we
prove thata'c’ <a'c < b< a'd < a'd' forevery ¢’ ¢ Candd’ € D.

@ Inorder to prove the most left inequality, let ¢’ € C.

@ Since Cisconvex,y =c+a(c¢’ —c¢) € Cforevery0 < a < 1.

@ From the minimality of the distance ||d — ¢|| it follows that ||d — y||? > ||d — ¢|[2.

(-]

2]
o
(2]
o

n=

o
@d-c—a(c—c)(d-—c—ac -¢) > (d-c)"(d-c)
a2 —e¢)(¢—¢c)—2a(d—¢c)' (¢ —¢) > 0
%Hc’ —c|P+a'c > a'c

@ Since the last inequality holds for arbitrarily small a > 0, it follows that a'¢ > a"¢’
holds.
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@ Clearly, all solutions of Ax = 0 form a linear space S. For every solution z of
Ax = b it holds that S + z is the affine space of all solutions of Ax = b.
Let S be a linear space. Let rows of a matrix A be a linear base of the orthogonal
space to S. Then, S are all solutions of Ax = 0. If S+ z is an affine space and
b = Az, then S + z are all solutions of Ax = b.
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System of linear equations and inequalities

Definition
® A hyperplaneis a set {x € R"; a'x = b} where ac R"\ {0} and b € R.
o A half-spaceis aset {x € R"; a'x < b} where ac R"\ {0} and b € R.
@ A polyhedron is an intersection of finitely many half-spaces.

@ A polytope is a bounded polyhedron.

Observation
For every a € R” and b € R, the set of all x € R” satisfying a'x < b is convex.
Every polyhedron Ax < b is convex.
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Hyperplane separation theorem

Theorem (strict version)

Let C, D C R" be non-empty, closed, convex and disjoint sets and C be bounded.
Then, there exists a hyperplane a"x = b which strictly separates C and D;
thatis C C {x;a"x < b} and D C {x;a"x > b}.

Example

a'x < b
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Closed convex sets and systems of linear inequalities

Corollary

The intersection of arbitrary many half-spaces is a closed convex set and every closed
convex set is an intersection of (infinitely) many half-spaces.

Observation

@ The set of all solutions of Ax = 0 is a linear space and every linear space is the
set of all solutions of Ax = 0 for some A.

@ The set of all solutions of Ax = b is an affine space and every affine space is the
set of all solutions of Ax = b for some A and b, assuming Ax = b is consistent. ®

Definition
The set of all solutions of Ax < b is called a polyhedron.
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Faces of a polyhedro

Let P be a polyhedron. A half-space a"x < 3 is called a supporting hyperplane of P if
the inequality o"x < 3 holds for every x € P and the hyperplane a"x = 3 has a
non-empty intersection with P.

The set of point in the intersetion PN {x; a"x = B} is called a face of P. By
convention, the empty set and P are also faces, and the other faces are proper faces.

Let P be a d-dimensional polyhedron.
@ A 0-dimensional face of P is called a vertex of P.
@ A 1-dimensional face is of P called an edge of P.
@ A (d — 1)-dimensional face of P is called an facet of P.

Let P = {x; Ax < b} of dimension d. Then for every row i, either
e Pn{x; Ai.x=Db;}=Por
o Pn{x; Ai.x=b}=0or
o Pn{x; Ai.x = b;} is a proper face of dimension at most d — 1.
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@ Observe, that every face of a polyhedron is also a polyhedron. Mi wski-Wey!

Theorem (Minkowski-Weyl)

A set S C R" is a polytope if and only if there exists a finite set V C R” such that
S = conv(V).

lllustration

As,.x < b
As . x < bs
..... L£]
\Az,.x < b,
A.x < b
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= Proof by induction on d = dim(S): wski-Weyl
@ Ford =0, thesize of Sis0or 1.
Q Ford>0,letS={x; Ax <b}and S;=Sn{x; A, x=b;}.
Let / be the set of rows i such that S; is a proper face of S. Since dim(S;) < dim(S) — 1

Theorem (Minkowski-Weyl)

for all i € /, the induction assumption implies that there exists a finite set V; € R" such AsetSCR"isa polytope if and only if there exists a finite set V C R" such that
that S; = conv(V)). S = conv(V)
Let V = Uj¢,V;. We prove that conv(V) = S. )
C follows from V; C §; C S. " " .
O Letx € S. Let L be a line containing x. main steps)
SN Lis aline segment with end-vertices u and v.

There exists /, j € I such that A; ,u = b; and A; ,v = b;. ° :{ . n {<a<i-1<B< Ty }
Sinceu € Sjand v € S}, points u and v are convex combinations of S. LetQ (B)'QER’ﬂeR 1<a<1,-1<f<tav<pweV,.

Since x is a also a convex combination of u and v, we have x € conv(S). T
) o Observe thata'v < 8 means the same as () () < 0.

@ Since Qs a polytope, there exists a finite set W C R™" such that Q = conv(W).
@ We prove that conv(V) = {x ER™ a'x<BV() € W}.

@ x € conv(V)

Q a'x <BVY(3) € Q) where Qi = {(g); a'v<BWe conv(V)}
Q a'x <BV(3) € Q where Q: = {(‘;) a'v<pvve V}

Q a'x<Bv(3) eq

Q a'x<Bv(5) ew
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(1) = (2) @y is the set of all conditions satisfied by all points of conv( V). Faces

(1) <= (2) Use the hyperplane separation theorem to separate x ¢ conv(V) from

conv(V).
(2) < (3) A condition a"v < § is satified by all v € V if and only if the condition is Observation
satisfied by v € conv(V), so Qi = Q.. The intersection of two faces of a polyhedron P is a face of P.

(3) < (4) a and 3 in every condition a’v < 3 can be scaled so that -1 < a < 1
and —1 < 3 < 1 and the condition describe the same half-space.

(4) < (5) Prove that if a™x < /3 holds for all conditions from W, then it also holds
for all conditions from Q = conv(W).

Let P be a polyhedron and V its vertices. Then, x is a vertex of P if and only if
x ¢ conv(P\ {x}). Furthermore, if P is bounded, then P = conv(V). ®

Observation (A face of a face is a face)

Let F be a face of a polyhedron P and let E C F. Then, E is a face of F if and only if E
is a face of P.

A set F C R"is a face of a polyhedron P = {x € R"; Ax < b} if and only if F is the set
of all optimal solutions of the linear programming problem min {¢"x; Ax < b} for some
vector ¢ € R".
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(inclusion) minimal set such that P = conv(V;). Let Minimal defining system of a polyhedron
Ve ={x € P; x ¢ conv(P\ {x})}. We prove that V C Vo C Vp C V. —
V C Ve: Letz € V be a vertex. By definition, there exists a supporting hyperplane ¢"x = t such

that PN {x; ¢"™x =t} = {z}. Since ¢"x < tforall x € P\ {z}, it follows that x € Ve. _ n oAy kA Y B = .
Vo C Vo: Letz € Vs. Since conv(P\ {z}) # P, it follows that z € Vp. P={xecR" Ax=0b', A’x < b"} is a minimal defining system of a polyherdon P if

Vo C V: Letz € Vpand D = conv( Vg \ {z}). From Minkovsky-Weil's theorem it follows that V4 @ no condition can be removed and
is finite and therefore, D is compact. By the separation theorem, there exists a A Ji I Ji
hyperplane ¢"x = r separating {z} and D, thatis ¢"x < r < ¢"z for all x € D. Let @ no inequality can be replaced by equality
t =¢'z. Hence, A= {x; ¢"x = t} is a supporting hyperplane of P. without changing the polyhedron P.

We prove that AN P = {z}. For contradiction, let 2’ € P N A be a different from z.

