# Optimization methods NOPT048 

Jirka Fink<br>https://ktiml.mff.cuni.cz/~fink/<br>Department of Theoretical Computer Science and Mathematical Logic<br>Faculty of Mathematics and Physics<br>Charles University in Prague

## Summer semester 2015/16

Last change on May 24, 2016

## License: Creative Commons BY-NC-SA 4.0

## Content

(1) Linear programming
(2) Linear, affine and convex sets
(3) Simplex method

4 Duality of linear programming
(5) Integer linear programming
(6) Matching
(7) Ellipsoid method
(8) Vertex Cover
(9) Matroid

Plan of the lecture

- Linear and integer optimization
- Convex sets and Minkowski-Weyl theorem
- Simplex methods
- Duality of linear programming
- Ellipsoid method
- Unimodularity
- Minimal weight maximal matching
- Matroid
- Cut and bound method


## General information

## E-mail fink@ktiml.mff.cuni.cz

Homepage http://ktiml.mff.cuni.cz//fink/
Consultations Individual schedule

## Examination

- Tutorial conditions
- Tests
- Theretical homeworks
- Practical homeworks
- Pass the exam


## Literature

- A. Schrijver, Theory of linear and integer programming, John Wiley, 1986
- W. J .Cook, W. H. Cunningham, W. R. Pulleyblank, A. Schrijver, Combinatorial Optimization, John Wiley, 1997
- J. Matoušek, B. Gärtner, Understanding and using linear programming, Springer, 2006.
- J. Matoušek Introduction to Discrete Geometry. ITI Series 2003-150, MFF UK, 2003


## Outline

(1) Linear programming
(2) Linear, affine and convex sets
(3) Simplex method
(4) Duality of linear programming
(5) Integer linear programming

6 Matching
(7) Ellipsoid method
(8) Vertex Cover
(9) Matroid

## Optimization

## Mathematical optimization

is the selection of a best element (with regard to some criteria) from some set of available alternatives.

## Examples

- Minimize $x^{2}+y^{2}$ where $(x, y) \in \mathbb{R}^{2}$
- Maximal matching in a graph
- Minimal spanning tree
- Shortest path between given two vertices


## Optimization problem

Given a set of solutions $M$ and an objective function $f: M \rightarrow \mathbb{R}$, optimization problem is finding a solution $x \in M$ with the maximal (or minimal) objective value $f(x)$ among all solutions of $M$.

## Duality between minimization and maximization

If $\min _{x \in M} f(x)$ exists, then also $\max _{x \in M}-f(x)$ exists and
$-\min _{x \in M} f(x)=\max _{x \in M}-f(x)$.

## Notation: Vector and matrix

## Matrix

A matrix of type $m \times n$ is a rectangular array of $m$ rows and $n$ columns of real numbers. Matrices are written as $A, B, C$, etc.

## Vector

A vector is an $n$-tuple of real numbers. Vectors are written as $\boldsymbol{c}, \boldsymbol{x}, \boldsymbol{y}$, etc. Usually, vectors are column matrices of type $n \times 1$.

## Scalar

A scalar is a real number. Scalars are written as $a, b, c$, etc.

## Special vectors

0 and 1 are vectors of zeros and ones, respectively.

## Transpose

The transpose of a matrix $A$ is matrix $A^{\mathrm{T}}$ created by reflecting $A$ over its main diagonal. The transpose of a column vector $\boldsymbol{x}$ is the row vector $\boldsymbol{x}^{\mathrm{T}}$.

## Notation: Matrix product

## Elements of a vector and a matrix

- The $i$-th element of a vector $\boldsymbol{x}$ is denoted by $\boldsymbol{x}_{i}$.
- The $(i, j)$-th element of a matrix $A$ is denoted by $A_{i, j}$.
- The $i$-th row of a matrix $A$ is denoted by $A_{i, *}$.
- The $j$-th column of a matrix $A$ is denoted by $A_{\star, j}$.


## Dot product of vectors

The dot product (also called inner product or scalar product) of vectors $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$ is the scalar $\boldsymbol{x}^{\mathrm{T}} \boldsymbol{y}=\sum_{i=1}^{n} \boldsymbol{x}_{i} \boldsymbol{y}_{i}$.

## Product of a matrix and a vector

The product $A \boldsymbol{x}$ of a matrix $A \in \mathbb{R}^{m \times n}$ of type $m \times n$ and a vector $\boldsymbol{x} \in \mathbb{R}^{n}$ is a vector $\boldsymbol{y} \in \mathbb{R}^{m}$ such that $\boldsymbol{y}_{i}=A_{i, x} \boldsymbol{x}$ for all $i=1, \ldots, m$.

## Product of two matrices

The product $A B$ of a matrix $A \in \mathbb{R}^{m \times n}$ and a matrix $B \in \mathbb{R}^{n \times k}$ a matrix $C \in \mathbb{R}^{m \times k}$ such that $C_{\star, j}=A B_{\star, j}$ for all $j=1, \ldots, k$.

## Notation: System of linear equations and inequalities

## Equality and inequality of two vectors

For vectors $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$ we denote

- $\boldsymbol{x}=\boldsymbol{y}$ if $\boldsymbol{x}_{i}=\boldsymbol{y}_{i}$ for every $i=1, \ldots, n$ and
- $\boldsymbol{x} \leq \boldsymbol{y}$ if $\boldsymbol{x}_{i} \leq \boldsymbol{y}_{i}$ for every $i=1, \ldots, n$.


## System of linear equations

Given a matrix $A \in \mathbb{R}^{m \times n}$ of type $m \times n$ and a vector $\boldsymbol{b} \in \mathbb{R}^{m}$, the formula $A \boldsymbol{x}=\boldsymbol{b}$ means a system of $m$ linear equations where $\boldsymbol{x}$ is a vector of $n$ real variables.

## System of linear inequalities

Given a matrix $A \in \mathbb{R}^{m \times n}$ of type and a vector $\boldsymbol{b} \in \mathbb{R}^{m}$, the formula $A \boldsymbol{x} \leq \boldsymbol{b}$ means a system of $m$ linear inequalities where $\boldsymbol{x}$ is a vector of $n$ real variables.

Example: System of linear inequalities in two different notations

$$
\begin{aligned}
& 2 \boldsymbol{x}_{1}+\boldsymbol{x}_{2}+\boldsymbol{x}_{3} \leq 14 \\
& 2 \boldsymbol{x}_{1}+5 \boldsymbol{x}_{2}+5 \boldsymbol{x}_{3} \leq 30
\end{aligned} \quad\left(\begin{array}{lll}
2 & 1 & 1 \\
2 & 5 & 5
\end{array}\right)\left(\begin{array}{l}
\boldsymbol{x}_{1} \\
\boldsymbol{x}_{2} \\
\boldsymbol{x}_{3}
\end{array}\right) \leq\binom{ 14}{30}
$$

## Example of linear programming: Optimized diet

Express using linear programming the following problem
Find the cheapest vegetable salad from carrots, white cabbage and cucumbers containing required amount the vitamins A and C and dietary fiber.

| Food | Carrot | White Cabbage | Cucumber | Required per meal |
| :--- | :---: | :---: | :---: | :---: |
| Vitamin A [mg/kg] | 35 | 0.5 | 0.5 | 0.5 mg |
| Vitamin C [ $\mathrm{mg} / \mathrm{kg}]$ | 60 | 300 | 10 | 15 mg |
| Dietary Fiber [g/kg] | 30 | 20 | 10 | 4 g |
| Price [EUR/kg] | 0.75 | 0.5 | 0.15 |  |

## Formulation using linear programming

Let $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}$ and $\boldsymbol{x}_{3}$ be real variables denoting the amount of carrots, white cabbage and cucumbers, respectively. The linear programming problem is

| Minimize | $0.75 x_{1}$ | $+0.5 x_{2}$ | $+0.15 x_{3}$ |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| subject to | $35 x_{1}$ | $+0.5 x_{2}$ | $+0.5 x_{3}$ | $\geq$ | 0.5 |
|  | $60 x_{1}$ | $+300 x_{2}$ | $+10 x_{3}$ | $\geq$ | 15 |
|  | $30 x_{1}$ | $+20 x_{2}$ | $+10 x_{3}$ | $\geq$ | 4 |
|  |  |  |  | $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{x}_{3}$ | $\geq$ |

## Example of linear programming: Network flow

## Network flow problem

Given direct graph $(V, E)$ with capacities $\boldsymbol{c} \in \mathbb{R}^{E}$ and a source $s \in V$ and a sink $t \in V$, find the maximal flow from $s$ to $t$ satisfying the flow conservation and capacity constrains.

## Formulation using linear programming

Variables: flow $\boldsymbol{f}_{e}$ for every edge $\boldsymbol{e} \in E$
Capacity constrains: $\mathbf{0} \leq \boldsymbol{f} \leq \boldsymbol{c}$
Flow conservation: $\sum_{u v \in E} \boldsymbol{f}_{u v}=\sum_{v w \in E} \boldsymbol{f}_{v w}$ for every $\boldsymbol{v} \in \boldsymbol{V} \backslash\{\boldsymbol{s}, t\}$
Objective function: Maximize $\sum_{s w \in E} \boldsymbol{f}_{s w}-\sum_{u s \in E} \boldsymbol{f}_{u s}$

## Example of integer linear programming: Vertex cover

## Vertex cover problem

Given undirected graph $(V, E)$, find the smallest set of vertices $U \subseteq V$ covering every edge of $E$; that is, $U \cup e \neq \emptyset$ for every $e \in E$.

## Formulation using integer linear programming

Variables: cover $\boldsymbol{x}_{v} \in\{0,1\}$ for every vertex $v \in V$
Covering: $x_{u}+x_{v} \geq 1$ for every edge $u v \in E$
Objective function: Minimize $\mathbf{1}^{\mathrm{T}} \boldsymbol{x}$

## Linear Programming

## Canonical form

Linear programming problem in the canonical form is an optimization problem to find $\boldsymbol{x} \in \mathbb{R}^{n}$ which maximizes $\boldsymbol{c}^{T} \boldsymbol{x}$ and satisfies $A \boldsymbol{x} \leq \boldsymbol{b}$ where $A \in \mathbb{R}^{m \times n}$ and $\boldsymbol{b} \in \mathbb{R}^{m}$.

## Equation form

Linear programming problem in the equation form is a problem to find $\boldsymbol{x} \in \mathbb{R}^{n}$ which maximizes $\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}$ and satisfies $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ and $\boldsymbol{x} \geq \mathbf{0}$ where $A \in \mathbb{R}^{m \times n}$ and $\boldsymbol{b} \in \mathbb{R}^{m}$.

