Problem 1. Solve the following problem

$$
\begin{array}{ll}
\operatorname{Maximize} & x_{1}+2 x_{2} \\
\text { subject to } & x_{1}+3 x_{2}+x_{3}=4 \\
& 2 x_{2}+x_{3}=2 \\
& x_{1}, x_{2}, x_{3} \geq 0 .
\end{array}
$$

Problem 2. Solve the following problem

$$
\begin{array}{ll}
\text { Maximize } & x_{1}+2 x_{2} \\
\text { subject to } & x_{1}-x_{2} \leq 2 \\
& -x_{1}+x_{2} \leq 1 \\
& 2 x_{1}+x_{2} \leq 7 \\
& x_{1}, x_{2} \geq 0 .
\end{array}
$$

Problem 3. Solve the following problem

$$
\begin{array}{lcl}
\text { Maximize } & x_{2} & \\
\text { subject to } & -x_{1}+x_{2} & \leq 0 \\
& x_{1} & \\
& x_{1}, x_{2} & \geq 0
\end{array}
$$

Problem 4. Solve the following problem

$$
\begin{array}{lcl}
\text { Maximize } & 3 x_{1} & +x_{2} \\
\text { subject to } & x_{1} & -x_{2} \leq-1 \\
& -x_{1}-x_{2} \leq & -3 \\
& 2 x_{1}+x_{2} \leq 2 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

Problem 5. Solve the following problem

$$
\begin{array}{lcl}
\text { Maximize } & 3 x_{1} & +x_{2} \\
\text { subject to } & x_{1} & -x_{2} \leq-1 \\
& -x_{1}-x_{2} \leq-3 \\
& 2 x_{1}-x_{2} \leq 2 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

Problem 6. Solve the following problem

\[

\]

Problem 7 (Homework - 2 points). Solve the following problem

$$
\begin{array}{llllllll}
\text { Maximize } & & 10 x_{1} & -57 x_{2} & -9 x_{3} & -24 x_{4} \\
\text { subject to } & x_{5}= & - & 0,5 x_{1} & +5,5 x_{2} & +2,5 x_{3} & -9 x_{4} \\
& x_{6}= & - & 0,5 x_{1} & +1,5 x_{2} & +0,5 x_{3} & - & x_{4} \\
& x_{7}=1 & -\quad x_{1} \\
& x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7} \geq 0
\end{array}
$$

First, try to use the pivot rule "largest coefficient". Then, solve the problem using "Bland rule".

Problem 8 (Homework - 2 points). Find all optimal vertices of the following problem.

$$
\begin{array}{cr}
\text { Maximize } & 2 x_{1}+3 x_{2}+5 x_{3}+4 x_{4} \\
\text { subject to } & x_{1}+2 x_{2}+3 x_{3}+x_{4} \leq 5 \\
& x_{1}+x_{2}+2 x_{3}+3 x_{4} \leq 3 \\
& x_{1}+x_{2}+2 x_{3}+7 x_{4} \geq 3 \\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{array}
$$

