Problem 1. Write a linear programming program which decides whether a given oriented graph contains an oriented cycle.

Problem 2. Solve the following problem

Maximize	$3x_1$	+	x_2		
subject to	x_1	_	x_2	\leq	-1
	$-x_1$	—	x_2	\leq	-3
	$2x_1$	+	x_2	\leq	2
		x_1	$, x_{2}$	\geq	0

Problem 3. Solve the following problem

Maximize	$3x_1$	+	x_2		
subject to	x_1	—	x_2	\leq	-1
	$-x_1$	—	x_2	\leq	-3
	$2x_1$	—	x_2	\leq	2
		x_1	$, x_{2}$	\geq	0

Problem 4. Without using the Farkas' lemma, prove that the system of linear equation $A\mathbf{x} = \mathbf{b}$ has a solution if and only if the system $\mathbf{y}^{T}A = 0$ and $\mathbf{y}^{T}b = -1$ has no solution.

Problem 5. Find the dual problem to the following linear programming problems and write the complementary slackness conditions.

- 1. $\max c^T x$ subject to $Ax \leq b$,
- 2. max $c^T x$ subject to $Ax = b, x \ge 0$,
- 3. min $c^T x$ subject to $A_1 x = b_1, A_2 x \ge b_2$.

Problem 6. Find the dual problem to the following linear programming problem and write the complementary slackness conditions.

Minimize	$2x_1$			—	$2x_3$		
subject to	$7x_1$	+	$10x_{2}$	+	$2x_3$	\leq	23
	$2x_1$	+	$3x_2$	+	x_3	=	5
	$-4x_1$	+	$14x_2$	—	$3x_3$	\geq	11
					x_3	\geq	0
					x_3	\leq	0

Problem 7 (Homework 2 points). Find the dual problem to the following two linear programming problems and write the complementary slackness conditions.

1) Maximize	x_1	_	$2x_2$			+	$3x_4$		
2) Minimize	x_1	—	$2x_2$			+	$3x_4$		
subject to			x_2	_	$6x_3$	+	x_4	\leq	4
	$-x_1$	+	$3x_2$	—	$3x_3$			=	0
	$6x_1$	_	$2x_2$	+	$2x_3$	—	$4x_4$	\geq	5
$x_2 \le 0, \ x_4 \ge 0$									

Problem 8 (Homework, 2 points). Let $A \in \mathbb{R}^{m \times n}$ and $\boldsymbol{b} \in \mathbb{R}^{m}$. Prove that

- the system $A \boldsymbol{x} = \boldsymbol{b}$ has a non-negative solution $\boldsymbol{x} \in \mathbb{R}^n$ if and only if every $\boldsymbol{y} \in \mathbb{R}^m$ with $\boldsymbol{y}^{\mathrm{T}} A \ge \boldsymbol{0}^{\mathrm{T}}$ satisfies $\boldsymbol{y}^{\mathrm{T}} \boldsymbol{b} > 0$,
- the system $Ax \leq b$ is infeasible if and only if $0x \leq -1$ is a non-negative linear combination of inequalities $Ax \leq b$.