## Conversions

- Every $\boldsymbol{x} \in \mathbb{R}^{n}$ satisfies $A \boldsymbol{x}=\boldsymbol{b}$ if and only if it satisfies $A \boldsymbol{x} \geq \boldsymbol{b}$ and $A \boldsymbol{x} \leq \boldsymbol{b}$.
- Every $\boldsymbol{x} \in \mathbb{R}^{n}$ satisfies $A \boldsymbol{x} \leq \boldsymbol{b}$ if and only if there exists $\boldsymbol{z} \in \mathbb{R}^{m}$ satisfying $A \boldsymbol{x}+\boldsymbol{z}=\boldsymbol{b}$ and $\boldsymbol{z} \geq \mathbf{0}$.
- Every occurrence of a variable $\boldsymbol{x}$ can be replaced by $\boldsymbol{x}^{+}-\boldsymbol{x}^{-}$when contains $\boldsymbol{x}^{+}, \boldsymbol{x}^{-} \geq 0$ are added.


## Example: Conversion from the canonical form into the equation form

- max $\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}$ such that $A \boldsymbol{x} \leq \boldsymbol{b}$
- max $\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}$ such that $A \boldsymbol{x}+\boldsymbol{z}=\boldsymbol{b}$ and $\boldsymbol{z} \geq 0$
- max $\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}^{+}-\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}^{-}$such that $A \boldsymbol{x}^{+}-\boldsymbol{A} \boldsymbol{x}^{-}+\boldsymbol{z}=\boldsymbol{b}$ and $\boldsymbol{z}, \boldsymbol{x}^{+}, \boldsymbol{x}^{-} \geq 0$


## Related problems

## Integer linear programming

Integer linear programming problem is an optimization problem to find $\boldsymbol{x} \in \mathbb{Z}^{n}$ which maximizes $\boldsymbol{c}^{\top} \boldsymbol{x}$ and satisfies $A \boldsymbol{x} \leq \boldsymbol{b}$ where $A \in \mathbb{R}^{m \times n}$ and $\boldsymbol{b} \in \mathbb{R}^{m}$.

## Mix integer linear programming

Some variables are integer and others are real.

## Binary linear programming

Every variable is either 0 or 1 . (1)

## Complexity

- A linear programming problem is efficiently solvable, both in theory and in practice.
- The classical algorithm for linear programming is the Simplex method which is fast in practice but it is not known whether it always run in polynomial time.
- Polynomial time algorithms the ellipsoid and the interior point methods.
- No strongly polynomial-time algorithms for linear programming is known.
- Integer linear programming is NP-hard.
(1) Show that binary linear programming is a special case of integer linear programming.


## Basic terminology

- Number of variables: $n$
- Number of constrains: $m$
- Solution: $\boldsymbol{x}$
- Objective function: e.g. $\max \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}$
- Feasible solution: a solution satisfying all constrains, e.g. $A x \geq b$
- Optimal solution: a feasible solution maximizing $\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}$
- Infeasible problem: a problem having no feasible solution
- Unbounded problem: a problem having a feasible solution with arbitrary large value of given objective function
- Polyhedron: a set of points $\boldsymbol{x} \in \mathbb{R}^{n}$ satisfying $A \boldsymbol{x} \geq \boldsymbol{b}$ for some $A \in \mathbb{R}^{m \times n}$ and $\boldsymbol{b} \in \mathbb{R}^{m}$
- Polytope: a bounded polyhedron


## Graphical method: Set of feasible solutions

## Example

Draw the set of all feasible solutions $\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)$ satisfying the following conditions.

| $\boldsymbol{x}_{1}$ | $+6 x_{2}$ | $\leq$ | 15 |
| :---: | :---: | :---: | :---: |
| $4 x_{1}$ | $-\boldsymbol{x}_{2}$ | $\leq$ | 10 |
| $-x_{1}$ | $+\boldsymbol{x}_{2}$ | $\leq$ | 1 |
|  | $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}$ | $\geq$ | 0 |

## Solution



## Graphical method: Optimal solution

## Example

Find the optimal solution of the following problem.

| Maximize | $\boldsymbol{x}_{1}+\boldsymbol{x}_{2}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\boldsymbol{x}_{1}+6 \boldsymbol{x}_{2} \leq 15$ |  |  |  |
|  | $4 \boldsymbol{x}_{1}$ | $-\boldsymbol{x}_{2}$ | $\leq$ |  |
|  | $-\boldsymbol{x}_{1}$ | $+\boldsymbol{x}_{2}$ | $\leq$ |  |
|  | $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}$ | $\geq 0$ |  |  |

Solution


## Graphical method: Multiple optimal solutions

## Example

Find all optimal solutions of the following problem.

$$
\begin{array}{cccc}
\text { Maximize } & \begin{array}{c}
\frac{1}{6} \boldsymbol{x}_{1} \\
\\
\boldsymbol{x}_{1}
\end{array}+\boldsymbol{x}_{2} \\
& +\boldsymbol{x}_{2} & \leq & \\
& 4 \boldsymbol{x}_{1} & -\boldsymbol{x}_{2} & \leq \\
& -\boldsymbol{x}_{1} & +\boldsymbol{x}_{2} & \leq \\
& & \boldsymbol{x}_{1}, \boldsymbol{x}_{2} & \geq 0
\end{array}
$$

## Solution



## Graphical method: Unbounded problem

## Example

Show that the following problem is unbounded.

$$
\begin{array}{ccc}
\text { Maximize } & \boldsymbol{x}_{1} & +\boldsymbol{x}_{2} \\
& -\boldsymbol{x}_{1} & +\boldsymbol{x}_{2} \leq 1 \\
& & \boldsymbol{x}_{1}, \boldsymbol{x}_{2} \geq
\end{array}
$$

## Solution



## Graphical method: Infeasible problem

## Example

Show that the following problem has no feasible solution.


## Solution

(0,0)

## Outline

(1) Linear programming
(2) Linear, affine and convex sets
(3) Simplex method

4 Duality of linear programming
(5) Integer linear programming
(6) Matching
(7) Ellipsoid method
(8) Vertex Cover
(9) Matroid

## Linear and affine spaces in $\mathbb{R}^{n}$

## Definition

A set $L \subseteq \mathbb{R}^{n}$ is linear (also called a linear space) if

- $0 \in L$,
- $\boldsymbol{x}+\boldsymbol{y} \in L$ for every $\boldsymbol{x}, \boldsymbol{y} \in L$ and
- $\alpha \boldsymbol{x} \in L$ for every $\boldsymbol{x} \in L$ and $\alpha \in \mathbb{R}$.


## Definition

If $L \subseteq \mathbb{R}^{n}$ is a linear space and $\boldsymbol{a} \in R^{n}$ is a vector, then $L+\boldsymbol{a}=\{\boldsymbol{x}+\boldsymbol{a} ; \boldsymbol{x} \in L\}$ is called an affine space.

## Observation

An affine space $A \subseteq \mathbb{R}^{n}$ is linear if and only if $A$ contains the origin $\mathbf{0}$.

## Observation

If $A \subseteq \mathbb{R}^{n}$ is an affine space, then $A-\boldsymbol{x}$ is a linear space for for every $\boldsymbol{x} \in A$.
Furthermore, all spaces $A-\boldsymbol{x}$ are the same for all $\boldsymbol{x} \in A$.

## Convex set

## Definition

A set $S \subseteq \mathbb{R}^{n}$ is convex if $S$ contains whole segment between every two points of $S$.

## Example



## Linear, affine and convex hulls

## Observation

- The intersection of arbitrary many linear spaces is also a linear space.
- The intersection of arbitrary many affine spaces is also an affine space.
- The intersection of arbitrary many convex sets is also a convex set.


## Definition

- The linear hull $\operatorname{span}(S)$ of $S \subseteq \mathbb{R}^{n}$ is the intersection of all linear sets containing $S$.
- The affine hull aff $(S)$ of $S \subseteq \mathbb{R}^{n}$ is the intersection of all affine sets containing $S$.
- The convex hull $\operatorname{conv}(S)$ of $S \subseteq \mathbb{R}^{n}$ is the intersection of all convex sets containing $S$.


## Informally

The linear, the affine and the convex hull of a set $S \subseteq \mathbb{R}^{n}$ is the smallest (with respect to inclusion) linear, affine and convex set containing $S$, respectively.

## Observation

- A set $S \subseteq \mathbb{R}^{n}$ is linear if and only if $S=\operatorname{span}(S)$.
- A set $S \subseteq \mathbb{R}^{n}$ is affine if and only if $S=\operatorname{aff}(S)$.
- A set $S \subseteq \mathbb{R}^{n}$ is convex if and only if $S=\operatorname{conv}(S)$.


## Linear, affine and convex combinations

## Definition

- The sum $\sum_{i=1}^{k} \alpha_{i} \mathbf{a}_{i}$ is called a linear combination of $S \subseteq \mathbb{R}^{n}$ if $k \in \mathbb{N}, \boldsymbol{a}_{i} \in S$ and $\alpha_{i} \in \mathbb{R}$ for $i=1, \ldots, k$.
- The sum $\sum_{i=1}^{k} \alpha_{i} \boldsymbol{a}_{i}$ is called an affine combination of $S \subseteq \mathbb{R}^{n}$ if $k \in \mathbb{N}, \boldsymbol{a}_{i} \in S, \alpha_{i} \in \mathbb{R}$ and $\sum_{i=1}^{k} \alpha_{i}=1$ for $i=1, \ldots, k$.
- The sum $\sum_{i=1}^{k} \alpha_{i} \mathbf{a}_{i}$ is called a convex combination of $S \subseteq \mathbb{R}^{n}$ if $k \in \mathbb{N}, a_{i} \in S, \alpha_{i} \geq 0$ and $\sum_{i=1}^{k} \alpha_{i}=1$ for $i=1, \ldots, k$.


## Theorem

- The linear hull of a set $S \subseteq \mathbb{R}^{n}$ is the set of all linear combinations of $S$.
- The affine hull of a set $S \subseteq \mathbb{R}^{n}$ is the set of all affine combinations of $S$.
- The convex hull of a set $S \subseteq \mathbb{R}^{n}$ is the set of all convex combinations of $S$.


## Convex hull and convex combinations

## Observation

The set of all convex combinations of a set $C \subseteq \mathbb{R}^{n}$ is convex. (1)

## Observation

If $C \subseteq \mathbb{R}^{n}$ is a convex set and $X \subseteq C$, then $C$ contains all convex combinations of $X$. (2)

## Theorem

The convex hull of a set $S \subseteq \mathbb{R}^{n}$ is the set of all convex combinations of $S$.

