Problem 1.

$$
\begin{aligned}
-x_{1}+2 x_{2}+x_{3}+4 x_{4}= & 3 \\
-2 x_{1}+4 x_{2}+x_{3}+7 x_{4}= & 5 \\
x_{1}-2 x_{2}+x_{3}-2 x_{4}= & -1 \\
-x_{1}+2 x_{2}+2 x_{3}+5 x_{4}= & 4
\end{aligned}
$$

Problem 2. Find all vertices of a polyhedron determined by the following conditions.

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & \leq 8 \\
x_{1} & \\
& x_{2}+x_{3}
\end{aligned} \leq 4
$$

Problem 3 (Homework - 1 point). Find all vertices of a polyhedron determined by the following conditions.

$$
\begin{aligned}
2 x_{1}+x_{2}+x_{3} & \leq 14 \\
2 x_{1}+5 x_{2}+5 x_{3} & \leq 30 \\
x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned}
$$

Problem 4 (Homework - 1 point). The convex hull of points $(0,1,0,1,0),\left(0,1,0, \frac{10}{11}, \frac{10}{11}\right),(0,0,1,1,0)$, $\left(0,0,1, \frac{10}{11}, \frac{10}{11}\right)$ is a face F of a polyherdon P given by conditions

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & \leq 1 \\
x_{4}+10 x_{5} & \leq 10 \\
10 x_{4}+x_{5} & \leq 10 \\
x_{1}, x_{2}, x_{3}, x_{4}, x_{5} & \geq 0 .
\end{aligned}
$$

Find an objective function $c^{T} x$ such that the set of all optimal solution of the linear problem max $\left\{c^{T} x ; x \in P\right\}$ is exactly F. Prove that your objective function already gives the face F.

Problem 5. Prove that the system of linear equation $A \boldsymbol{x}=\boldsymbol{b}$ has a solution if and only if the system $\boldsymbol{y}^{\mathrm{T}} A=0$ and $\boldsymbol{y}^{\mathrm{T}} b=-1$ has no solution.

Problem 6. Prove that the set of faces of a polyhedron and the inclusion form a partially ordered set.
Problem 7. Prove that every polyerd $P=\left\{\boldsymbol{x} \in \mathbb{R}^{n} ; A \boldsymbol{x} \leq \boldsymbol{b}, \boldsymbol{x} \geq \mathbf{0}\right\}$ has a vertex.
Problem 8. Prove that every proper (inclusion) maximal face is a facet.
Problem 9. Prove that every polytope has a vertex.
Problem 10. Prove that all proper (inclusion) minimal faces have the same dimension.
Problem 11. Every proper face is an intersection of facets.

