Problem 1. Write a linear programming program which decides whether a given oriented graph contains an oriented cycle.

Problem 2. Solve the following problem

$$
\begin{array}{lrl}
\text { Maximize } & 3 x_{1}+x_{2} \\
\text { subject to } & x_{1}-x_{2} \leq-1 \\
& -x_{1}-x_{2} \leq & -3 \\
& 2 x_{1}+x_{2} \leq 2 \\
& & x_{1}, x_{2} \geq 0
\end{array}
$$

Problem 3. Solve the following problem

$$
\begin{array}{lrl}
\text { Maximize } & 3 x_{1}+x_{2} \\
\text { subject to } & x_{1}-x_{2} \leq & -1 \\
& -x_{1}-x_{2} \leq & -3 \\
& 2 x_{1}-x_{2} \leq & 2 \\
& & x_{1}, x_{2} \geq
\end{array}
$$

Problem 4 (Homework A). Solve the following problem

$$
\begin{array}{lrlll}
\text { Maximize } & 4 x_{1} & -2 x_{2}+7 x_{3} & \\
\text { subject to } & 5 x_{1} & +x_{2}-2 x_{3} & \leq 12 \\
& -x_{1} & -x_{2}+x_{3} & \leq & -1 \\
& 2 x_{1}+x_{2} & & \leq \\
& x_{1} & +x_{2} & \leq \\
& & & x_{1}, x_{2}, x_{3} & \geq 0
\end{array}
$$

Problem 5 (Homework B). Solve the following problem

$$
\begin{array}{lrl}
\text { Minimize } & -2 x_{1}+4 x_{2}-x_{3} \\
\text { subject to } & 3 x_{1}-6 x_{2}+4 x_{3} \leq 30 \\
& 2 x_{1}-8 x_{2}+10 x_{3} & \geq 18 \\
& & x_{1}, x_{2}, x_{3}
\end{array}
$$