## Proof

- Let $Z$ be the set of all convex combinations of $S$.
- $\operatorname{conv}(S) \subseteq Z$ : Observe that $Z$ is a convex set containing $S$.
- $Z \subseteq \operatorname{conv}(S)$ : Observe that convex combinations of points of $S$ belong into conv $(S)$.
(1) Let $\boldsymbol{a}=\sum \alpha_{i} \boldsymbol{a}_{i}$ and $\boldsymbol{b}=\sum \beta_{i} \boldsymbol{b}_{i}$ be convex combinations of $\boldsymbol{C}$. The point $\boldsymbol{x}=\alpha \boldsymbol{a}+\beta \boldsymbol{b}$ on the segment between $\boldsymbol{a}$ and $\boldsymbol{b}$ is also a convex combination of $\boldsymbol{C}$ since $\boldsymbol{x}=\sum \alpha \alpha_{i} \boldsymbol{a}_{i}+\sum \beta \beta_{i} \boldsymbol{b}_{i}$.
(2) By induction by $k$, we prove for every $X \subseteq C$ that every convex combinations of $k$ points of $X$ belong into $C$. Let $\sum \alpha_{i} \boldsymbol{a}_{i}$ be a convex combination of points of $X$. WLOG $\alpha_{i}>0$.
For $k=2$ the statement follows from the definition of convexity.
For $k>2$, let $\alpha^{\prime}=\alpha_{1}+\alpha_{2}$ and $\boldsymbol{a}^{\prime}=\frac{\alpha_{1}}{\alpha^{\prime}} \mathbf{a}_{1}+\frac{\alpha_{2}}{\alpha^{\prime}} \mathbf{a}_{2}$. Since $\boldsymbol{a}^{\prime}$ is a point on the segment between $\boldsymbol{a}_{1}$ and $\mathbf{a}_{2}$ it follows that $\boldsymbol{a}^{\prime} \in C$. Now, $\alpha^{\prime} \mathbf{a}^{\prime}+\sum_{i=3}^{k} \alpha_{i} \mathbf{a}_{i}=\sum \alpha_{i} \boldsymbol{a}_{i}$ is a convex combination of $k-1$ points of $X \cup\left\{\boldsymbol{a}^{\prime}\right\}$, so it is contained in $C$ by the induction hypotheses.


## Independence and base

## Definition

- A set of vectors $S \subseteq \mathbb{R}^{n}$ is linearly independent if no vector of $S$ is a linear combination of others.
- A set of vectors $S \subseteq \mathbb{R}^{n}$ is affinely independent if no vector of $S$ is an affine combination of others.


## Definition

- A set of vectors $B \subseteq R^{n}$ is a (linear) base of a linear space $S$ if vectors of $B$ are linearly independent and $\operatorname{span}(B)=S$.
- A set of vectors $B \subseteq R^{n}$ is an (affine) base of an affine space $S$ if vectors of $B$ are affinely independent and $\operatorname{aff}(B)=S$.


## Question

Is it possible to analogously define a convex independence and a convex base?

## Observation

- All linear bases of a linear space have the same cardinality.
- All affine bases of an affine space have the same cardinality.


## Dimension

## Observation

Vectors $\boldsymbol{x}_{0}, \ldots, \boldsymbol{x}_{k}$ are affinely independent if and only if vectors $\boldsymbol{x}_{1}-\boldsymbol{x}_{0}, \ldots, \boldsymbol{x}_{k}-\boldsymbol{x}_{0}$ are linearly independent.

## Observation

Let $S$ be a linear space and $B \subseteq S \backslash\{\mathbf{0}\}$. Then, $B$ is a linear base of $S$ if and only if $B \cup\{0\}$ is an affine base of $S$.

## Definition

- The dimension of a linear space is the cardinality of its linear base.
- The dimension of an affine space is the cardinality of its affine base minus one.
- The dimension $\operatorname{dim}(S)$ of a set $S \subseteq \mathbb{R}^{n}$ is the dimension of affine hull of $S$.


## Observation

- A set of vectors $S$ is linearly independent if and only if $\mathbf{0}$ is not a non-trivial linear combination of $S$.
- A set of vectors $S$ is affinely independent if and only if $\mathbf{0}$ is not a non-trivial combination $\sum \alpha_{i} \mathbf{a}_{i}$ of $S$ such that $\sum \alpha_{i}=0$ and $\boldsymbol{\alpha} \neq \mathbf{0}$.


## Theorem (Carathéodory)

Let $S \subseteq \mathbb{R}^{n}$. Every point of $\operatorname{conv}(S)$ is a convex combinations of affinely independent points of $S$. (1)

## Corollary

Let $S \subseteq \mathbb{R}^{n}$ be a set of dimension $d$. Then, every point of $\operatorname{conv}(S)$ is a convex combinations of at most $d+1$ points of $S$.
(1) Let $\boldsymbol{x} \in \operatorname{conv}(S)$. Let $\boldsymbol{x}=\sum_{i=1}^{k} \alpha_{i} \boldsymbol{x}_{i}$ be a convex combination of points of $S$ with the smallest $k$. If $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{k}$ are affinely dependent, then there exists a combination $\mathbf{0}=\sum \beta_{i} \boldsymbol{x}_{i}$ such that $\sum \beta_{i}=0$ and $\beta \neq \mathbf{0}$. Since this combination is non-trivial, there exists $j$ such that $\beta_{j}>0$ and $\frac{\alpha_{j}}{\beta_{j}}$ is minimal. Let $\gamma_{i}=\alpha_{i}-\frac{\alpha_{j} \beta_{i}}{\beta_{j}}$. Observe that

- $\boldsymbol{x}=\sum_{i \neq j} \gamma_{i} \boldsymbol{x}_{i}$
- $\sum_{i \neq j} \gamma_{i}=1$
- $\gamma_{i} \geq 0$ for all $i \neq j$
which contradicts the minimality of $k$.


## Definition

- A hyperplane is a set $\left\{\boldsymbol{x} \in \mathbb{R}^{n} ; \boldsymbol{a}^{\mathrm{T}} \boldsymbol{x}=b\right\}$ where $\boldsymbol{a} \in \mathbb{R}^{n} \backslash\{\boldsymbol{0}\}$ and $b \in \mathbb{R}$.
- A half-space is a set $\left\{\boldsymbol{x} \in \mathbb{R}^{n} ; \boldsymbol{a}^{\mathrm{T}} \boldsymbol{x} \leq b\right\}$ where $\boldsymbol{a} \in \mathbb{R}^{n} \backslash\{\mathbf{0}\}$ and $b \in \mathbb{R}$.
- A polyhedron is an intersection of finitely many half-spaces.
- A polytope is a bounded polyhedron.


## Observation

For every $\boldsymbol{a} \in \mathbb{R}^{n}$ and $b \in \mathbb{R}$, the set of all $\boldsymbol{x} \in \mathbb{R}^{n}$ satisfying $\boldsymbol{a}^{\mathrm{T}} \boldsymbol{x} \leq b$ is convex.

## Corollary

Every polyhedron $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}$ is convex.

## Mathematical analysis

## Definition

- A set $S \subseteq \mathbb{R}^{n}$ is closed if $S$ contains the limit of every converging sequence of points of $S$.
- A set $S \subseteq \mathbb{R}^{n}$ is bounded if $\max \{\|\boldsymbol{x}\| ; \boldsymbol{x} \in S\}<b$ for some $b \in \mathbb{R}$.
- A set $S \subseteq \mathbb{R}^{n}$ is compact if every sequence of points of $S$ contains a converging subsequence with limit in $S$.


## Theorem

A set $S \subseteq \mathbb{R}^{n}$ is compact if and only if $S$ is closed and bounded.

## Theorem

If $f: S \rightarrow \mathbb{R}$ is a continuous function on a compact set $S \subseteq \mathbb{R}^{n}$, then $S$ contains a point $\boldsymbol{x}$ maximizing $f$ over $S$; that is, $f(\boldsymbol{x}) \geq f(\boldsymbol{y})$ for every $\boldsymbol{y} \in S$.

## Infimum and supremum

- Infimum of a set $S \subseteq \mathbb{R}$ is $\inf (S)=\max \{b \in \mathbb{R} ; b \leq x \forall x \in S\}$.
- Supremum of a set $S \subseteq \mathbb{R}$ is $\sup (S)=\min \{b \in \mathbb{R} ; b \geq x \forall x \in S\}$.
- $\inf (\emptyset)=\infty$ and $\sup (\emptyset)=-\infty$
- $\inf (S)=-\infty$ if $S$ has no lower bound


## Hyperplane separation theorem

## Theorem (strict version)

Let $C, D \subseteq \mathbb{R}^{n}$ be non-empty, closed, convex and disjoint sets and $C$ be bounded. Then, there exists a hyperplane $\boldsymbol{a}^{\mathrm{T}} \boldsymbol{x}=b$ which strictly separates $C$ and $D$; that is $C \subseteq\left\{\boldsymbol{x} ; \boldsymbol{a}^{\mathrm{T}} \boldsymbol{x}<b\right\}$ and $D \subseteq\left\{\boldsymbol{x} ; \boldsymbol{a}^{\mathrm{T}} \boldsymbol{x}>b\right\}$.