Then, there exists a convex combination 2’ = ayXy - - - + Xk + gz of V. From -
z # Z' it follows that g < 1 and «; > 0 for some /. Since apc'z = t and a;c'x; < t Observation
.oT L < H T 5/ 0 H i 7
and a;jc'x; < t, it holds that ¢'z’ < t which contradicts the assumption that 2’ € A. Let z be a point of a polyhedron P — {x ER" Ax=b, A'x < b”} e (e
A’z < b". Then,
@ dim(P) = n — rank(A’) and @
@ z does not belong in any proper face of P. ®

Furthermore, there exists such a point z in every minimal defining system of a
polyhedron. ®

LetP={x e R"; Ax =b', A’x < b"} be a minimal defining system of a polyhedron
P. Then, there exists a bijection between facets of P and inequalities A’x < b”. @
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@ Let L be the affine space defined by A'x = b'. Clearly,

dim(P) < dim(L) = n — rank(A’). Since A"z < b", there exists ¢ > 0 such that P
contains whole ball B = {x € L; ||x — z|| < €}. Since vectors of a base of the
linear space L — z can be scaled so that they belong into B — z, it follows that
dim(P) > dim(B) > dim(L).

@ The point z cannot belong into any proper face of P because a supporting
hyperplane of such a face split the ball B.

© For every row i of A’x < b” there exists z' € P such that A”,z' < b]. Let
z= # L Z' be the center of gravity. Since z is a convex combination of points
of P, point z belongs to P. From A, z' < b}, it follows that A,z < b{’, and
therefore A"z < b".

Q LetR = {xeR"; A’,x =b;} and F; = P N R;. From minimality if follows that R;
is a supporting hyperplane, and therefore, F; is a face. Likewise in the previous
observation, there exists z € F; satisfying A,z < b; for all j # i and so
dim(F;) = dim(P) — 1. Furthermore, z ¢ F; forall j # i, so F; # Fj for j # i.

For contradiction, let I-T,be an another facet. There exists a facet i such F C F;,
otherwise z = -1, "7, Z' satisfies strictly all condition contradicting the
assumption that F is a proper facet. Since F # F;, F is a proper face of F; and so

its dimension is at most dim(P) — 2 contradicting the assumption that F is a

proper facet.
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@ Affine space of dimension n — 1 is determined by a unique condition.
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Notation used in the Simplex method

@ Linear programming problem in the equation form is a problem to find x € R”
which maximizes ¢'x and satisfies Ax = b and x > 0 where A € R™*" and

beR™.
@ We assume that rows of A are linearly independent.
@ Forasubset BC {1,...,n}, let Ag be the matrix consisting of columns of A

whose indices belong to B.
@ Similarly for vectors, xz denotes the coordinates of x whose indices belong to B.
@ Theset N={1,...,n}\ Bdenotes the remaining columns.

Consider B = {2,4}. Then, N = {1,3,5} and

135 60 3 6 150
A:<24897> AB:(4 9) AN:(287>

x" = (3,4,6,2,7) X5 = (4,2) xy = (3,6,7)
Note that Ax = Agxpg + AnXn.

Example: Initial simplex tableau

Canonical form

Maximize xi1 + X2

X1 + X2 < A
X1 < 3
X2 < 2

X1,X2 > 0

Equation form

Maximize x1 + X2
—Xi + X2 + X3 =

X1 + X =

X2 + X5

X1,X2,X3,X4, X5

Simplex tableau

1
3
2
0

IVl

X3 = 1 + X1 — Xz
Xs = 3 — Xxq
Xs = 2 - X2
z = X1 + X2
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Minimal defining system of a polyhedron

LetP={x e R"; Ax=b', A’x < b"} be a minimal defining system of a polyhedron
P. Then, there exists a bijection between facets of P and inequalities A”x < b".

Definition

A polyhedron P C R" is of full-dimension if dim(P) = n.

Observation

If P is a full-dimensional polyhedron, then P has exactly one minimal defining system
up-to multiplying conditions by constants. @

Every proper face is an intersection of facets.
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Outline

e Simplex method
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Basic feasible solutions

Definitions

@ A set of columns Biis a base if Ag is a regular matrix.
@ The basic solution x corresponding to a base B is xy = 0 and xg = Ag‘b.
@ A basic solution satisfying x > 0 is called basic feasible solution.

Observation

Basic feasible solutions are exactly vertices of the polyhedron P = {x; Ax = b, x > 0}.

A feasible solution x is basic if and only if the columns of the matrix A are linearly
independent where K = {j € {1,...,n}; x; > 0}.
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Example: Initial simplex tableau

Simplex tableau

Xxs = 1 + x1 — X2
X, = 3 — Xxq

X5 = 2 — X2
z = X1 + Xz

Initial basic feasible solution
® B={3,4,5}, N={1,2}
@ x=(0,0,1,3,2)

Two edges from the vertex (0,0, 1,3, 2):
@ (t,0,1+t,3—t,2) when x; is increased by t
Q (0,r,1—r,3,2—r)when x is increased by r
These edges give feasible solutions for:
@ t<3sincexs=1+t>0andxs=3—-t>0andxs =2>0
@ r<isincexz=1-r>0andx;=3>0andxs=2—-r>0
In both cases, the objective function is increasing. We choose x: as a pivot.

Jirka Fink Optimization methods 45



Example: Pivot step Example: Next step

Simplex tableau Simplex tableau

X2 = 1 + X1 - X3
Xs = 3 — X
Xs = 1 — xi + X3
z =1 + 2x1 — X3
Basis Next pivot
@ Original basis B = {3,4,5} @ Basis B = {2,4,5} with a basis feasible solution (0,1,0,3,1).
@ X enters the basis (by our choice). @ This vertex has two incident edges but only one increases the objective function.
@ (0,r,1—r,8,2—r)is feasible for r < 1 sincexs=1—r>0. @ The edge increasing objective function is (t,1+¢,0,3 —t,1 —t).
@ Therefore, x3 leaves the basis. @ Feasible solutions forxo =1+t>0andxs =3—-t>0andxs =1—t>0.
@ New base B = {2,4,5} @ Therefore, x1 enters the basis and xs leaves the basis.

New simplex tableau New simplex tableau

X2 = 1 + x4 — X3 x1 = 1 + X3 — X5
X4 = 3 — X1 X2 = 2 = X5
Xs = 1 — X1 _+ Xs Xe = 2 - X3 + Xs
z 1T + 2x1 — X3 z = 3 + X3 — 2X5

Example: Optimal solution

Simplex tableau

Example: Last step

Simplex tableau

s
&

X1 = 1 + X3 — Xs

X = 2 — X5 X1 = 3 — Xa

X4 = 2 — X3 + Xs X, = 2 — Xs

zZ = 3 + X3 — 2Xs Xs = 2 — X4 + X5
V4 = 5 — X4 — Xs

Next pivot
@ Basis B = {1,2,4} with a basis feasible solution (1,2,0,2,0).
@ This vertex has two incident edges but only one increases the objective function.
@ The edge increasing objective function is (1 +¢,2,t,2 — t,0).
@ Feasible solutions forx; =1+ t>0andx; =2>0andxs =2—t> 0.
@ Therefore, X3 enters the basis and x4 leaves the basis.

@ Basis B = {1,2,3} with a basis feasible solution (3,2,2,0,0).
@ This vertex has two incident edges but no one increases the objective function.
@ We have an optimal solution.

New simplex tableau Why this is an optimal solution?

Xy = 3 — X4 @ Consider an arbitrary feasible solution y.

X2 = 2 - X5 @ The value of objective functionis 2 =5 — ¥, — ys.

Xs = 2 = Xa + X5 @ Since y,,¥s > 0, the objective valueis 2 =5 -y, — s < 5= z.
z =5 — X4 — Xs
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Simplex tableau in general Properties of a simplex tableau

Definition

IS
&

Simplex tableau in general

A simplex tableau determined by a feasible basis B is a system of m + 1 linear

equations in variables x1, ..., X, and z that has the same set of solutions as the Xg = P + ?XN
system Ax = b, z = ¢"x, and in matrix notation looks as follows: zZ = 2o + Xy
Xg = p + Qxpy

= T "
zZ = A + Xy Observation
where x;p is the vector of the basis variables, x is the vector on non-basis variables, Basis B is feasible if and only if p > 0.

peR”, reR"™", Qisanmx (n— m) matrix, and zo € R.

i Observation
Observaten The soluti ding to a basis B is optimal if and only if r < 0
a basis B is optimal if and only if r < 0.
For each basis B there exists exactly one simplex tableau, and it is given by © solution corresponding to P Y=

0 Q=-Ay'Av

o p=A;'b Observation

@ z=CcpA;'b If a linear programming problem in the equation form is feasible and bounded, then it
o r=cl— (chA;'Av)" has an optimal basis solution.
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Simplex tableau in general

| @
| |

z = z + I'xy Largest coefficient Choose an improving variable with the largest coefficient.

