Problem 1. Without using the Farkas' lemma, prove that the system of linear equation $A\mathbf{x} = \mathbf{b}$ has a solution if and only if the system $\mathbf{y}^{\mathrm{T}}A = 0$ and $\mathbf{y}^{\mathrm{T}}b = -1$ has no solution.

Problem 2. Find the dual problem to the following linear programming problems and write the complementary slackness conditions.

- 1. $\max c^T x$ subject to $Ax \leq b$,
- 2. max $c^T x$ subject to $Ax = b, x \ge 0$,
- 3. min $c^T x$ subject to $A_1 x = b_1, A_2 x \ge b_2$.

Problem 3. Find the dual problem to the following linear programming problem and write the complementary slackness conditions.

Minimize	$2x_1$			_	$2x_3$		
subject to	$7x_1$	+	$10x_{2}$	+	$2x_3$	\leq	23
	$2x_1$	+	$3x_2$	+	x_3	=	5
	$-4x_1$	+	$14x_2$	—	$3x_3$	\geq	11
					x_3	\geq	0
					x_3	\leq	0

Problem 4. Formulate the minimal *s*-*t* cut problem in an oriented graph G = (V, E) using linear programming. First, find conditions on variables $y_u, z_{uv} \in \{0, 1\}$ for $u \in V$ and $uv \in E$ such that

- $U = \{u \in V; x_u = 1\}$ and $V \setminus U = \{u \in V; x_u = 0\}$ is a partitioning of vertices into two disjoint subsets,
- $s \in U$ and $t \notin U$ and
- $z_{uv} = 1$ if and only if $u \in U$ and $v \notin U$.

Then, find an objective function which minimize the weight of a cut. Finally, try to minimize the number of inequalities and remove all integral condition.

Problem 5. Prove that A is totally unimodular if and only if (A|I) is unimodular.

Problem 6. Let $P = \operatorname{conv} \{(0,0), (1,0), (\frac{1}{2},3)\}$ and P' be the convex hull of all integral points of P. First, find a system of linear inequalities which determines P. Then, using Chvátal-Gomory cutting planes derive a system of linear inequalities which determines P'.

Problem 7 (Homework). Let $P = \operatorname{conv} \{(0,0), (1,0), (\frac{1}{2}, k)\}$ where $k \in \mathbb{N}$ and P' be the convex hull of all integral points of P. First, find a system of linear inequalities which determines P. Then, describe a sequence of Chvátal-Gomory cutting planes which leads to a system of linear inequalities which determines P'. How many cutting planes do you need?

Problem 8. Prove that the incidence matrix A of a graph G is totally unimodular if and only if G is bipartite.

Problem 9. Find a 0–1 matrix A and an integral vector **b** such that $\{x; Ax \le b, x \ge 0\}$ is an integral polytope but A is not totally unimodular.

Problem 10 (Homework). Let M be a matching of G and let p be the cardinality of the maximum matching. Prove that there are at least p - |M| vertex-disjoint M-augmenting paths.