## Example


(1) Find $\boldsymbol{c} \in C$ and $\boldsymbol{d} \in D$ with minimal distance $\|\boldsymbol{d}-\boldsymbol{c}\|$.
(1) Let $m=\inf \{\|\boldsymbol{d}-\boldsymbol{c}\| ; \boldsymbol{c} \in C, \boldsymbol{d} \in D\}$.
(2) For every $n \in \mathbb{N}$ there exists $\boldsymbol{c}_{n} \in C$ and $\boldsymbol{d}_{n} \in D$ such that $\left\|\boldsymbol{d}_{n}-\boldsymbol{c}_{n}\right\| \leq m+\frac{1}{n}$.
(3) Since $C$ is compact, there exists a subsequence $\left\{\boldsymbol{c}_{k_{n}}\right\}_{n=1}^{\infty}$ converging to $\boldsymbol{c} \in C$.
(9) There exists $z \in \mathbb{R}$ such that for every $n \in \mathbb{N}$ the distance $\left\|\boldsymbol{d}_{n}-\boldsymbol{c}\right\|$ is at most $z$ : $\left\|\boldsymbol{d}_{n}-\boldsymbol{c}\right\| \leq\left\|\boldsymbol{d}_{n}-\boldsymbol{c}_{n}\right\|+\left\|\boldsymbol{c}_{n}-\boldsymbol{c}\right\| \leq m+1+\max \left\{\left\|\boldsymbol{c}^{\prime}-c^{\prime \prime}\right\| ; \boldsymbol{c}^{\prime}, c^{\prime \prime} \in C\right\}=z$
(5) Since the set $D \cap\left\{\boldsymbol{x} \in \mathbb{R}^{n} ;\|\boldsymbol{x}-\boldsymbol{c}\| \leq z\right\}$ is compact, the sequence $\left\{\boldsymbol{d}_{k_{n}}\right\}_{n=1}^{\infty}$ has a subsequence $\left\{\boldsymbol{d}_{l_{n}}\right\}_{n=1}^{\infty}$ converging to $\boldsymbol{d} \in D$.
(6) Since $\|\boldsymbol{d}-\boldsymbol{c}\| \leq\left\|\boldsymbol{d}-\boldsymbol{d}_{l_{n}}\right\|+\left\|\boldsymbol{d}_{l_{n}}-\boldsymbol{c}_{l_{n}}\right\|+\left\|\boldsymbol{c}_{l_{n}}-\boldsymbol{c}\right\| \rightarrow m$, the distance $\|\boldsymbol{d}-\boldsymbol{c}\|=m$ is minimal.
(2) The required hyperplane is $\boldsymbol{a}^{\mathrm{T}} \boldsymbol{x}=b$ where $\boldsymbol{a}=\boldsymbol{d}-\boldsymbol{c}$ and $b=\frac{\mathbf{a}^{\mathrm{T}} \boldsymbol{c}+\mathbf{a}^{\mathrm{T}} \boldsymbol{d}}{2}$ since we prove that $\boldsymbol{a}^{\mathrm{T}} \boldsymbol{c}^{\prime} \leq \boldsymbol{a}^{\mathrm{T}} \boldsymbol{c}<b<\boldsymbol{a}^{\mathrm{T}} \boldsymbol{d} \leq \boldsymbol{a}^{\mathrm{T}} \boldsymbol{d}^{\prime}$ for every $\boldsymbol{c}^{\prime} \in C$ and $\boldsymbol{d}^{\prime} \in D$.
(1) In order to prove the most left inequality, let $\boldsymbol{c}^{\prime} \in C$.
(2) Since $\boldsymbol{C}$ is convex, $\boldsymbol{y}=\boldsymbol{c}+\alpha\left(\boldsymbol{c}^{\prime}-\boldsymbol{c}\right) \in \boldsymbol{C}$ for every $0 \leq \alpha \leq 1$.
(3) From the minimality of the distance $\|\boldsymbol{d}-\boldsymbol{c}\|$ it follows that $\|\boldsymbol{d}-\boldsymbol{y}\|^{2} \geq\|\boldsymbol{d}-\boldsymbol{c}\|^{2}$.

$$
\begin{aligned}
\left(\boldsymbol{d}-\boldsymbol{c}-\alpha\left(\boldsymbol{c}^{\prime}-\boldsymbol{c}\right)\right)^{\mathrm{T}}\left(\boldsymbol{d}-\boldsymbol{c}-\alpha\left(\boldsymbol{c}^{\prime}-\boldsymbol{c}\right)\right) & \geq(\boldsymbol{d}-\boldsymbol{c})^{\mathrm{T}}(\boldsymbol{d}-\boldsymbol{c}) \\
\alpha^{2}\left(\boldsymbol{c}^{\prime}-\boldsymbol{c}\right)^{\mathrm{T}}\left(\boldsymbol{c}^{\prime}-\boldsymbol{c}\right)-2 \alpha(\boldsymbol{d}-\boldsymbol{c})^{\mathrm{T}}\left(\boldsymbol{c}^{\prime}-\boldsymbol{c}\right) & \geq 0 \\
\frac{\alpha}{2}\left\|\boldsymbol{c}^{\prime}-\boldsymbol{c}\right\|^{2}+\boldsymbol{a}^{\mathrm{T}} \boldsymbol{c} & \geq \boldsymbol{a}^{\mathrm{T}} \boldsymbol{c}^{\prime}
\end{aligned}
$$

(5) Since the last inequality holds for arbitrarily small $\alpha>0$, it follows that $\boldsymbol{a}^{\mathrm{T}} \boldsymbol{C} \geq \boldsymbol{a}^{\mathrm{T}} \boldsymbol{c}^{\prime}$ holds.

## Closed convex sets and systems of linear inequalities

## Corollary

The intersection of arbitrary many half-spaces is a closed convex set and every closed convex set is an intersection of (infinitely) many half-spaces.

## Observation

- The set of all solutions of $A \boldsymbol{x}=\mathbf{0}$ is a linear space and every linear space is the set of all solutions of $A \boldsymbol{x}=\mathbf{0}$ for some $A$.
- The set of all solutions of $\boldsymbol{A x}=\boldsymbol{b}$ is an affine space and every affine space is the set of all solutions of $A \boldsymbol{x}=\boldsymbol{b}$ for some $A$ and $\boldsymbol{b}$, assuming $A \boldsymbol{x}=\boldsymbol{b}$ is consistent. (1)


## Definition

The set of all solutions of $\boldsymbol{A x} \leq \boldsymbol{b}$ is called a polyhedron.
(1) Clearly, all solutions of $\boldsymbol{A x}=\mathbf{0}$ form a linear space $S$. For every solution $\boldsymbol{z}$ of $A \boldsymbol{x}=\boldsymbol{b}$ it holds that $S+\boldsymbol{z}$ is the affine space of all solutions of $A \boldsymbol{x}=\boldsymbol{b}$. Let $S$ be a linear space. Let rows of a matrix $A$ be a linear base of the orthogonal space to $S$. Then, $S$ are all solutions of $A \boldsymbol{x}=\mathbf{0}$. If $S+\boldsymbol{z}$ is an affine space and $\boldsymbol{b}=\boldsymbol{A} \boldsymbol{z}$, then $S+\boldsymbol{z}$ are all solutions of $A \boldsymbol{x}=\boldsymbol{b}$.

## Faces of a polyhedron

## Definition

Let $P$ be a polyhedron. A half-space $\boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{x} \leq \beta$ is called a supporting hyperplane of $P$ if the inequality $\boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{x} \leq \beta$ holds for every $\boldsymbol{x} \in \boldsymbol{P}$ and the hyperplane $\boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{x}=\beta$ has a non-empty intersection with $P$.
The set of point in the intersetion $P \cap\left\{\boldsymbol{x} ; \boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{x}=\beta\right\}$ is called a face of $P$. By convention, the empty set and $P$ are also faces, and the other faces are proper faces.
(1)

## Definition

Let $P$ be a $d$-dimensional polyhedron.

- A 0-dimensional face of $P$ is called a vertex of $P$.
- A 1-dimensional face is of $P$ called an edge of $P$.
- A $(d-1)$-dimensional face of $P$ is called an facet of $P$.


## Observation

Let $P=\{x ; A \boldsymbol{x} \leq \boldsymbol{b}\}$ of dimension $d$. Then for every row $i$, either

- $P \cap\left\{x ; \boldsymbol{A}_{i, \star} \boldsymbol{x}=\boldsymbol{b}_{i}\right\}=P$ or
- $P \cap\left\{x ; \boldsymbol{A}_{i, \pm} \boldsymbol{x}=\boldsymbol{b}_{i}\right\}=\emptyset$ or
- $P \cap\left\{x ; \boldsymbol{A}_{i, \pm} \boldsymbol{x}=\boldsymbol{b}_{i}\right\}$ is a proper face of dimension at most $d-1$.
(1) Observe, that every face of a polyhedron is also a polyhedron.


## Minkowski-Weyl

## Theorem (Minkowski-Weyl)

A set $S \subseteq \mathbb{R}^{n}$ is a polytope if and only if there exists a finite set $V \subseteq \mathbb{R}^{n}$ such that $S=\operatorname{conv}(V)$.

## Illustration


$\Rightarrow$ Proof by induction on $d=\operatorname{dim}(S)$ :
(1) For $d=0$, the size of $S$ is 0 or 1 .
(2) For $d>0$, let $S=\{\boldsymbol{x} ; A \boldsymbol{x} \leq \boldsymbol{b}\}$ and $S_{i}=S \cap\left\{\boldsymbol{x} ; A_{i, *} \boldsymbol{x}=\boldsymbol{b}_{i}\right\}$.

Let $I$ be the set of rows $i$ such that $S_{i}$ is a proper face of $S$. Since $\operatorname{dim}\left(S_{i}\right) \leq \operatorname{dim}(S)-1$ for all $i \in I$, the induction assumption implies that there exists a finite set $V_{i} \in \mathbb{R}^{n}$ such that $S_{i}=\operatorname{conv}\left(V_{i}\right)$.
Let $V=\cup_{i \in I} V_{i}$. We prove that $\operatorname{conv}(V)=S$.
$\subseteq$ follows from $V_{i} \subseteq S_{i} \subseteq S$.
$\supseteq$ Let $\boldsymbol{x} \in S$. Let $L$ be a line containing $\boldsymbol{x}$.
$S \cap L$ is a line segment with end-vertices $\boldsymbol{u}$ and $\boldsymbol{v}$.
There exists $i, j \in I$ such that $A_{i, \star} \boldsymbol{u}=\boldsymbol{b}_{i}$ and $A_{j, *} \boldsymbol{v}=\boldsymbol{b}_{j}$.
Since $\boldsymbol{u} \in S_{i}$ and $\boldsymbol{v} \in S_{j}$, points $\boldsymbol{u}$ and $\boldsymbol{v}$ are convex combinations of $S$.
Since $\boldsymbol{x}$ is a also a convex combination of $\boldsymbol{u}$ and $\boldsymbol{v}$, we have $\boldsymbol{x} \in \operatorname{conv}(S)$.

## Minkowski-Weyl

## Theorem (Minkowski-Weyl)

A set $S \subseteq \mathbb{R}^{n}$ is a polytope if and only if there exists a finite set $V \subseteq \mathbb{R}^{n}$ such that $S=\operatorname{conv}(V)$.

