Problem 1. Solve the following problem

Problem 2. Solve the following problem

Maximize
$$x_1 + 2x_2$$

subject to $x_1 - x_2 \le 2$
 $-x_1 + x_2 \le 1$
 $2x_1 + x_2 \le 7$
 $x_1, x_2 \ge 0.$

Problem 3. Solve the following problem

Maximize			x_2		
subject to	$-x_1$	+	x_2	\leq	0
	x_1			\leq	2
		x_1	$, x_{2}$	\geq	0

Problem 4. Solve the following problem

Maximize	$3x_1$	+	x_2					
subject to	x_1	—	x_2	\leq	-1			
	$-x_1$	—	x_2	\leq	-3			
	$2x_1$	+	x_2	\leq	2			
$x_1, x_2 \ge 0$								

Problem 5. Solve the following problem

Maximize
$$3x_1 + x_2$$

subject to $x_1 - x_2 \leq -1$
 $-x_1 - x_2 \leq -3$
 $2x_1 - x_2 \leq 2$
 $x_1, x_2 \geq 0$

Problem 6. Solve the following problem

Problem 7 (Homework – 2 points). Solve the following problem

First, try to use the pivot rule "largest coefficient". Then, solve the problem using "Bland rule".

Problem 8 (Homework -2 points). Find all optimal vertices of the following problem.