Largest increase Choose an improving variable that leads to the largest absolute
improvement in z.

Find a pivot Steepest edge Choose an improving variable whose entering into the basis moves the
@ If r <0, then we have an optimal solution. current basic feasible solution in a direction closest to the direction of
@ Otherwise, choose an arbitrary entering variable x, such that r, > 0. the vector ¢, i.e. .
. ) . C' (Xnew — X
@ If Q.,v > 0, then the corresponding edge is unbounded and the problem is also € (Xnew — Xaur)

unbounded. [|Xnew — Xora|

@ Otherwise, find a leaving variable x, which limits the increment of the entering

Bland’s rull h n improvin riable with the smallest index, and if there ar
variable most strictly, .6. Gy, < 0 and — ‘:“V is minimal. and’s rule Choose an improving variable with the smallest index, and if there are

several possibilities of the leaving variable, also take the one with the
smallest index.

Random edge Select the entering variable uniformly at random among all improving
variables.

Q

Update the simplex tableau

Gaussian elimination. Postponed for a tutorial.
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Initial feasible basis Complexity

Equation form o Different basis may correspond to the same solution. ©
@ The simplex method may loop forever between these basis.
@ Bland’s or lexicographic rules prevent visiting the same basis twice.

The number of visited vertices

@ The total number of vertices is finite since the number of basis is finite.

@ The objective value of visited vertices is increasing, so every vertex is visited at
most once. @

@ The number of visited vertices may be exponential, e.g. the Klee-Minty cube. ®

@ Practical linear programming problems in equation forms with m equations
typically need between 2m and 3m pivot steps to solve.

Maximize ¢"x such that Ax = b and x > 0.

Auxiliary linear program

We introduce variables X1, . . ., Xn+m and solve an auxiliary linear program:
Maximize —Xpy1 - - - — Xpym Such that (A|/)x = band x > 0.

| \

Observation

The original linear program has a feasible solution if and only if an optimal solution of
the auxiliary linear program satisfies Xp.1 = -+ = Xptm = 0. Open problem

Is there a pivot rule which guarantees a polynomial number of steps?
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@ For examplke, the_apex of thg 3-dimensional k-side pyramid belongs to k faces, so Outline
there are (3) basis determining the apex.

@ In degeneracy, the simplex method stay in the same vertex; and when the vertex is
left, it is not visited again.

@ The Klee-Minty cube is a “deformed” n-dimensional cube with 2n facets and 2"
vertices. The Dantzig’s original pivot rule (largest coefficient) visits all vertices of
this cube.

o Duality of linear programming
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Duality of linear programming: Example @ The first condition
@ A half of the first condition

Find an upper bound for the following problem © A third of the sum of the first and the second conditions

Maximize 2x; + 3x2

subjectto 4x; + 8xx < 12
2x1 + X2 < 3

31 + 2% < 4

Xi,X2 > 0

4

Simple estimates

@ 2X1 +3X2 < 4x1+8x2 <12 ®
@ 2x1 +3x2 < %(4X1 +8X2) <6®
® 2x1 43Xz = 3(4X1 +8X2+2X1 +X2) <5 @

What is the best combination of conditions?

Every non-negative linear combination of inequalities which gives an inequality
dixq + dax» < hwith dy > 2 and d> > 3 provides the upper bound
2x1 + 3x2 < dixy + d2x2 < h.
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Duality of linear programming: Example @ The primal optimal solution is x* = (3, 3) and the dual solutionis y* = (3,0, 7).
Y pProg 9 P both with the same objective value 4.75.
Find an upper bound for the following problem

Maximize 2x; + 3x2

subjectto 4x; + 8xx < 12
2x1 + x2 < 3

31 + 2x2 < 4

X1,X2 > 0

Non-negative combination of inequalities with coefficients y4, ¥, and y,

(4y1 +2¥5 +3y3)X1 + (8Y; + Y5 + 2¥5)X2 < 12y + 3y, + 4y, where
e dy =4y, +2y,+3y; >2
@ d,=8y,+y,+2y; >3
@ h=12y, + 2y, + 4y, to be minimized

Dual program @

Minimize 12y, + 2y, + 4y,

subjectto 4y, + 2y, + 3y; > 2
8y, + Y. + 23 = 3
Yi.¥2¥s = 0

4
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lity of linear programmin

Primal linear program
Maximize ¢"x subject to Ax < band x > 0

eneral

Dual linear program

Every linear programming problem has its dual, e.g.

o Maximize ¢"x subject to Ax > band x >0
Minimize b"y subject to ATy > cand y >0 @ Maximize ¢"x subjectto —Ax < —band x >0

@ Minimize —b"y subjectto —ATy > candy >0

Weak duality theorem o ) o
@ Minimize b’y subjectto A'y >candy <0

For every primal feasible solution x and dual feasible solution y hold ¢'x < b"y.

If one program is unbounded, then the other one is infeasible. A dual of a dual problem is the (original) primal problem

Duality theorem

Minimize b"y subjectto A"y > candy >0
-Maximize —b"y subjectto ATy > candy >0
-Minimize ¢"x subject to Ax > —b and x <0
-Minimize —c"x subjectto —Ax > —band x >0
Maximize ¢"x subject to Ax < band x >0

Exactly one of the following possibilities occurs
@ Neither primal nor dual has a feasible solution
@ Primal is unbounded and dual is infeasible
@ Primal is infeasible and dual is unbounded
© There are feasible solutions x and y such that ¢'x = b"y
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Dualization: General rules Linear programming: Feasibility versus optimality

Primal linear program | Dual linear program Feasibility versus optimality
Variables X1,...,Xn Yisoo s ¥m Finding a feasible solution of a linear program is computationally as difficult as finding
an optimal solution.
Matrix A AT
Right-hand side b c : "
Using duality
Objective function maxc'x minb'y The optimal solutions of linear programs
. . . @ Primal: Maximize ¢"x subject to Ax < band x > 0
Constraints | i-the constraint has < y; >0 o T ) .
i-the constraint has > ¥, <0 @ Dual: Minimize b'y subjectto A’y > candy >0
> i <
i-the constraint has = Y, eR are exactly feasible solutions satisfying
x; >0 j-th constraint has > /i\x < b
X <0 j-th constraint has < ATy = <8
X €R j-th constraint has = ¢cx > by
xy > 0

Complementary slackness Fourier—Motzkin elimination: Example

Goal: Find a feasible solution

2x — 5y + 4z < 10

3x — 6y + 3z < 9

Feasible solutions x and y of linear programs 5x + 10y — z < 15
@ Primal: Maximize ¢"x subject to Ax < band x >0 -x + by - 2z < -7
-3x + 2y + 6z < 12

@ Dual: Minimize b"y subjectto ATy > candy >0

are optimal if and only if Express the variable x in each condition
5

Xi=0orAf .y =cf i=1,... d
@ X; orAi.y ,orevery/‘ yoe,nan g < + o5y - 22
o y;=00rA;.x=Dbforeveryj=1,....m. x < 3 + 2y - z
x < 3 - 2y + 1z
x > 7 + 5y — 2z
X > —4 + 3y + 2z

Eliminate the variable x

The original system has a feasible solution if and only if there exist y and z satisfying

n n m m
c'x= chxr' < Z(YTA*J)X/‘ =y'Ax = Z.V/(Aj,*x) < Zy/'b/ =b'y
i i = =

max{7+5y—22,74+§y+22} gmin{5+gy—2z,3+2y—z,3—2y+ 12}

5
Fourier—Motzkin elimination: Example Fourier—Motzkin elimination: In general
Rewrite into a system of inequalities Let Ax < b be a system with n > 1 variables and m inequalities. There is a system