## Proof of the implication $\Leftarrow$ (main steps)

- Let $Q=\left\{\binom{\boldsymbol{\alpha}}{\beta} ; \boldsymbol{\alpha} \in \mathbb{R}^{n}, \beta \in \mathbb{R},-\mathbf{1} \leq \boldsymbol{\alpha} \leq 1,-1 \leq \beta \leq 1, \boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{v} \leq \beta \forall \boldsymbol{v} \in V\right\}$.
- Observe that $\boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{v} \leq \beta$ means the same as $\binom{\boldsymbol{v}}{-1}^{\mathrm{T}}\binom{\boldsymbol{\alpha}}{\beta} \leq 0$.
- Since $Q$ is a polytope, there exists a finite set $W \subseteq \mathbb{R}^{n+1}$ such that $Q=\operatorname{conv}(W)$.
- We prove that $\operatorname{conv}(V)=\left\{\boldsymbol{x} \in \mathbb{R}^{n} ; \boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{x} \leq \beta \forall\binom{\boldsymbol{\alpha}}{\beta} \in W\right\}$.
(1) $x \in \operatorname{conv}(V)$
(2) $\boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{x} \leq \beta \forall\binom{\boldsymbol{\alpha}}{\beta} \in Q_{1}$ where $Q_{1}=\left\{\binom{\boldsymbol{\alpha}}{\beta} ; \boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{v} \leq \beta \forall \boldsymbol{v} \in \operatorname{conv}(V)\right\}$
(3) $\boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{x} \leq \beta \forall\binom{\boldsymbol{\alpha}}{\beta} \in Q_{2}$ where $Q_{2}=\left\{\binom{\boldsymbol{\alpha}}{\beta} ; \boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{v} \leq \beta \forall \boldsymbol{v} \in V\right\}$
(4) $\boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{x} \leq \beta \forall\binom{\boldsymbol{\alpha}}{\beta} \in Q$
(5) $\boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{x} \leq \beta \forall\binom{\boldsymbol{\alpha}}{\beta} \in W$
$(1) \Rightarrow(2) Q_{1}$ is the set of all conditions satisfied by all points of conv $(V)$.
$(1) \Leftarrow(2)$ Use the hyperplane separation theorem to separate $x \notin \operatorname{conv}(V)$ from $\operatorname{conv}(V)$.
(2) $\Leftrightarrow$ (3) A condition $\boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{v} \leq \beta$ is satified by all $\boldsymbol{v} \in V$ if and only if the condition is satisfied by $v \in \operatorname{conv}(V)$, so $Q_{1}=Q_{2}$.
(3) $\Leftrightarrow$ (4) $\boldsymbol{\alpha}$ and $\beta$ in every condition $\boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{v} \leq \beta$ can be scaled so that $-\mathbf{1} \leq \boldsymbol{\alpha} \leq 1$ and $-1 \leq \beta \leq 1$ and the condition describe the same half-space.
(4) $\Leftrightarrow(5)$ Prove that if $\boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{x} \leq \beta$ holds for all conditions from $W$, then it also holds for all conditions from $Q=\operatorname{conv}(W)$.


## Faces

## Observation

The intersection of two faces of a polyhedron $P$ is a face of $P$.

## Theorem

Let $P$ be a polyhedron and $V$ its vertices. Then, $\boldsymbol{x}$ is a vertex of $P$ if and only if $\boldsymbol{x} \notin \operatorname{conv}(P \backslash\{\boldsymbol{x}\})$. Furthermore, if $P$ is bounded, then $P=\operatorname{conv}(V)$. (1)

## Observation (A face of a face is a face)

Let $F$ be a face of a polyhedron $P$ and let $E \subseteq F$. Then, $E$ is a face of $F$ if and only if $E$ is a face of $P$.

## Corollary

A set $F \subseteq \mathbb{R}^{n}$ is a face of a polyhedron $P=\left\{\boldsymbol{x} \in \mathbb{R}^{n} ; A \boldsymbol{x} \leq \boldsymbol{b}\right\}$ if and only if $F$ is the set of all optimal solutions of the linear programming problem min $\left\{\boldsymbol{c}^{\boldsymbol{T}} \boldsymbol{x} ; \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}\right\}$ for some vector $\boldsymbol{c} \in \mathbb{R}^{n}$.
(1) For simplicity, we prove this theorem only for bounded polyhedrons. Let $V_{0}$ be (inclusion) minimal set such that $P=\operatorname{conv}\left(V_{0}\right)$. Let $V_{e}=\{\boldsymbol{x} \in P ; \boldsymbol{x} \notin \operatorname{conv}(P \backslash\{\boldsymbol{x}\})\}$. We prove that $V \subseteq V_{e} \subseteq V_{0} \subseteq V$.
$V \subseteq V_{e}$ : Let $\boldsymbol{z} \in V$ be a vertex. By definition, there exists a supporting hyperplane $\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}=t$ such that $P \cap\left\{\boldsymbol{x} ; \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}=t\right\}=\{\boldsymbol{z}\}$. Since $\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}<t$ for all $\boldsymbol{x} \in P \backslash\{\boldsymbol{z}\}$, it follows that $\boldsymbol{x} \in V_{e}$.
$V_{e} \subseteq V_{0}$ : Let $\boldsymbol{z} \in V_{e}$. Since $\operatorname{conv}(P \backslash\{\boldsymbol{z}\}) \neq P$, it follows that $\boldsymbol{z} \in V_{0}$.
$V_{0} \subseteq V$ : Let $\boldsymbol{z} \in V_{0}$ and $D=\operatorname{conv}\left(V_{0} \backslash\{\boldsymbol{z}\}\right)$. From Minkovsky-Weil's theorem it follows that $V_{0}$ is finite and therefore, $D$ is compact. By the separation theorem, there exists a hyperplane $\boldsymbol{c}^{T} \boldsymbol{x}=r$ separating $\{\boldsymbol{z}\}$ and $D$, that is $\boldsymbol{c}^{T} \boldsymbol{x}<r<\boldsymbol{c}^{T} \boldsymbol{z}$ for all $\boldsymbol{x} \in D$. Let $t=\boldsymbol{c}^{\mathrm{T}} \boldsymbol{z}$. Hence, $\boldsymbol{A}=\left\{\boldsymbol{x} ; \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}=t\right\}$ is a supporting hyperplane of $P$.
We prove that $A \cap P=\{\boldsymbol{z}\}$. For contradiction, let $\boldsymbol{z}^{\prime} \in P \cap A$ be a different from $\boldsymbol{z}$. Then, there exists a convex combination $\boldsymbol{z}^{\prime}=\alpha_{1} \boldsymbol{x}_{1}+\cdots+\alpha_{k} \boldsymbol{x}_{k}+\alpha_{0} \boldsymbol{z}$ of $V_{0}$. From $\boldsymbol{z} \neq \boldsymbol{z}^{\prime}$ it follows that $\alpha_{0}<1$ and $\alpha_{i}>0$ for some $i$. Since $\alpha_{0} \boldsymbol{c}^{\mathrm{T}} \boldsymbol{z}=t$ and $\alpha_{i} \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}_{i}<t$ and $\alpha_{j} \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}_{j} \leq t$, it holds that $\boldsymbol{c}^{\mathrm{T}} \boldsymbol{z}^{\prime}<t$ which contradicts the assumption that $\boldsymbol{z}^{\prime} \in A$.

## Minimal defining system of a polyhedron

## Definition

$P=\left\{\boldsymbol{x} \in \mathbb{R}^{n} ; \boldsymbol{A}^{\prime} \boldsymbol{x}=\boldsymbol{b}^{\prime}, \boldsymbol{A}^{\prime \prime} \boldsymbol{x} \leq \boldsymbol{b}^{\prime \prime}\right\}$ is a minimal defining system of a polyherdon $P$ if

- no condition can be removed and
- no inequality can be replaced by equality without changing the polyhedron $P$.


## Observation

Let $\boldsymbol{z}$ be a point of a polyhedron $P=\left\{\boldsymbol{x} \in \mathbb{R}^{n} ; \boldsymbol{A}^{\prime} \boldsymbol{x}=\boldsymbol{b}^{\prime}, \boldsymbol{A}^{\prime \prime} \boldsymbol{x} \leq \boldsymbol{b}^{\prime \prime}\right\}$ such that $A^{\prime \prime} \boldsymbol{z}<\boldsymbol{b}^{\prime \prime}$. Then,

- $\operatorname{dim}(P)=n-\operatorname{rank}\left(A^{\prime}\right)$ and (1)
- $\boldsymbol{z}$ does not belong in any proper face of $P$.

Furthermore, there exists such a point $\boldsymbol{z}$ in every minimal defining system of a polyhedron. (3)

## Theorem

Let $P=\left\{\boldsymbol{x} \in \mathbb{R}^{n} ; A^{\prime} \boldsymbol{x}=\boldsymbol{b}^{\prime}, A^{\prime \prime} \boldsymbol{x} \leq \boldsymbol{b}^{\prime \prime}\right\}$ be a minimal defining system of a polyhedron $P$. Then, there exists a bijection between facets of $P$ and inequalities $A^{\prime \prime} \boldsymbol{x} \leq \boldsymbol{b}^{\prime \prime}$.
(1) Let $L$ be the affine space defined by $\boldsymbol{A}^{\prime} \boldsymbol{x}=\boldsymbol{b}^{\prime}$. Clearly, $\operatorname{dim}(P) \leq \operatorname{dim}(L)=n-\operatorname{rank}\left(A^{\prime}\right)$. Since $A^{\prime \prime} \boldsymbol{z}<\boldsymbol{b}^{\prime \prime}$, there exists $\epsilon>0$ such that $P$ contains whole ball $B=\{\boldsymbol{x} \in L ;\|x-z\| \leq \epsilon\}$. Since vectors of a base of the linear space $L-z$ can be scaled so that they belong into $B-z$, it follows that $\operatorname{dim}(P) \geq \operatorname{dim}(B) \geq \operatorname{dim}(L)$.
(2) The point $z$ cannot belong into any proper face of $P$ because a supporting hyperplane of such a face split the ball $B$.
(3) For every row $i$ of $A^{\prime \prime} \boldsymbol{x} \leq \boldsymbol{b}^{\prime \prime}$ there exists $\boldsymbol{z}^{i} \in P$ such that $A_{i, k}^{\prime \prime} \boldsymbol{z}^{i}<\boldsymbol{b}_{i}^{\prime \prime}$. Let $\boldsymbol{z}=\frac{1}{m^{\prime \prime}} \sum_{i=1}^{m^{\prime \prime}} \boldsymbol{z}^{i}$ be the center of gravity. Since $\boldsymbol{z}$ is a convex combination of points of $P$, point $\boldsymbol{z}$ belongs to $P$. From $A_{i, \star}^{\prime \prime} \boldsymbol{z}^{i}<\boldsymbol{b}_{i}^{\prime \prime}$, it follows that $A_{i, \star}^{\prime \prime} \boldsymbol{z}<\boldsymbol{b}_{i}^{\prime \prime}$, and therefore $A^{\prime \prime} \boldsymbol{z}<\boldsymbol{b}^{\prime \prime}$.
(4) Let $R_{i}=\left\{\boldsymbol{x} \in \mathbb{R}^{n} ; A_{i, x}^{\prime \prime} \boldsymbol{x}=\boldsymbol{b}_{i}\right\}$ and $F_{i}=P \cap R_{i}$. From minimality if follows that $R_{i}$ is a supporting hyperplane, and therefore, $F_{i}$ is a face. Likewise in the previous observation, there exists $\boldsymbol{z} \in F_{i}$ satisfying $A_{j, *}^{\prime \prime} \boldsymbol{z}<\boldsymbol{b}_{j}$ for all $j \neq i$ and so $\operatorname{dim}\left(F_{i}\right)=\operatorname{dim}(P)-1$. Furthermore, $\boldsymbol{z} \notin F_{j}$ for all $j \neq i$, so $F_{i} \neq F_{j}$ for $j \neq i$. For contradiction, let $F^{\prime \prime}$ be an another facet. There exists a facet $i$ such $F \subseteq F_{i}$, otherwise $\boldsymbol{z}=\frac{1}{m^{\prime \prime}} \sum_{i=1}^{m^{\prime \prime}} \boldsymbol{z}^{i}$ satisfies strictly all condition contradicting the assumption that $F$ is a proper facet. Since $F \neq F_{i}, F$ is a proper face of $F_{i}$ and so its dimension is at most $\operatorname{dim}(P)-2$ contradicting the assumption that $F$ is a proper facet.

