Problem 1.

$$-x_{1}+2x_{2}+x_{3}+4x_{4} = 3$$

$$-2x_{1}+4x_{2}+x_{3}+7x_{4} = 5$$

$$x_{1}-2x_{2}+x_{3}-2x_{4} = -1$$

$$-x_{1}+2x_{2}+2x_{3}+5x_{4} = 4$$

Problem 2. Find all vertices of a polyhedron determined by the following conditions.

Problem 3 (Homework – 1 point). Find all vertices of a polyhedron determined by the following conditions.

$2x_1$	+	x_2	+	x_3	\leq	14
$2x_1$	+	$5x_2$	+	$5x_3$	\leq	30
		2	\geq	0		

Problem 4 (Homework – 1 point). The convex hull of points $(0, 1, 0, 1, 0), (0, 1, 0, \frac{10}{11}, \frac{10}{11}), (0, 0, 1, 1, 0), (0, 0, 1, \frac{10}{11}, \frac{10}{11})$ is a face *F* of a polyherdon *P* given by conditions

x_1	+	x_2	+	x_3	\leq	1
		x_4	+	$10x_{5}$	\leq	10
		$10x_{4}$	+	x_5	\leq	10
		x_1, x_2	$x_{3},$	x_4, x_5	\geq	0.

Find an objective function $c^T x$ such that the set of all optimal solution of the linear problem $\max \{c^T x; x \in P\}$ is exactly F. Prove that your objective function already gives the face F.

Problem 5. Prove that the system of linear equation Ax = b has a solution if and only if the system $y^{T}A = 0$ and $y^{T}b = -1$ has no solution.

Problem 6. Prove that the set of faces of a polyhedron and the inclusion form a partially ordered set.

Problem 7. Prove that every polyerd $P = \{ x \in \mathbb{R}^n; Ax \leq b, x \geq 0 \}$ has a vertex.

Problem 8. Prove that every proper (inclusion) maximal face is a facet.

Problem 9. Prove that every polytope has a vertex.

Problem 10. Prove that all proper (inclusion) minimal faces have the same dimension.

Problem 11. Every proper face is an intersection of facets.