Real numbers x and y satisfy A'x’ < b’ with n — 1 variables and at most max {m, m?/4} inequalities, with the
following properties:
max {7 4By 2z, -4+ §y+ 22} < min {5 + §y 22342y 23-2y+ lz} @ Ax < b has a solution if and only if A’x’ < b’ has a solution, and
& 2 5 @ each inequality of A’x’ < b’ is a positive linear combination of some inequalities
if and only they satisfy from Ax < b.
7 + 5y - 2z < 3 + 2y — z S _ P
7 + 5y — 27 < 3 — 2y + %z OWLOG.A,:1E{ 1,0,1}forélllf1,...,n .
4 + 2y + 22 < 5 + §y - 2z Q LetC={i; Ay =1}, F={i; A,y =—1}and L = {i; A, =0}
-4 + %y + 2z < 3 + 2y - z © Let Ax’ < b’ be the system of n — 1 variables and |C| - |F| + |L| inequalities
4 + %y 4+ 2z < 3 - 2y + [z jeECKkeF: (A.+Aw)x < bi+b. (1)

lel: A.x < b (2)
Q@ Assuming A'x’ < b’ has a solution x’, we find a solution x of Ax < b:

e (1)is equivalentto A, x’ — by < b; — AI’ X forallje C,keF,
Eliminate variables y and z in a similar way. o which is equivalent to maxycr {A;( X - bk} < minjcc {b,- — A;’*x’}

e Choose x1 between these bounds and x = (x, x’) satisfies Ax < b
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Farkas lemma Farkas lemma

propositier (arkas lorma)

A cone generated by vectors a;, .. ., a, € R™ is the set of all non-negative Let A€ R™" and b € R™. The following statements hold.

combinations of @i, ..., an, i.e. {30, cvai; o1,...,00 > 0}. @ The system Ax = b has a non-negative solution x € R” if and only if every y € R™
with yTA > 0" satisfies y"b > 0.

@ The system Ax < b has a non-negative solution x € R” if and only if every

Proposition (Farkas lemma geometrically) non-negative y € R™ with y"A > 0" satisfies y™b > 0.

Let ai,...,an, b € R™. Then exactly one of the following two possibilities occurs: @ The system Ax < b has a solution x € R” if and only if every non-negative y € R”
@ The point b lies in the cone generated by a;, . .. , an. with y'A = 0" satisfies y'b > 0.
@ There exists a hyperplane h = {x € R™; y"x = 0} containing 0 for some y € R”
separating a, . a, and b, ie. y'a; > 0foralli=1,....nand y'b < 0.
Fourier—Motzkin elimination

Let A€ R™" and b € R™. Then exactly one of the following two possibilities occurs: 4 )
@ There exists a vector x € R” satisfying Ax = b and x > 0. Farkas Iemmi, 2ndieision
@ There exists a vector y € R™ satisfying y"A > 0 and y"b < 0. Duality of linear programming
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Farkas lemma Farkas lemma

@

&
@
8

Proposition (Farkas lemma, 3rd version)

Let A€ R™"and b € R™. Then, the system Ax < b has a solution x € R” if and only if
Let A€ R™"and b € R™. Then, the system Ax < b has a solution x € R” if and only if every non-negative y € R™ with y"A = 0" satisfies y"b > 0.
every non-negative y € R™ with y"A = 0" satisfies y"b > 0.

Proposition (Farkas lemma, 3rd version)

Proposition (Farkas lemma, 2nd version)

Proof Let A€ R™" and b € R". The system Ax < b has a non-negative solution x € R" if
and only if every non-negative y € R™ with y"A > 0" satisfies y"b > 0.

= If x satisfies Ax < b and y > 0 satifies y"A = 0", then y'b > y"Ax > 0"x =0
< If Ax < b has no solution, the find y > 0, y"A = 0", y"b < 0 by the induction on n

n=0 e The system Ax < b equals to 0 < b which is infeasible, so b; < 0 for some i Proof of the 2nd version using the 3rd version
e Choosey = g (the i-th unit vector) The following statements are equivalent
n>0 e Using Fourier-Motzkin elimination we obtain an infeasible system A'x’ < b’ .
e There exists a non-negative matrix M such that (0]A’) = MA and b’ = Mb @ Ax < b, x > 0 has a solution
o By induction, there exists y’ > 0, y'TA’ =07, y'Tb’ < 0 @ (*)x < (5 has a solution
o We verify that y = My’ satifies all requirements of the induction T, A T b
y=My >0 Q Everyy.y’ >0with () () = 0" satisfies () (g) >0

yTA = (MTy)'A= y'TMA = y'T(0|A') = O

Y'b = (M'y\'b = y'™Mb = y''b’ < O Q Everyy,y’ >0 with y"A = y’ satisfies y"b > 0

© Every y > 0 with y"A > 0 satisfies y"b > 0
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Proof of the duality of linear programming Proof of the duality of linear programming

Duality

@
2
| |

Proposition (Farkas lemma, 2nd version)

Let Ac R™" and b € R™. The system Ax < b has a non-negative solution if and only o Primal: Maximize ¢"x subject to Ax < band x >0

if every non-negative y € R™ with yTA > 0" satisfies y"b > 0. @ Dual: Minimize b"y subjectto A"y > candy >0

. If the primal problem has an optimal solution x*, then the dual problem has an optimal
Duality solution y* and ¢"x* = b"y*.

@ Primal: Maximize ¢"x subject to Ax < band x >0
@ Dual: Minimize b"y subjectto A"y > candy >0

Proof of duality using Farkas lemma (continue)

If the primal problem h timal soluti then the dual problem h timal @ Let x* be an optimal solution of the primal problem and v = ¢"x*
e primal problem has an optimal solution x*, then the dual problem has an optimal . T T . .
solution y* and ¢'x* = bly*. Q ¢>0iffu,z>0and A'u> zcand b'u < z(v + ¢) is feasible

@ For e > 0, there exists u’, 2/ > 0 with A"u’ > Z’cand b'u' < Z/(v +€)
Proof of duality using Farkas lemma @ Fore=0itholds thatu’,z > 0and A"’ > Z'cso b'u’ > z'y
H / T, ./ / 7 P ’
@ Let x* be an optimal solution of the primal problem and v = ¢"x* g Since 271 Slb U’ < Z'(y+e€)and 2’ > 0 it follows that 2* > 0
Letv = Zu

Q ¢>0iff Ax <bandx >0and c'x > v + ¢ is infeasible

Q ¢>0iff (4)x < (_2 ) and x > 0is infeasible @ Since A'v > cand v > 0, the dual solution v is feasible

i - %‘:T Ay s T T, b e © Since the dual is feasible and bounded, there exists an optimal dual solution y*
Q c>0iffu,z>0and (3) () 20" and () (_,.) <O0is feasible © Hence, b"y* < v+ cforevery e > 0,and so b'y* <~

: @ ! '
Q c>0iffu,z>0and A'u > zcand b'u < z(y + c) is feasible @ From the weak duality theorem it follows that b"y* = ¢"x*
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Outline Integer linear programming

||

Integer linear programming

Integer linear programming problem is an optimization problem to find x € Z" which
maximizes ¢"x and satisfies Ax < b where A€ R™ " and b € R™.

Mix integer linear programming
Some variables are integer and others are real.
Relaxed problem and solution

@ Given a (mix) integer linear programming problem, the corresponding relaxed
problem is the linear programming problem where all integral constraints x; € Z
are relaxed; that is, replaced by x; € R.

@ Relaxed solution is a feasible solution of the relaxed problem.
@ Optimal relaxed solution is the optimal feasible solution of the relaxed problem.

e Integer linear programming

Observation

Let x* be an integral optimal solution and x" be a relaxed optimal solution. Then,
c'™x" > c'x*.
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Branch and bound

Rational and integral polyhedrons

Branch

Consider a mix integer linear programming problem
max {x € R"; Ax < b, x; € Z, i € I} where | is a set of integral variables.

Definition: Rational polyhedro

A polyhedron is called rational if it is defined by a rational linear system, that is
AcQ™""andb e Q™.

@ Let x" be the optimal relaxed solution.

o If xj € Zforalli € I, then x" is an optimal solution.
@ Otherwise, choose j € / such that x| ¢ Z and Every vertex of a rational polyhedron is rational.