## Minimal defining system of a polyhedron

## Theorem

Let $P=\left\{\boldsymbol{x} \in \mathbb{R}^{n} ; \boldsymbol{A}^{\prime} \boldsymbol{x}=\boldsymbol{b}^{\prime}, \boldsymbol{A}^{\prime \prime} \boldsymbol{x} \leq \boldsymbol{b}^{\prime \prime}\right\}$ be a minimal defining system of a polyhedron $P$. Then, there exists a bijection between facets of $P$ and inequalities $A^{\prime \prime} \boldsymbol{x} \leq \boldsymbol{b}^{\prime \prime}$.

## Definition

A polyhedron $P \subseteq \mathbb{R}^{n}$ is of full-dimension if $\operatorname{dim}(P)=n$.

## Observation

If $P$ is a full-dimensional polyhedron, then $P$ has exactly one minimal defining system up-to multiplying conditions by constants. (1)

## Corollary

Every proper face is an intersection of facets.
(1) Affine space of dimension $n-1$ is determined by a unique condition.

## Outline

(9) Linear programming
(2) Linear, affine and convex sets
(3) Simplex method
(4) Duality of linear programming
(5) Integer linear programming
(6) Matching
(7) Ellipsoid method
(8) Vertex Cover
(9) Matroid

## Notation

## Notation used in the Simplex method

- Linear programming problem in the equation form is a problem to find $x \in \mathbb{R}^{n}$ which maximizes $\boldsymbol{c}^{T} \boldsymbol{x}$ and satisfies $A \boldsymbol{x}=\boldsymbol{b}$ and $\boldsymbol{x} \geq \mathbf{0}$ where $A \in \mathbb{R}^{m \times n}$ and $\boldsymbol{b} \in \mathbb{R}^{m}$.
- We assume that rows of $A$ are linearly independent.
- For a subset $B \subseteq\{1, \ldots, n\}$, let $A_{B}$ be the matrix consisting of columns of $A$ whose indices belong to $B$.
- Similarly for vectors, $\boldsymbol{x}_{B}$ denotes the coordinates of $\boldsymbol{x}$ whose indices belong to $B$.
- The set $N=\{1, \ldots, n\} \backslash B$ denotes the remaining columns.


## Example

Consider $B=\{2,4\}$. Then, $N=\{1,3,5\}$ and

$$
\begin{aligned}
\boldsymbol{A}=\left(\begin{array}{lllll}
1 & 3 & 5 & 6 & 0 \\
2 & 4 & 8 & 9 & 7
\end{array}\right) & A_{B}=\left(\begin{array}{ll}
3 & 6 \\
4 & 9
\end{array}\right) & A_{N}=\left(\begin{array}{lll}
1 & 5 & 0 \\
2 & 8 & 7
\end{array}\right) \\
\boldsymbol{x}^{\mathrm{T}}=(3,4,6,2,7) & \boldsymbol{x}_{B}^{\mathrm{T}}=(4,2) & \boldsymbol{x}_{N}^{\mathrm{T}}=(3,6,7)
\end{aligned}
$$

Note that $\boldsymbol{A} \boldsymbol{x}=A_{B} \boldsymbol{X}_{B}+A_{N} \boldsymbol{x}_{N}$.

## Basic feasible solutions

## Definitions

- A set of columns $B$ is a base if $A_{B}$ is a regular matrix.
- The basic solution $\boldsymbol{x}$ corresponding to a base $B$ is $\boldsymbol{x}_{N}=\mathbf{0}$ and $\boldsymbol{x}_{B}=A_{B}^{-1} \boldsymbol{b}$.
- A basic solution satisfying $\boldsymbol{x} \geq \mathbf{0}$ is called basic feasible solution.


## Observation

Basic feasible solutions are exactly vertices of the polyhedron $P=\{\boldsymbol{x} ; A \boldsymbol{x}=\boldsymbol{b}, \boldsymbol{x} \geq \mathbf{0}\}$.

## Lemma

A feasible solution $x$ is basic if and only if the columns of the matrix $A_{K}$ are linearly independent where $K=\left\{j \in\{1, \ldots, n\} ; \boldsymbol{x}_{j}>0\right\}$.

## Example: Initial simplex tableau

## Canonical form

$$
\begin{array}{lcll}
\text { Maximize } & \boldsymbol{x}_{1} & +\boldsymbol{x}_{2} & \\
-\boldsymbol{x}_{1} & +\boldsymbol{x}_{2} & \leq 1 \\
& \boldsymbol{x}_{1} & & \leq 3 \\
& & \boldsymbol{x}_{2} & \leq 2 \\
& \boldsymbol{x}_{1}, \boldsymbol{x}_{2} & \geq 0
\end{array}
$$

Equation form

$$
\begin{aligned}
& \text { Maximize } \quad \boldsymbol{x}_{1}+\boldsymbol{x}_{2} \\
& -x_{1}+x_{2}+x_{3}=1 \\
& x_{1}+x_{4}=3 \\
& x_{2}+x_{5}=2 \\
& \boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{x}_{3}, \boldsymbol{x}_{4}, \boldsymbol{x}_{5} \geq 0
\end{aligned}
$$

## Simplex tableau

$$
\begin{aligned}
\boldsymbol{x}_{3} & =1 \\
\boldsymbol{x}_{4} & =3-\boldsymbol{x}_{1}-\boldsymbol{x}_{2} \\
\boldsymbol{x}_{5} & =2
\end{aligned}
$$

## Example: Initial simplex tableau

## Simplex tableau

$$
\begin{array}{rlllll}
\boldsymbol{x}_{3} & =1 & + & \boldsymbol{x}_{1} & - & \boldsymbol{x}_{2} \\
\boldsymbol{x}_{4} & = & 3 & - & \boldsymbol{x}_{1} & \\
\\
\boldsymbol{x}_{5} & = & 2 & & & - \\
\boldsymbol{x}_{2} \\
\hline \boldsymbol{z} & = & & \boldsymbol{x}_{1} & + & \boldsymbol{x}_{2}
\end{array}
$$

## Initial basic feasible solution

- $B=\{3,4,5\}, N=\{1,2\}$
- $\boldsymbol{x}=(0,0,1,3,2)$


## Pivot

Two edges from the vertex $(0,0,1,3,2)$ :
(1) $(t, 0,1+t, 3-t, 2)$ when $\boldsymbol{x}_{1}$ is increased by $t$
(2) $(0, r, 1-r, 3,2-r)$ when $x_{2}$ is increased by $r$

These edges give feasible solutions for:
(1) $t \leq 3$ since $x_{3}=1+t \geq 0$ and $x_{4}=3-t \geq 0$ and $x_{5}=2 \geq 0$
(2) $r \leq 1$ since $\boldsymbol{x}_{3}=1-r \geq 0$ and $x_{4}=3 \geq 0$ and $x_{5}=2-r \geq 0$

In both cases, the objective function is increasing. We choose $\boldsymbol{x}_{2}$ as a pivot.

## Example: Pivot step

## Simplex tableau

$$
\begin{aligned}
& \boldsymbol{x}_{3}=1+\boldsymbol{x}_{1}-\boldsymbol{x}_{2} \\
& x_{4}=3-x_{1} \\
& \begin{array}{ccc}
\boldsymbol{x}_{5} & =2 & -\boldsymbol{x}_{2} \\
\hline \boldsymbol{z} & = & \boldsymbol{x}_{1}+\boldsymbol{x}_{2}
\end{array}
\end{aligned}
$$

## Basis

- Original basis $B=\{3,4,5\}$
- $x_{2}$ enters the basis (by our choice).
- $(0, r, 1-r, 3,2-r)$ is feasible for $r \leq 1$ since $\boldsymbol{x}_{3}=1-r \geq 0$.
- Therefore, $\boldsymbol{x}_{3}$ leaves the basis.
- New base $B=\{2,4,5\}$

New simplex tableau

$$
\begin{aligned}
& \boldsymbol{x}_{2}=1 \\
& \boldsymbol{x}_{4}=3 \\
& \boldsymbol{x}_{5}=1 \\
& \boldsymbol{x}_{1}- \\
& \boldsymbol{x}_{1} \\
& \boldsymbol{x}_{3} \\
& \hline \boldsymbol{z}=1+\boldsymbol{x}_{1} \\
& \hline
\end{aligned}
$$

## Example: Next step

## Simplex tableau

$$
\begin{aligned}
& \boldsymbol{x}_{2}=1 \\
& \boldsymbol{x}_{4}=3 \\
& \boldsymbol{x}_{5}=\boldsymbol{x}_{1} \\
& \boldsymbol{x}_{1}- \\
& \boldsymbol{x}_{3} \\
& \boldsymbol{x}_{5}-\boldsymbol{x}_{1} \\
& \hline \boldsymbol{z}+\boldsymbol{x}_{3} \\
& \hline
\end{aligned}
$$

## Next pivot

- Basis $B=\{2,4,5\}$ with a basis feasible solution ( $0,1,0,3,1$ ).
- This vertex has two incident edges but only one increases the objective function.
- The edge increasing objective function is $(t, 1+t, 0,3-t, 1-t)$.
- Feasible solutions for $\boldsymbol{x}_{2}=1+t \geq 0$ and $\boldsymbol{x}_{4}=3-t \geq 0$ and $\boldsymbol{x}_{5}=1-t \geq 0$.
- Therefore, $\boldsymbol{x}_{1}$ enters the basis and $\boldsymbol{x}_{5}$ leaves the basis.

