Problem 1. Without using the Farkas' lemma, prove that the system of linear equation $A x=b$ has a solution if and only if the system $\boldsymbol{y}^{\mathrm{T}} A=0$ and $\boldsymbol{y}^{\mathrm{T}} b=-1$ has no solution.

Problem 2. Find the dual problem to the following linear programming problems and write the complementary slackness conditions.

1. max $c^{T} x$ subject to $A x \leq b$,
2. $\max c^{T} x$ subject to $A x=b, x \geq 0$,
3. $\min c^{T} x$ subject to $A_{1} x=b_{1}, A_{2} x \geq b_{2}$.

Problem 3. Find the dual problem to the following linear programming problem and write the complementary slackness conditions.

Minimize	$2 x_{1}$	$-2 x_{3}$	
subject to	$7 x_{1}+10 x_{2}+2 x_{3}$	≤ 23	
	$2 x_{1}+3 x_{2}+x_{3}$	$=5$	
$-4 x_{1}+14 x_{2}$	$-3 x_{3}$	≥ 11	
		x_{3}	≥ 0
	x_{3}	≤ 0	

Problem 4. Formulate the minimal s - t cut problem in an oriented graph $G=(V, E)$ using linear programming. First, find conditions on variables $y_{u}, z_{u v} \in\{0,1\}$ for $u \in V$ and $u v \in E$ such that

- $U=\left\{u \in V ; x_{u}=1\right\}$ and $V \backslash U=\left\{u \in V ; x_{u}=0\right\}$ is a partitioning of vertices into two disjoint subsets,
- $s \in U$ and $t \notin U$ and
- $z_{u v}=1$ if and only if $u \in U$ and $v \notin U$.

Then, find an objective function which minimize the weight of a cut. Finally, try to minimize the number of inequalities and remove all integral condition.

Problem 5. Prove that A is totally unimodular if and only if $(A \mid I)$ is unimodular.
Problem 6. Let $P=\operatorname{conv}\left\{(0,0),(1,0),\left(\frac{1}{2}, 3\right)\right\}$ and P^{\prime} be the convex hull of all integral points of P. First, find a system of linear inequalities which determines P. Then, using Chvátal-Gomory cutting planes derive a system of linear inequalities which determines P^{\prime}.

Problem 7 (Homework). Let $P=\operatorname{conv}\left\{(0,0),(1,0),\left(\frac{1}{2}, k\right)\right\}$ where $k \in \mathbb{N}$ and P^{\prime} be the convex hull of all integral points of P. First, find a system of linear inequalities which determines P. Then, describe a sequence of Chvátal-Gomory cutting planes which leads to a system of linear inequalities which determines P^{\prime}. How many cutting planes do you need?

Problem 8. Prove that the incidence matrix A of a graph G is totally unimodular if and only if G is bipartite.
Problem 9. Find a $0-1$ matrix A and an integral vector \boldsymbol{b} such that $\{\boldsymbol{x} ; A \boldsymbol{x} \leq \boldsymbol{b}, \boldsymbol{x} \geq \mathbf{0}\}$ is an integral polytope but A is not totally unimodular.

Problem 10 (Homework). Let M be a matching of G and let p be the cardinality of the maximum matching. Prove that there are at least $p-|M|$ vertex-disjoint M-augmenting paths.