@ recursively solve two subproblems
° max {x ERM AX < b, x; < MJ X €T i€ ,} el Definition: Integral polyhedron
® max {x ER"; AX < b, x; > ("ﬂ X €L, i€ /}_ A r_attional polyhedron is called integral if every non-empty face contains an integral

point.

@ The optimal solution of the original problem is the better one of subproblems.

Bound

Let P be a rational polyhedron which has a vertex. Then, P is integral if and only if
every vertex of P is integral.

Let x" be an integral feasible solution and x” be an optimal relaxed solution of a
subproblem. If ¢"x’ > ¢"x", then the subproblem does not contain better integral
feasible solution than x’.

. . A rational polytope P is integral if and only if for all integral vector ¢ the optimal value of
If the polyhedron {x € R"; Ax < b} is bounded, then the Brand and bound algorithm max {c"x; x € P} is an integer.

Observation

finds an optimal solution of the mix integer linear programming problem.
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Gomory-Chvatal cutting plane: Example

Interger linear programming problem

~
a

Rational and integral polyhedrons

Maximize X2
subject to 2x1 + 3xp < 27
2x1 — 2xo < 7
A rational polytope P is integral if and only if for all integral vector ¢ the optimal value of —2x; — 6xp < -1
max {¢"x; x € P} is an integer. —6x; + 8xp < 21
X1,X2 € Z

Relaxed problem

Optimal relaxed solution is (g,e)T.

= Every vertex of P is integral, so optimal values are integrals. Cutting plane 1

< Let v be a vertex of P. We prove that v is an integer. The last inequality 83X, + 4x» 21

@ Let c be an integer vector such that v is the only optimal solution. p P -~ 2
@ Since we can scale the vector ¢, we assume that ¢"v > ¢"u + uy — v for all others Every feasible x € Z* satisfies 31+ 4xe 10

vertices u of P. -
Q Letd=c+ey. Cutting plane 2

IAIA

© Observe that v is an optimal of solution of max {de; Xe P}. Cutting plane 1 —6x; + 8x, < 20
@ Hence, vi = d'v — c"v s an integer. The first inequality 6x1 + 9 < 81
Sum 17x, < 101
Every feasible x € 72 satisfies X2 < 5

Gomory-Chvatal cutting plane proof Gomory-Chvatal cutting plane: Theorems

System of inequalities
Consider a system P = {x; Ax < b} with n variables and m inequalities. Theorem: Existence of a cutting plane proof for every valid inequality

Let P = {x; Ax < b} be a rational polytope and let w"x < t be an inequality with w"

Lr;tTirgSalt/seflrt;srfr:egx b)é a;l ]!cr;rtesgorglevtte/ctgorts. in P. Then there exists a cutting plane proof of
@ Consider a non-negative linear combination of inequalities y € R™
o Letc=y'Aandd =y"b
@ Every point x € P satifies ¢"x < d Theorem: Cutting plane proof for 0"x < —1 in polytopes without integral point
@ Furthermore, if ¢ is integral, every integral point x satisfies ¢'x < |d| Let P = {x; Ax < b} be a rational polytope that contains no integral point. Then there
@ The inequality ¢"x < |d] is called a Gomory-Chvatal cutting plane exists a cutting plane proof of 0"x < —1 from Ax < b.
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AN Gl i AL o [ros)

A cutting plane proof of an inequality w'x < t is a sequence of inequalities ) . .
utting p P inequally =l au inequalt Let F be a face of a rational polytope P. If ¢"x < |d| is a cutting plane for F, then there

al . X < bn.x where k =1,..., M such that : °
A N o ) ) ) exists a cutting plane ¢/"x < d’ such that
o foreach k = 1,..., M the inequality a,,, ,x < bmx is a cutting plane derived from
the system a/x < bifori=1,...,m+k —1and Fn {x; x < [d/J} —Fn {x; o'x < Ldj}»
o w'x < tis the last inequality ap,. X < bmim-

Gomory-Chvatal cutting plane: Proof of the lemma Gomory-Chvatal cutting plane: Proof of the Theorem

Let F be a face of a rational polytope P. If ¢"x < |d| is a cutting plane for F, then there
exists a cutting plane ¢’"x < d’ such that Let P = {x; Ax < b} be a rational polytope that contains no integral point. Then there
exists a cutting plane proof of 0"x < —1 from Ax < b.

Theorem: Cutting plane proof for 0"x < —1 in polytopes wit

Fﬂ{x; c¢"x < [d’J}:Fﬂ{x; c'x < LdJ}.

Induction by dim(P). Trivial for dim(P) = 0. Assume dim(P) > 1.
@ Let w'x < /induces a proper face of Pand P = {x € P; w'x < |/|}

@ We derive 0"x < —1 from Ax < b, w'x < |/| by the following two cases
o If P = (), we use Farkas’ lemma

Q LetP={x; Ax<b ,A’x<b"}and F = {x; Ax <b',A’x =b"} where A”
and b” are integral
Q Assume d = max {¢'x; x € F}

© By Farkas’ lemma, there exists vectors y’ > 0 and y” such that o P let F={xe P wix= [/}
ITA/ + /ITAI/ — cT and !Tb/ + I/Tb// — d . . i i X
y y . y y . @ Since dim(F) < dim(P), there exists a cutting plane proof of 07x < —1 from Ax < b,
° cI —c— 11 A/I = ITAI + " 11 A/I wa — UJ
d =d-— LyLy”JJTb” :{1""[3’ 4 Ei” — g”i ;Tb” o By lemma, there exists a cutting plane proof of ¢"x < | d] such that
. i . L . Pn{x;c'x < [d] ,wix=l]} =0
@ Since y’ and (y” — ly”] )T are non-negative, ¢’"x < o’ is a valid inequality for P @ Applying these sequence of cuts to P, we obtain w'x < /| — 1
Q Hence, FN{x; ¢™x < [d'|}=Fn{x; ¢"™x<|d],[y""|A’x=|y""|b"} = © Repeatthesestepson P = {x € P; w'x < |/] — 1}
Fn {X' c'x < LdJ} - - @ The number of repetitions is finite since P is bounded
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Gomory-Chvatal cutting plane: Proof of the Theorem

Theorem: Existence of a cutting plane proof for every valid inequality

Let P = {x; Ax < b} be a rational polytope and let w'x < t be an inequality with w"
integral satisfied by all integral vectors in P. Then there exists a cutting plane proof of
wx < t' from Ax < b for some t' < t.

Let/=max {w'x; xe P} and P= {x € P; w'x < |/]}

@ If P contains no integer point, then there exists a cutting plane proof of 0"x < —1
and w'x < t’ for some t' < t
@ If P contains an integral point, then:
Q< we are finished, so we suppose not
Q F={xeP:w'x=|l]}isafaceof P
@ Since F has no integral point, we derive 0"x < —1 from Ax < b, wTx = [/1j
Q By lemma, there exists a cutting plane proof of ¢'x < [d| from Ax < b, wTx < |/|
such that PN {x; ¢'x < |d| ,wix = [/]} =0
© We apply this sequence of cuts to P to obtain cutting plane w'x < |/] — 1
@ Now, we continue until we derive w'x < t’ for some t' < t
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Unimodular matrix

Definition

A full row rank matrix A is unimodular if A is integral and each basis of A has
determinant £1.

Let A € R™" be an integral full row rank matrix. Then, the polyhedron
P = {x; Ax = b,x > 0} is integral for every integral vector b if and only if A is
unimodular.

Proof
~=

Let b be an integral vector and let x” be a vertex of P

Columns of A corresponding to non-zero components of x” are linearly independent
and we extend these columns into a basis Ag

e Hence, x; = AE'b is integral and x), = 0

We prove that AE‘ v is integral for every base B and integral vector v

Let y be integral vector such that y + AE‘ v>0

Letb = Ag(y + Ag'v) = Agy + v which is integral

Letzg=y+B 'vandzy =0

From Az = Ag(y + B~'v) = band z > 0, it follows that z € P and z is a vertex of P
Hence, Ag"'v = zg — y is integral
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Totally unimodular matrix

®
&

Theorem: Hoffman-Kruskal

Let A€ Z™" and P = {x; Ax < b,x > 0}. The polyhedron P is integral for every
integral b if and only if A is totally unimodular.