New simplex tableau

$$
\begin{gathered}
\boldsymbol{x}_{1}=1 \quad+\boldsymbol{x}_{3}-\boldsymbol{x}_{5} \\
\boldsymbol{x}_{2}=2 \\
\boldsymbol{x}_{4}=2-\boldsymbol{x}_{3}+\boldsymbol{x}_{5} \\
\hline \boldsymbol{z}=3+\boldsymbol{x}_{5} \\
\hline
\end{gathered}
$$

## Example: Last step

## Simplex tableau

$$
\begin{aligned}
\boldsymbol{x}_{1} & =1 \\
\boldsymbol{x}_{2} & =2 \\
\boldsymbol{x}_{4} & =2 \\
\hline \boldsymbol{z} & =3
\end{aligned} \boldsymbol{x}_{3}-\boldsymbol{x}_{3}+\boldsymbol{x}_{5}+\boldsymbol{x}_{5} . \boldsymbol{x}_{3}-2 \boldsymbol{x}_{5}
$$

## Next pivot

- Basis $B=\{1,2,4\}$ with a basis feasible solution (1,2, 0, 2, 0).
- This vertex has two incident edges but only one increases the objective function.
- The edge increasing objective function is $(1+t, 2, t, 2-t, 0)$.
- Feasible solutions for $\boldsymbol{x}_{1}=1+t \geq 0$ and $\boldsymbol{x}_{2}=2 \geq 0$ and $\boldsymbol{x}_{4}=2-t \geq 0$.
- Therefore, $\boldsymbol{x}_{3}$ enters the basis and $\boldsymbol{x}_{4}$ leaves the basis.

New simplex tableau

$$
\begin{gathered}
\boldsymbol{x}_{1}=3-\boldsymbol{x}_{4} \\
\boldsymbol{x}_{2}=2 \\
\boldsymbol{x}_{3}=2-\boldsymbol{x}_{4}+\boldsymbol{x}_{5} \\
\hline \boldsymbol{z}=5-\boldsymbol{x}_{5} \\
\hline \boldsymbol{x}_{5}
\end{gathered}
$$

## Example: Optimal solution

## Simplex tableau

$$
\begin{gathered}
\boldsymbol{x}_{1}=3-\boldsymbol{x}_{4} \\
\boldsymbol{x}_{2}=2 \\
\boldsymbol{x}_{3}=2 \\
\hline \boldsymbol{z}
\end{gathered}=5-\boldsymbol{x}_{4}+\boldsymbol{x}_{5}+\boldsymbol{x}_{5} .
$$

No other pivot

- Basis $B=\{1,2,3\}$ with a basis feasible solution ( $3,2,2,0,0$ ).
- This vertex has two incident edges but no one increases the objective function.
- We have an optimal solution.

Why this is an optimal solution?

- Consider an arbitrary feasible solution $\tilde{\boldsymbol{y}}$.
- The value of objective function is $\tilde{z}=5-\tilde{\boldsymbol{y}}_{4}-\tilde{\boldsymbol{y}}_{5}$.
- Since $\tilde{\boldsymbol{y}}_{4}, \tilde{\boldsymbol{y}}_{5} \geq 0$, the objective value is $\tilde{z}=5-\tilde{\boldsymbol{y}}_{4}-\tilde{\boldsymbol{y}}_{5} \leq 5=z$.


## Simplex tableau in general

## Definition

A simplex tableau determined by a feasible basis $B$ is a system of $m+1$ linear equations in variables $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}$, and $z$ that has the same set of solutions as the system $A \boldsymbol{x}=\boldsymbol{b}, \boldsymbol{z}=\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}$, and in matrix notation looks as follows:

$$
\begin{gathered}
\boldsymbol{x}_{B}=\boldsymbol{p}+\boldsymbol{Q} \boldsymbol{x}_{N} \\
\hline \boldsymbol{z}=z_{0}+\boldsymbol{r}^{\mathrm{T}} \boldsymbol{x}_{N}
\end{gathered}
$$

where $\boldsymbol{x}_{B}$ is the vector of the basis variables, $\boldsymbol{x}_{N}$ is the vector on non-basis variables, $\boldsymbol{p} \in \mathbb{R}^{m}, \boldsymbol{r} \in \mathbb{R}^{n-m}, Q$ is an $m \times(n-m)$ matrix, and $z_{0} \in \mathbb{R}$.

## Observation

For each basis $B$ there exists exactly one simplex tableau, and it is given by

- $Q=-A_{B}^{-1} A_{N}$
- $\boldsymbol{p}=A_{B}^{-1} \boldsymbol{b}$
- $z_{0}=\boldsymbol{c}_{B}^{\mathrm{T}} A_{B}^{-1} \boldsymbol{b}$
- $r=\boldsymbol{c}_{n}^{\mathrm{T}}-\left(\boldsymbol{c}_{B}^{\mathrm{T}} A_{B}^{-1} A_{N}\right)^{\mathrm{T}}$

Simplex tableau in general

$$
\begin{aligned}
\boldsymbol{x}_{B} & =\boldsymbol{p}+\boldsymbol{Q} \boldsymbol{x}_{N} \\
\hline \boldsymbol{z} & =\boldsymbol{z}_{0}+\boldsymbol{r}^{\mathrm{T}} \boldsymbol{x}_{N}
\end{aligned}
$$

## Observation

Basis $B$ is feasible if and only if $\boldsymbol{p} \geq \mathbf{0}$.

## Observation

The solution corresponding to a basis $B$ is optimal if and only if $r \leq 0$.

## Observation

If a linear programming problem in the equation form is feasible and bounded, then it has an optimal basis solution.

## Pivot step

## Simplex tableau in general

$$
\begin{array}{ccc}
\boldsymbol{x}_{B} & =\boldsymbol{p}+\boldsymbol{p} \boldsymbol{x}_{N} \\
\hline \boldsymbol{z}=\boldsymbol{z}_{0}+\boldsymbol{r}^{T} \boldsymbol{x}_{N}
\end{array}
$$

## Find a pivot

- If $\boldsymbol{r} \leq \mathbf{0}$, then we have an optimal solution.
- Otherwise, choose an arbitrary entering variable $\boldsymbol{x}_{v}$ such that $\boldsymbol{r}_{v}>0$.
- If $Q_{\star, v} \geq \mathbf{0}$, then the corresponding edge is unbounded and the problem is also unbounded.
- Otherwise, find a leaving variable $\boldsymbol{x}_{u}$ which limits the increment of the entering variable most strictly, i.e. $Q_{u, v}<0$ and $-\frac{p_{u}}{Q_{u, v}}$ is minimal.


## Update the simplex tableau

Gaussian elimination. Postponed for a tutorial.

## Pivot rules

## Pivot rules

Largest coefficient Choose an improving variable with the largest coefficient.
Largest increase Choose an improving variable that leads to the largest absolute improvement in $z$.
Steepest edge Choose an improving variable whose entering into the basis moves the current basic feasible solution in a direction closest to the direction of the vector $c$, i.e.

$$
\frac{\boldsymbol{c}^{\mathrm{T}}\left(\boldsymbol{x}_{\text {eew }}-\boldsymbol{x}_{\text {old }}\right)}{\left\|\boldsymbol{X}_{\text {new }}-\boldsymbol{x}_{\text {old }}\right\|}
$$

Bland's rule Choose an improving variable with the smallest index, and if there are several possibilities of the leaving variable, also take the one with the smallest index.
Random edge Select the entering variable uniformly at random among all improving variables.

## Initial feasible basis

## Equation form

Maximize $\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}$ such that $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ and $\boldsymbol{x} \geq 0$.

## Auxiliary linear program

We introduce variables $\boldsymbol{x}_{n+1}, \ldots, \boldsymbol{x}_{n+m}$ and solve an auxiliary linear program: Maximize $-\boldsymbol{x}_{n+1} \cdots-\boldsymbol{x}_{n+m}$ such that $(A \mid /) \boldsymbol{x}=\boldsymbol{b}$ and $\boldsymbol{x} \geq 0$.

## Observation

The original linear program has a feasible solution if and only if an optimal solution of the auxiliary linear program satisfies $\boldsymbol{x}_{n+1}=\cdots=\boldsymbol{x}_{n+m}=0$.

## Complexity

## Degeneracy

- Different basis may correspond to the same solution. (1)
- The simplex method may loop forever between these basis.
- Bland's or lexicographic rules prevent visiting the same basis twice.


## The number of visited vertices

- The total number of vertices is finite since the number of basis is finite.
- The objective value of visited vertices is increasing, so every vertex is visited at most once. (2)
- The number of visited vertices may be exponential, e.g. the Klee-Minty cube.
- Practical linear programming problems in equation forms with $m$ equations typically need between $2 m$ and $3 m$ pivot steps to solve.


## Open problem

Is there a pivot rule which guarantees a polynomial number of steps?
(1) For example, the apex of the 3-dimensional $k$-side pyramid belongs to $k$ faces, so there are $\binom{k}{3}$ basis determining the apex.
(2) In degeneracy, the simplex method stay in the same vertex; and when the vertex is left, it is not visited again.
(3) The Klee-Minty cube is a "deformed" $n$-dimensional cube with $2 n$ facets and $2^{n}$ vertices. The Dantzig's original pivot rule (largest coefficient) visits all vertices of this cube.

