Deadline for homeworks: 3.3.2016 at 9:00.

Problems 1-8 formulate using (Integer) Linear Programming both in the canonical and the equation forms.

Problem 1. A bakery produces four things: bread, bagels, baguettes and donuts. To bake a single bread, they need 500 g of flour, 10 eggs and 50 grams of salt. To bake a bagel, they need 150 grams of flour, 2 eggs and 10 g of salt. For a baguette, they need 230 g of flour, 7 eggs and 15 g of salt. For a donut, they need 100 g of flour and 1 egg . The bakery has a daily supply of 5 kg of flour, 125 eggs, and 500 g of salt.

The bakery charges 20 CZK for one bread, 2 CZK for a bagel, 10 CZK for a baguette and 7 CZK for a donut. The bakery tries to maximize its profit. Formulate a linear program that suggests the right amount of bread, bagels, baguettes and donuts that the bakery should produce. (You don't have to solve it!)

Problem 2 (Independent set). A set of vertices S of a graph (V, E) is called independent if no two vertices of S are joined by an edge. Formulate the problem of finding the maximal independent set using Integer Linear Programming.

Problem 3 (Matching). A set of edges M of a graph (V, E) is called matching if every vertex is covered by at most one edge of M. A matching is perfect if every vertex is covered by exactly one edge of M. Using Integer Linear Programming formulate the following two problems.

1. Find the minimal-weight perfect matching.
2. Find the maximal-weight matching.

A weight of matching M is the sum of weights $w(e)$ over all edge $e \in M$.
Problem 4 (Connectivity). Formulate using Linear Programming the decision problem whether a graph is connected.

Problem 5 (Knapsack). Given a set of items, each with a weight and a value, determine the number of each item to include in a collection so that the total weight is less than or equal to a given limit and the total value is as large as possible. Formulate this problem using Integer Linear Programming.

Problem 6 (3-partition). The problem is to decide whether a given multiset of integers can be partitioned into triples that all have the same sum. Formulate this problem using Integer Linear Programming.

Problem 7 (Homework A, 1 point). Write the following problems both in the canonical and the equation forms.

$$
\begin{array}{ll}
\text { Maximize } & 2 \boldsymbol{x}_{1}-3 \boldsymbol{x}_{2} \\
\text { subject to } & 4 \boldsymbol{x}_{1}-5 \boldsymbol{x}_{2} \leq 6 \\
& 7 \boldsymbol{x}_{1}+8 \boldsymbol{x}_{2}=8 \\
& \boldsymbol{x}_{1} \geq 0
\end{array}
$$

$$
\begin{array}{lll}
\text { subject to } & 4 \boldsymbol{x}_{1} & -5 \boldsymbol{x}_{2} \leq 6
\end{array} \quad \text { Maximize } \quad \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}
$$

$$
\begin{array}{ll}
\text { subject to } & A^{\prime} \boldsymbol{x} \geq \boldsymbol{b}^{\prime} \\
& A^{\prime \prime} \boldsymbol{x}=\boldsymbol{b}^{\prime \prime} \\
& \boldsymbol{x} \in \mathbb{R}^{n}, \boldsymbol{x} \geq 0 \\
\text { where } A^{\prime} \in \mathbb{R}^{m^{\prime} \times n}, A^{\prime \prime} \in \mathbb{R}^{m^{\prime \prime} \times n}, \\
\boldsymbol{b}^{\prime} \in \mathbb{R}^{m^{\prime}}, \boldsymbol{b}^{\prime \prime} \in \mathbb{R}^{m^{\prime \prime}}, \boldsymbol{c} \in \mathbb{R}^{n} .
\end{array}
$$

Problem 8. Using the graphical methods find the optimal solutions of two objective functions

- $\min \boldsymbol{x}_{1}+\boldsymbol{x}_{2}$
- max $\boldsymbol{x}_{1}+\boldsymbol{x}_{2}$
subject to the following contitions.

$$
\left(\begin{array}{cc}
1 & 3 \\
1 & 0 \\
3 & -1 \\
-2 & 1 \\
1 & 1
\end{array}\right)\binom{\boldsymbol{x}_{1}}{\boldsymbol{x}_{2}} \geq\left(\begin{array}{c}
14 \\
0 \\
0 \\
-7 \\
8
\end{array}\right)
$$

Problem 9. Prove that if $A \subseteq \mathbb{R}^{n}$ is an affine space, then $A-x$ is a linear space for for every $x \in A$. Furthermore, all spaces $A-x$ are the same for all $x \in A$.

Problem 10. Prove that an affine space $A \subseteq \mathbb{R}^{n}$ is linear if and only if A contains the origin 0 .
Problem 11 (Homework B, 1 point). Prove that a set $A \subseteq \mathbb{R}^{n}$ is affine if and only if for every pair of points of A the line defined by those two points is contained in A.

Problem 12. Prove that the set of all solutions of $A \boldsymbol{x}=\boldsymbol{b}$ is an affine space and every affine space is the set of all solutions of $A \boldsymbol{x}=\boldsymbol{b}$ for some A and \boldsymbol{b}, assuming $A \boldsymbol{x}=\boldsymbol{b}$ is consistent.

Problem 13. Prove that for vectors $\boldsymbol{v}_{0}, \ldots, \boldsymbol{v}_{k} \in \mathbb{R}^{n}$ the following statements are equivalent.

- Vectors $\boldsymbol{v}_{0}, \ldots, \boldsymbol{v}_{k}$ are affinely independent.
- Vectors $\boldsymbol{v}_{1}-\boldsymbol{v}_{0}, \ldots, \boldsymbol{v}_{k}-\boldsymbol{v}_{0}$ are linearly independent.
- The origin $\mathbf{0}$ is not a non-trivial combination $\sum \alpha_{i} \boldsymbol{v}_{i}$ such that $\sum \alpha_{i}=0$ and $\boldsymbol{\alpha} \neq \mathbf{0}$.