Proof
Adding slack variables, we observe that the following statements are equivalent.
@ {x; Ax < b,x >0} is integral for every integral b
Q {x; (Al)z =b,z > 0} is integral for every integral b
@ (A|/)is unimodular
@ Aiis totally unimodular

Theorem

Let A be an totally unimodular matrix and let b be an integral vector. Then, The
polyhedron defined by Ax < b is integral.

Proof

o Let F={x; Ax <b',A’x =b"} be a minimal face where A” has full row rank
@ Let B be a basis of A”
@ Then, xg = A~ 'b” and xy = 0 is an integral point in F
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Network flow

Definition: Network flow

Let G = (V, E) be an oriented graph with non-negative capacities of edges ¢ € RE. A
network flow in G is a vector f € RE such that

Conservation: Y-, c¢ fw = 2., cg f for every vertex v e V

Capacity: 0<f<c
The network flow problem is the optimization problem of finding a flow f in G that
maximize fis on a given edge ts € E.

The polytope of network flow is integral for every integral c.

@ Let A be the incidence matrix of G
@ Aiis totally unimodular
© (A|— A) and (A| — A|/) are totally unimodular

A 0
o {f; (A) f< (0) > 0} is an integral polytope
! c
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Total unimodularity

@ How to recognise whether a polytope P = {x; Ax < b} is integral?
@ When P is integral for every integral vector b?

Proposition

Let A € R™™ be an integral and regular matrix. Then, A~'b is integral for every
integral vector b € R if and only if det(A) € {1,—1}.

<« By Cramer’s rule, A~ is integral, so A~"b is integral for every integral b
= o A[l =A'gisintegralforeveryi=1,...,m
e Since Aand A~ are integral, also det(A) and det(A~") are both integers
o From 1 = det(A) - det(A~") it follows that det(A) = det(A~") € {1,—1}

Jirka Fink Optimization methods 84

Totally unimodular matrix

Definition

A matrix is totally unimodular if all of its square submatrices have determinant 0, 1 or
—1.

Prove that every element of a totally unimodular matrix is 0, 1 or —1.
Find a matrix A € {0, 1, —1}™" which is not totally unimodular.

Prove that A is totally unimodular if and only if (A|/) is unimodular.
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Totally unimodular matrix: Application

Let A be a matrix of 0, 1 and —1 where every column has at most one +1 and at most
one —1. Then, A'is totally unimodular.

By the induction on k prove that every k x k submatrix N has determinant 0, +1 or —1
k =1 Trivial
k>1 e If N has a column with at most one non-zero element, then we
expand this column and use induction
@ If N has exactly one +1 and —1 in every column, then the sum of
all rows is 0, so N is singular

The incidence matrix of an oriented graph is totally unimodular.

Observation: Other totally unimodular ) matrices
AisTU iff ATisTU iff (Al)isTU iff (AA)isTU iff (Al—A)isTU
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Duality of the network flow problem

Primal: Network flow

Maximize f;s subjectto Af =0, f < cand f > 0.

Primal dual

Minimize ¢z subject to A"y +z > e, thatis —y, +y, + zu > 0 for uv # ts and
—¥;+ ¥, > 1assuming f(ts) is unbounded.

Observation
Dual problem has an integral optimal solution.

The dual problem is the minimal cut problem where Z = {uv € E; z,, = 1} are cut
edges and U = {u € V; y, > y,} is partition of vertices.
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e Matching
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Tutte-Berge Formula

Definition

Augmenting paths

Let M C E a matching of a graph G = (V, E).
@ Avertex v € V is M-covered if some edge of M is incident with v.
@ Avertex v € V is M-exposed if v is not M-coveder.
@ A path P is M-alternating if its edges are alternately in and not in M.
@ An M-alternating path is M-augmenting if both end-vertices are M-exposed.

Augmenting path theorem of matchings

A matching M in a graph G = (V, E) is maximum if and only if there is no
M-augmenting path.

= Every M-augmenting path increases the size of M
<« Let N be a matching such that [N| > |M| and we find an M-augmenting path

@ The graph (V, N U M) contains a component K which has more N edges than M edges
@ K has at least two vertices u and v which are N-covered and M-exposed

@ Verteces u and v are joined by a path P in K

Q Observe that P is M-augmenting

Jirka Fink Optimization methods 92

Alternating tree

Let def(G) be the number of exposed edges by a maximal-size matching in G = (V, E).

Definition
Let oc(G) be the number of odd components of a graph G.

Observation
For every A C V it holds that def(G) > oc(G\ A) — |A|.

Theorem: Tutte-Berge Formula
def(G) = min{oc(G\ A) — |Al; AC V}

Follows from the previous observation.
An algorithm presented later.

IN IV

Tutte’s matching theorem
A graph G has a perfect matching if and only if oc(G \ A) < |A| for every AC V.

Jirka Fink Optimization methods 93

Use uv € Etoextend T

Input: A matching M of a graph G, an M-alternating tree T, edge uv € E such
thatu e Band v ¢ AU Band v is M-covered

Action: Let vz € M and extend T by edges uv and vz

Use uv € E to augment M

Input: A matching M of a graph G, an M-alternating tree T with root r, edge
uv e Esuchthatu e Band v ¢ AU B and v is M-exposed
Action: Let P be the path obtained by attaching uv to the path from rto vin T.
Replace M by MAE(P).
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Perfect matchings in bipartite graphs

Minimal-weight perfect matching

Let G be a graph with weights ¢ > 0 on edges. The minimal-weight perfect matching
problem is minimizing ¢x subject to Ax =1 and x € {0, 1 }E where A is the incidence
matrix.

Observation
The incidence matrix A of a bipartite graph G is totally unimodular.

By the induction on k prove that every k x k submatrix N has determinant 0, +1 or —1
k =1 Trivial

k >1 o If N has a column or a row with at most one non-zero element,
then we expand this column and use induction
@ Otherwise, the subgraph of edges corresponing to rows of N
contains a cycle and rows corresponing to edges of a cycle are
linearly dependent.

If Ais an incidence matrix of a bipartite graph, then {x; Ax =1, x > 0} is integral.
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Construction of an M-alternating tree T on vertices AUB
Init: A= 0 and B = {r} where r is an M-exposed root

Step: Letuv € Esuchthatue B,v¢ AUBand vz € Mforsome z € V
Add vio Aand zto B

Properties

@ ris the only M-exposed vertex of T
@ Forevery v of T, the path in T from v to r is M-alternating

Definition

M-alternation path T is frustrated if every edge of G having one ege in B has the other
endin A

Observation

If G has a matching M and a frustrated M-alternating tree, then G has no perfect
matching.

B are single vertex components of G\ A, so oc(G\ A) > |B| > |A|
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Perfect matchings algorithm in a non-weighted bipartite graph

Algorithm

1 Init: M =0 and T = ({r},0) where r is an arbitrary vertex
2 while there exists uv € E withu € B(T) andv ¢ V(T) do
if v is M-exposed then
Use uv to augment M
if there is no M-exposed node in G then
| return M
else
| Replace T by ({r},) where r is an M-exposed vertex

® N O s W

9 else
10 | Useuvtoextend T

11 return G has no perfect matching since T is a frustrated M-alternating path

The algorithm decides whether a given bipartite graph G has a perfect matching and
find one if exists. The algorithm calls O(n) augmenting operations and O(n?) extending
operations.
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Duality and complementary slackness of perfect matchings

Primal: relaxed perfect matching

Minimize ¢"x subject to Ax =1 and x > 0.

Maximize 1y subject to ATy < cand y € RE, thatis y, + ¥, < Cuv-

Idea of primal-dual algorithms

If we find a primal and a dual feasible solutions satisfying the complementary
slackness, then solutions are optimal (relaxed) solutions.

Definition
@ Anedge uv € E is called tightify, +y, = Cu.
@ Let E, be the set of a tight edges of the dual solution y.

o Let My = {uv € E; xu, = 1} be the set of matching edge of the primal solution x.

