Problem 1. Write a linear programming program which decides whether a given oriented graph contains an oriented cycle.

Problem 2. Solve the following problem

$$
\begin{array}{lrl}
\text { Maximize } & 3 x_{1}+x_{2} \\
\text { subject to } & x_{1}-x_{2} \leq & -1 \\
& -x_{1}-x_{2} \leq & -3 \\
& 2 x_{1}+x_{2} \leq 2 \\
& & x_{1}, x_{2} \geq 0
\end{array}
$$

Problem 3. Solve the following problem

$$
\begin{array}{lrll}
\text { Maximize } & 3 x_{1} & +x_{2} & \\
\text { subject to } & x_{1}-x_{2} & \leq & -1 \\
& -x_{1} & -x_{2} \leq & \leq 3 \\
& 2 x_{1} & -x_{2} \leq & 2 \\
& & x_{1} \cdot x_{2} & >
\end{array}
$$

Problem 4. Without using the Farkas' lemma, prove that the system of linear equation $A \boldsymbol{x}=\boldsymbol{b}$ has a solution if and only if the system $\boldsymbol{y}^{\mathrm{T}} A=0$ and $\boldsymbol{y}^{\mathrm{T}} b=-1$ has no solution.

Problem 5. Find the dual problem to the following linear programming problems and write the complementary slackness conditions.

1. $\max c^{T} x$ subject to $A x \leq b$,
2. $\max c^{T} x$ subject to $A x=b, x \geq 0$,
3. $\min c^{T} x$ subject to $A_{1} x=b_{1}, A_{2} x \geq b_{2}$.

Problem 6. Find the dual problem to the following linear programming problem and write the complementary slackness conditions.

$$
\begin{aligned}
& \text { Minimize } 2 x_{1} \quad-2 x_{3} \\
& \text { subject to } 7 x_{1}+10 x_{2}+2 x_{3} \leq 23 \\
& 2 x_{1}+3 x_{2}+x_{3}=5 \\
& -4 x_{1}+14 x_{2}-3 x_{3} \geq 11 \\
& \begin{array}{l}
x_{3} \geq 0 \\
x_{3} \leq 0
\end{array}
\end{aligned}
$$

Problem 7 (Homework 2 points). Find the dual problem to the following two linear programming problems and write the complementary slackness conditions.

$$
\begin{array}{rlll}
\text { 1) Maximize } & x_{1}-2 x_{2} & +3 x_{4} \\
\text { 2) Minimize } & x_{1}-2 x_{2} & +3 x_{4} \\
\text { subject to } & x_{2}-6 x_{3}+x_{4} \leq 4 \\
& -x_{1}+3 x_{2}-3 x_{3} & =0 \\
& 6 x_{1}-2 x_{2}+2 x_{3}-4 x_{4} \geq 5 \\
& x_{2} \leq 0, x_{4} \geq 0
\end{array}
$$

Problem 8 (Homework, 2 points). Let $A \in R^{m \times n}$ and $\boldsymbol{b} \in \mathbb{R}^{m}$. Prove that

- the system $A \boldsymbol{x}=\boldsymbol{b}$ has a non-negative solution $\boldsymbol{x} \in \mathbb{R}^{n}$ if and only if every $\boldsymbol{y} \in \mathbb{R}^{m}$ with $\boldsymbol{y}^{\mathrm{T}} A \geq \boldsymbol{0}^{\mathrm{T}}$ satisfies $\boldsymbol{y}^{\mathrm{T}} \boldsymbol{b} \geq 0$,
- the system $A x \leq b$ is infeasible if and only if $0 x \leq-1$ is a non-negative linear combination of inequalities $A \boldsymbol{x} \leq \boldsymbol{b}$.

