Problem 1. Write a linear programming program which decides whether a given oriented graph contains an oriented cycle.

Problem 2. Solve the following problem

Maximize	$3x_1$	+	x_2		
subject to	x_1	—	x_2	\leq	-1
	$-x_1$	—	x_2	\leq	-3
	$2x_1$	+	x_2	\leq	2
		x_1	$, x_{2}$	\geq	0

Problem 3. Solve the following problem

Maximize	$3x_1$	+	x_2		
subject to	x_1	—	x_2	\leq	-1
	$-x_1$	—	x_2	\leq	-3
	$2x_1$	—	x_2	\leq	2
		x_1	$, x_{2}$	\geq	0

Problem 4 (Homework A). Solve the following problem

Maximize	$4x_1$	—	$2x_2$	+	$7x_3$		
subject to	$5x_1$	+	x_2	—	$2x_3$	\leq	12
	$-x_1$	—	x_2	+	x_3	\leq	-1
	$2x_1$	+	x_2			\leq	4
	x_1	+	x_2			\leq	4
			3	x_{1}, x_{2}	x_2, x_3	\geq	0

Problem 5 (Homework B). Solve the following problem