Complementary slackness
Xuw =0o0ry,+y,=cu forevery edge uv € E, thatis My C E,
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Weighted perfect matchings in a bipartite graph: Overview

Complementary slackness

Xy =0o0ry,+y, = cu forevery edge uv € E, thatis Mx C E,

@ Dual solution is feasible, thatis y, +y, < cuw
@ Every matching edge is tight
@ x € {0,1}F and My = {uv € E; xu = 1} form a matching

Initial solution satisfying invariants

x=0andy =0

Lemma: optimality
If My is a perfect matching, then My is a perfect matching with the minimal weight.

Idea of the algorithm
@ If there exists an Mx-augmenting path P in (V, E,), then MyAP is a new matching.
@ Otherwise, update the dual solution y to enlarge Ej.

Jirka Fink Optimization methods

Shrinking odd circuits

°
8

Definition
Let C be an odd circuit in G. The graph G x C has vertices (V(G) \ V(C)) U {c¢'}
where ¢’ is a new vertex and edges
@ E(G) with both end-vertices in V(G) \ V(C) and
@ and uc’ for every edge uv with u ¢ V(C) and v € V(C).
Edges E(C) are removed.

Proposition

Let C be an odd circuit of G and M’ be a matching G x C. Then, there exists a
matching M of G such that M C M’ U E(C) and the number of M’-exposed nodes of G
is the same as the number of M’-exposed nodes in G x C.

def(G) < def(G x C)

Find a graph G with odd circuit C such that def(G) < def(G x C).
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Perfect matchings algorithm in a non-weighted graph

Algorithm

1 Initt M =M=0,G =Gand T = ({r}, ) where r is an arbitrary vertex
2 while there exists uv € E' withu € B and v ¢ A do
if v ¢ T is M'-exposed then
Use uv to augment M’
Extend M’ to a matching G
Replace M’ by M and G’ by G
if there is no M’ -exposed node in G’ then
| return Perfect matching M
else
L Replace T by ({r},0) where r is an M’-exposed vertex

© ® N O o & oW

o

elseif v ¢ T is M'-covered then
Use uv to extend T
else if v € B then
\ Use uv to shrink and update M’ and T

s return G has no perfect matching since T is a frustrated M-alternating path

® o o

>
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Minimum-Weight perfect matchings in general graphs: Duality

||

Primal

Minimize cx

subjectto ¢‘x = 1 forallueV
®x > 1 foralDecC
x > 0

Dual

Maximize Yovev Yy + X pec 2o
subjectto y,+¥, + > cpec 2D c, foralluveE
z

<
> 0

Notation: Reduced cost

Cuw :=Cuw—Y, e e 2 wepec 2D
An edge e is tight if ce = 0

Complementary slackness
@ Xe > 0 implies eis tight for all e € E
@ zp > 0implies 6°x =1 forall D e C
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Minimal weight perfect matchings algorithm in a bipartite graph

Algorithm

1 Initt y =0and M =0 and T = ({r},0) where r is an arbitrary vertex
2 Loop
3 Find a perfect matching M in (V, Ey) or flustrated M-alternating tree
if M is a perfect matching of G then
| return Perfect matching M
e=min{cw—Yy,—Y,,uveEueB(T),v¢T}
if ¢ = co then
L return Dual problem is unbounded, so there is no perfect matching

9 | y,i=y,teforallueB
0 | y, =y, —cforallve A

o o &

® ~

The algorithm decides whether a given bipartite graph G has a perfect matching and a
minimal-weight perfect matching if exists. The algorithm calls O(n) augmenting
operations and O(n?) extending operations and O(n?) dual changes.
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Perfect matching in general graphs

Use uv to shrink and update M’ and T

Input: A matching M’ of a graph G', an M’-alternating tree T, edge uv € E’
such thatu,v € B
Action: Let C be the circuit formed by uv together with the path in T from uto v.
Replace G' by G’ x C, M’ by M’ \ E(C) and T by the tree having
edge-set E(T) \ E(C).

Observation

Let G’ be a graph obtained from G by a sequence of odd-circuit shrinkings. Let M’ be
matching of G’ and let T be an M’ alternating tree of G’ such that all vertices of A are
original vertices of G. If T is frustrated, then G has no perfect matching.
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Minimum-Weight perfect matchings in general graphs

Let M be a perfect matching of G and D be an odd set of vertices of G. Then there
exists at least one edge uv € M between D and V' \ D.

Linear programming for Minimum-Weight perfect matchings in general graphs

Minimize cx
subjectto  §“x 1 forallueV
5Px 1 forallDec

X 0

Where 6° € {0, 1}F is a vector such that 65, = 1 if [uv N D| = 1 and 6" = 6{*} and C is
the set of all odd-size subsets of V.

Find a cutting plane proof of all odd-subset conditions.

VIV Il

Let G be a graph and ¢ € RE. Then G has a perfect matching if and only if the LP
problem is feasible. Moreover, if G has a perfect matching, the minimum weight of a
perfect matching is equal to the optimal value of the LP problem.
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Minimum-Weight perfect matchings in general graphs: Change of y

Updates weights and dual solution when shrinking a circuit C

Replace ¢;, by ¢, — y, forue Cand v ¢ C and set y;, = 0 for the new vertex c'.
Note that the reduced cost is unchanged.

Expand ¢’ into circuit C

e Setzp =y,
@ Replace ¢;, by ¢, +y, forue Candv ¢ C
@ Update M’ and T

Change of y and z on a frustrated tree

Input: A graph G’ with weights ¢’, a feasible dual solution y’, a matching M’ of
tight edges of G’ and an M'-alternating tree T of tight edges of G'.

Action: @ ¢ = min {¢'; ejoins a vertex in B and a vertex notin T}

® & = min{C:'/2; ejoins two vertices of B}

@ 3 =min{y,; v € Aand v is a pseudonode of G}
@ ¢ = min{e1, €2, €3}
o
o

Replace y, by y, + eforallv e B
Replace y, by y, —eforallv e A
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Minimal weight perfect matchings algorithm in a general graph

Algorithm

1 Initt M =M =0, G = Gand T = ({r},0) where r is an arbitrary vertex
2 Loop
if there exists uv € Ey, u € B, v ¢ E(T), v is M'-exposed then
Use uv to augment M’
if there is no M’ -exposed node then
\ return extended M’ to a perfect matching G
else
L Replace T by ({r},0) where r is an M’-exposed vertex

® N O O s W

©

else if there exists uv € Ey, u € B, v ¢ E(T), v is M’-covered then
Use uv to extend T’
else if there exists uv € Ey, u,v € B then
Use uv to shrink and update M, T', ¢/
else if there exists a pseudonode v € A withy, = 0 then
| Expand v and update M’, T, and ¢’

2o 0 = o

15 else
16 Change y
17 if e = co then

)

L return G has no perfect matching

Jirka Fink Optimization methods 0

| | ‘
g

Outline

@ cEliipsoid method
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Ellipsoid method

Consider an ellipsoid E containing Z. In every step, reduce the volume of E using an
hyperplane provided by the oracle.

Algorithm

1 Init: s=0, E = B(s,R)
2 Loop
3 if volume of E is smaller than volume of B(0, €) then
4 | return Z is empty
Call the oracle
if s € Z then
| return s is a point of Z

Update s and Z using the separation hyperplane fount by oracle

N o o

®
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Ellipsoid method: update of the ellipsoid

Separation hyperplane

Consider a hyperplane a"x = b such that a's > band Z C {x; a'x < b}.
For simplicity, assume that the hyperplane contains s, that is a's = b.

Update formulas (without proof)

g_g__1 _Qa
"7 n+1yaQa

q- ® 2 Qaa'Q
-1 n+1 a'Qa

Reduce of the volume (without proof)

!
volume(E") e e

volume(E)

The number of steps of the Ellipsoid method is at most [n(2n + 2)In £7.
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Maximum-weight (general) matching

Reduction to perfect matching problem
Let G be a graph with non-negative weights c.

@ Let G; and G; be two copies of G
Let P be a perfect matching between Gy and G joining copied vertices
Let G* be a graph of vertices V(Gi) U V(Gz) and edges E(Gi) U E(Gz) U P
For e € E(G1) U E(Gz) let ¢*(e) be the weight of the original edge e on G
Forec Pletc*(e) =0

Theorem

The maximal weight of a perfect matching in G* equals twice the maximal weight of a
matching in G.

For maximal-size matching, use weights ¢ = 1.

Tutte’s matching theorem
A graph G has a perfect matching if and only if oc(G \ A) < |A| forevery AC V.
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Ellipsoid method: Preliminaries

Problem

Determine whether a given fully-dimensional convex compact set Z C R” (e.g. a
polytope) is non-empty and find a point in Z if exists.

Separation oracle

Separation oracle determines whether a point s belongs into Z. If s ¢ Z, the oracle
finds a hyperplane that separates s and Z.

@ Radius R > 0 of a ball B(0, R) containing Z
@ Radius ¢ > 0 such that Z contains B(s, ¢) for some point s if Z is non-empty
@ Separation oracle
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Ellipsoid

Definition: Ball
The ball in the centre s € R” and radius R > 0is B(s, R) = {x e R"; ||x — s|| < R}.

Ellipsoid E is an affine transformation of the unit ball B(0, 1). That is,
E ={Mx +s; x € B(0,1)} where M is a regular matrix and s is the centre of E.

E = {yer: M'(y-s)eB01)}
= {yert s MMy -9 <1}
= {.V eR” (y-s)'Q'(y—s) < 1}

where Q = MM" is a positive definite matrix
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Ellipsoid method: Estimation of radii for rational polytopes

Largest coefficient of A and b
Let L be the maximal absolute value of all coefficients of A and b.

Estimation of R

We find R’ such that ||x||- < R’ for all x satisfying Ax < b:

@ Consider a vertex of the polytope satisfying a subsystem A'x = b’

) . _ detA!
@ Cramer's rule: X; = grar

® |det(A})| < n!L" using the definition of determinant
@ |det(A’)| > 1 since A’ is integral and regular
From the choice R’ = n!L", it follows that log(R) = O(n? log(n) log(L))

Estimation of ¢ (without proof)

A non-empty rational fully-dimensional polytope contains a ball with radius e where
log X = O(poly(n, m,log L)).

Complexity of Ellipsoid method

Time complexity of Ellipsoid method is polynomial in the length of binary encoding of A
and b.
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Ellipsoid method is not strongly polynomial (without proof)

For every M there exists a linear program with 2 variables and 2 constrains such that
the ellipsoid method executes at least M mathematical operations.

Open problem

Decide whether there exist an algorithm for linear programming which is polynomial in

the number of variables and constrains. e Vertex Cover
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Minimum vertex cover problem Approximation algorithm for vertex cover problem

A vertex cover in a graph G = (V, E) is a set of vertices S such that every edge of E ;
has at least one end vertex in S. Finding a minimal-size vertex cover is the minimum o LetSp={veV;x;>}}

vertex cover problem.

@ Let x* the optimal relaxed solution

Observation

Integer linear programming formulation Sip is a vertex cover.

Minimize 37 .\ Xv
subjectto x,+x,>1 foralluve E Observation
x, € {0,1} forallveV

Let Sopr be the minimal vertex cover. Then “SS;:T“ <2.

Relaxed problem

Minimize  >,c, Xv @ Since x* is the optimal relaxed solution, 3=, ., Xy < [Sopr|
subjectto  xu+x,>1 foralluve E o From the rounding rule, it follows that |S;p| < 237, X5
0<x,<1 forallveV o Hence, [Sip| <25,y X < 2|Sopr|
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Maximum independent set problem Maximum independent set problem

poaxed solution
An independent set in a graph G = (V, E) is a set of vertices S such that every edge of The relaxed solution x, = § for all v € V is feasible, so the optimal relaxed solution is
E has at most one end vertex in S. Finding a maximal-size independent is the maximal at least 3.

independent problem.

Optimal integer solution

Integer linear programming formulation The maximal independent set of a complete graph K is a single vertex.

Minimize Y7 ., Xv
subjectto x,+x, <1 foralluve E
x, € {0,1} forallveV

In general, an optimal integer solution can be far from an optimal relaxed solution and
cannot be obtained by a simple rounding.

Relaxed problem

Minimize Y7 ., Xv Inapproximability of the minimmum independent set problem

subjectto x,+x, <1 foralluveE Unless P = NP, for every C there is no polynomial-time approximation algorithm for
0<x, <1 forallveV the maximum independent set with the approximation error at most C.
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A subtree (V, J) of a connected graph (V, E) is called a spanning tree.
Maximum-weight spanning tree is a problem to find the spanning of maximum weight.

Greedy algorithm for finding a non-weighted spanning tree

1 Init: J =0

2 while there exists an edge e ¢ J such that J U {e} is a forest do
3 Choose an arbitrary such e

4 Replace J by JU {e}

Greedy algorithm for finding a maximal-weight spanning tree

1 Init: J =0

2 while there exists an edge e ¢ J such that J U {e} is a forest do
© Watroid 3 | Choose such e with maximum weight

4 Replace J by JU {e}
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General greedy algorithm

Family of subsets
Consider a finite set S with weights ¢ : S — R and a family of subsets Z C 2° called
independent. Our problem is to find A € 7

@ with maximum cardinality or

@ with maximum weight.

hen the following algorithm finds the maximal subset?

3
o4
(.

=

2 while there exists an element e € S\ J such that J U {e} € 7 do
3 Choose such e (with maximum weight)
4 Replace J by JU {e}

Examples

v Spanning tree
x Matching
% Independent set of vertices

N
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Matroid and Greedy algorithm

||

Theorem

Let (S, Z) satisfies (M0) and (M1). Then the Greedy algorithm finds an optimal
independent set of every ¢ € RS if and only if (S, Z) is a matroid.

| \

Proof

1

For contradiction, consider J C A C S such that J € Z is inclusion-maximal subset of A
which is not cardinality-maximal

Let c be a characteristic vector of A

The Greedy algorithm may find J although it is not the maximal-weight independent set
Let J = {ey,..., em} be fount by the Greedy algorithm

Let J = {qi,...,q} be an optimal solution

Let k be the least index with c(qx) > c(ex)

Let A={es,....€ 1,q1,---,0k

{e1,...,ex—1} CJand {qgy,...,qx} C J are independent by (M1)

{e1,...,ex—1,q;} is dependent for every g; € {qs,...,qk} \ {€1,. .., €1} since the
Greedy algorithm does not choose g; in the k-th step

Sets A, {ey,...,e_1}and {q1,..., gk} contradict (M2)
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Equivalent definitions of a matroid

A set system (S, Z) is a matroid if and only if

(100 0eT

(1) S CJeZ, thend €T

(I2) For every A, B € Z with |A| > |B] there exists e € A\ B such that BU {e} € T

Definition
A circuit of a set system (M, Z) is a minimal dependent set.

Observation
Let (S,Z) be a matroid, let J € Z and e € S. Then J U {e} contains at most one circuit.

A set C of subsets of S is the set of circuits of a matroid if and only if

(Co) 0¢C

(C1) If Cy,Cz € Cand Cy C Gy, then Cy = G,

(C2) If C1,Cs € C, Cy # Crand e € Cy N Cy, then there exists C' € C,
CC(CiuC)\{e}
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Matroid

Definition
A pair (S, Z) where S'is a finite set and Z C 27 is called a matroid if

(M0) 0 eT

M1) fJ'CJeZ thend €T

(M2) For every A C S, every maximal independent subset of A has the same cardinality
The cardinality of maximal independent subset of A is callled rank r(A).

Examples
@ Forest matroid: S are edges of a graph and every forest is independent

@ Linear matroid: S are vectors of a linear space and Z contains linearly
independent vectors
@ Uniform matroid: Z = {J C S; |J| < k} for some k

Theorem
Let (S, Z) satisfies (M0) and (M1). Then the Greedy algorithm finds an optimal
independent set of every ¢ € R® if and only if (S, Z) is a matroid.
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Complexity of the Greedy algorithm
Enumerating whole Z is inefficient, e.g. providing all forests in the input.

The input contains S and ¢ and an oracula which decides whether a given A C S'is
independent.

Complexity is determined in the size of S and the number of calls of oracula.
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