## Outline

(1) Linear programming
(2) Linear, affine and convex sets
(3) Simplex method

4 Duality of linear programming

Integer linear programming

Matching

Ellipsoid method
(8) Vertex Cover
(9) Matroid

## Duality of linear programming: Example

## Find an upper bound for the following problem

| Maximize | $2 \boldsymbol{x}_{1}+3 \boldsymbol{x}_{2}$ |  |
| :--- | :--- | :--- |
| subject to | $4 \boldsymbol{x}_{1}+8 \boldsymbol{x}_{2} \leq$ | $\leq$ |
|  | $2 \boldsymbol{x}_{1}+\boldsymbol{x}_{2} \leq$ |  |
|  | $3 \boldsymbol{x}_{1}+2 \boldsymbol{x}_{2}$ | $\leq 4$ |
|  | $\boldsymbol{x}_{1}, \boldsymbol{x}_{2} \geq 0$ |  |

## Simple estimates

- $2 x_{1}+3 x_{2} \leq 4 x_{1}+8 x_{2} \leq 12$
- $2 x_{1}+3 x_{2} \leq \frac{1}{2}\left(4 x_{1}+8 x_{2}\right) \leq 6$ (2)
- $2 x_{1}+3 x_{2}=\frac{1}{3}\left(4 x_{1}+8 x_{2}+2 x_{1}+x_{2}\right) \leq 5$ (3)


## What is the best combination of conditions?

Every non-negative linear combination of inequalities which gives an inequality $\boldsymbol{d}_{1} \boldsymbol{x}_{1}+\boldsymbol{d}_{2} \boldsymbol{x}_{2} \leq h$ with $d_{1} \geq 2$ and $d_{2} \geq 3$ provides the upper bound $2 \boldsymbol{x}_{1}+3 \boldsymbol{x}_{2} \leq \boldsymbol{d}_{1} \boldsymbol{x}_{1}+\boldsymbol{d}_{2} \boldsymbol{x}_{2} \leq h$.
(1) The first condition
(2) A half of the first condition
(3) A third of the sum of the first and the second conditions

## Duality of linear programming: Example

Find an upper bound for the following problem

| Maximize | $2 \boldsymbol{x}_{1}+3 \boldsymbol{x}_{2}$ |  |
| :--- | :--- | :--- |
| subject to | $4 \boldsymbol{x}_{1}+8 \boldsymbol{x}_{2} \leq$ | $\leq$ |
|  | $2 \boldsymbol{x}_{1}+2 \boldsymbol{x}_{2}$ | $\leq$ |
|  | $3 \boldsymbol{x}_{1}+2 \boldsymbol{x}_{2}$ | $\leq 4$ |
|  | $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}$ | $\geq 0$ |

Non-negative combination of inequalities with coefficients $y_{1}, y_{2}$ and $y_{3}$

$$
\begin{aligned}
& \left(4 y_{1}+2 y_{2}+3 y_{3}\right) \boldsymbol{x}_{1}+\left(8 y_{1}+y_{2}+2 y_{3}\right) x_{2} \leq 12 \boldsymbol{y}_{1}+3 y_{2}+4 \boldsymbol{y}_{3} \text { where } \\
& \text { - } d_{1}=4 \boldsymbol{y}_{1}+2 \boldsymbol{y}_{2}+3 \boldsymbol{y}_{3} \geq 2 \\
& \text { - } d_{2}=8 \boldsymbol{y}_{1}+\boldsymbol{y}_{2}+2 \boldsymbol{y}_{3} \geq 3 \\
& \text { - } h=12 \boldsymbol{y}_{1}+2 \boldsymbol{y}_{2}+4 \boldsymbol{y}_{3} \text { to be minimized }
\end{aligned}
$$

## Dual program (1)

| Minimize | $12 \boldsymbol{y}_{1}+2 \boldsymbol{y}_{2}+4 \boldsymbol{y}_{3}$ |  |
| :--- | :---: | :---: | :---: | :---: |
| subject to | $4 \boldsymbol{y}_{1}+2 \boldsymbol{y}_{2}+3 \boldsymbol{y}_{3} \geq$ | 2 |
|  | $8 \boldsymbol{y}_{1}+\boldsymbol{y}_{2}+2 \boldsymbol{y}_{3} \geq$ | 3 |
|  | $\boldsymbol{y}_{1}, \boldsymbol{y}_{2}, \boldsymbol{y}_{3} \geq 0$ |  |

(1) The primal optimal solution is $\boldsymbol{x}^{\mathrm{T}}=\left(\frac{1}{2}, \frac{5}{4}\right)$ and the dual solution is $\boldsymbol{y}^{\mathrm{T}}=\left(\frac{5}{16}, 0, \frac{1}{4}\right)$, both with the same objective value 4.75 .

## Duality of linear programming: General

## Primal linear program

Maximize $\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}$ subject to $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}$ and $\boldsymbol{x} \geq \mathbf{0}$

## Dual linear program

Minimize $\boldsymbol{b}^{\mathrm{T}} \boldsymbol{y}$ subject to $\boldsymbol{A}^{\mathrm{T}} \boldsymbol{y} \geq \boldsymbol{c}$ and $\boldsymbol{y} \geq \mathbf{0}$

## Weak duality theorem

For every primal feasible solution $\boldsymbol{x}$ and dual feasible solution $\boldsymbol{y}$ hold $\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x} \leq \boldsymbol{b}^{\mathrm{T}} \boldsymbol{y}$.

## Corollary

If one program is unbounded, then the other one is infeasible.

## Duality theorem

Exactly one of the following possibilities occurs
(1) Neither primal nor dual has a feasible solution
(2) Primal is unbounded and dual is infeasible
(3) Primal is infeasible and dual is unbounded
(0) There are feasible solutions $\boldsymbol{x}$ and $\boldsymbol{y}$ such that $\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}=\boldsymbol{b}^{\mathrm{T}} \boldsymbol{y}$

## Dualization

## Every linear programming problem has its dual, e.g.

- Maximize $\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}$ subject to $A \boldsymbol{x} \geq \boldsymbol{b}$ and $\boldsymbol{x} \geq \mathbf{0}$
- Maximize $\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}$ subject to $-\boldsymbol{A} \boldsymbol{x} \leq-\boldsymbol{b}$ and $\boldsymbol{x} \geq \mathbf{0}$
- Minimize $-\boldsymbol{b}^{\mathrm{T}} \boldsymbol{y}$ subject to $-\boldsymbol{A}^{\mathrm{T}} \boldsymbol{y} \geq \boldsymbol{c}$ and $\boldsymbol{y} \geq \mathbf{0}$
- Minimize $\boldsymbol{b}^{\mathrm{T}} \boldsymbol{y}$ subject to $A^{\mathrm{T}} \boldsymbol{y} \geq \boldsymbol{c}$ and $\boldsymbol{y} \leq \mathbf{0}$


## A dual of a dual problem is the (original) primal problem

- Minimize $\boldsymbol{b}^{\mathrm{T}} \boldsymbol{y}$ subject to $A^{\mathrm{T}} \boldsymbol{y} \geq \boldsymbol{c}$ and $\boldsymbol{y} \geq \mathbf{0}$
- -Maximize - $\boldsymbol{b}^{\mathrm{T}} \boldsymbol{y}$ subject to $A^{\mathrm{T}} \boldsymbol{y} \geq \boldsymbol{c}$ and $\boldsymbol{y} \geq \mathbf{0}$
- -Minimize $\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}$ subject to $A \boldsymbol{x} \geq-\boldsymbol{b}$ and $\boldsymbol{x} \leq \mathbf{0}$
- -Minimize $-\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}$ subject to $-A \boldsymbol{x} \geq-\boldsymbol{b}$ and $\boldsymbol{x} \geq \mathbf{0}$
- Maximize $\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}$ subject to $A \boldsymbol{x} \leq \boldsymbol{b}$ and $\boldsymbol{x} \geq \mathbf{0}$

|  | Primal linear program | Dual linear program |
| :---: | :---: | :---: |
| Variables | $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}$ | $\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{m}$ |
| Matrix | A | $A^{\text {T }}$ |
| Right-hand side | $b$ | C |
| Objective function | $\max \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}$ | $\min \boldsymbol{b}^{\mathrm{T}} \boldsymbol{y}$ |
| Constraints | $i$-the constraint has $\leq$ | $\boldsymbol{y}_{i} \geq 0$ |
|  | $i$-the constraint has $\geq$ | $\boldsymbol{y}_{i} \leq 0$ |
|  | $i$-the constraint has $=$ | $\boldsymbol{y}_{i} \in \mathbb{R}$ |
|  | $\boldsymbol{x}_{j} \geq 0$ | $j$-th constraint has $\geq$ |
|  | $\boldsymbol{x}_{j} \leq 0$ | $j$-th constraint has $\leq$ |
|  | $\boldsymbol{x}_{j} \in \mathbb{R}$ | $j$-th constraint has $=$ |

## Linear programming: Feasibility versus optimality

## Feasibility versus optimality

Finding a feasible solution of a linear program is computationally as difficult as finding an optimal solution.

## Using duality

The optimal solutions of linear programs

- Primal: Maximize $\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}$ subject to $\boldsymbol{A x} \leq \boldsymbol{b}$ and $\boldsymbol{x} \geq \mathbf{0}$
- Dual: Minimize $\boldsymbol{b}^{\mathrm{T}} \boldsymbol{y}$ subject to $A^{\mathrm{T}} \boldsymbol{y} \geq \boldsymbol{c}$ and $\boldsymbol{y} \geq \mathbf{0}$
are exactly feasible solutions satisfying

| $A \boldsymbol{x}$ | $\leq \boldsymbol{b}$ |
| ---: | :--- |
| $\boldsymbol{A}^{\mathrm{T}} \boldsymbol{y}$ | $\geq \boldsymbol{c}$ |
| $\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}$ | $\geq \boldsymbol{b}^{\mathrm{T}} \boldsymbol{y}$ |
| $\boldsymbol{x}, \boldsymbol{y}$ | $\geq 0$ |

## Complementary slackness

## Theorem

Feasible solutions $\boldsymbol{x}$ and $\boldsymbol{y}$ of linear programs

- Primal: Maximize $\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}$ subject to $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}$ and $\boldsymbol{x} \geq \mathbf{0}$
- Dual: Minimize $\boldsymbol{b}^{\mathrm{T}} \boldsymbol{y}$ subject to $A^{\mathrm{T}} \boldsymbol{y} \geq \boldsymbol{c}$ and $\boldsymbol{y} \geq \mathbf{0}$
are optimal if and only if
- $\boldsymbol{x}_{i}=0$ or $\boldsymbol{A}_{i, x}^{\mathrm{T}} \boldsymbol{y}=\boldsymbol{c}_{i}$ for every $i=1, \ldots, n$ and
- $\boldsymbol{y}_{j}=0$ or $\mathrm{A}_{j,, x} \boldsymbol{x}=\boldsymbol{b}_{j}$ for every $j=1, \ldots, m$.


## Proof

$$
\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}=\sum_{i=1}^{n} \boldsymbol{c}_{i} \boldsymbol{x}_{i} \leq \sum_{i=1}^{n}\left(\boldsymbol{y}^{\mathrm{T}} A_{\star, i}\right) \boldsymbol{x}_{i}=\boldsymbol{y}^{\mathrm{T}} A \boldsymbol{x}=\sum_{j=1}^{m} \boldsymbol{y}_{j}\left(A_{j, x} \boldsymbol{x}\right) \leq \sum_{j=1}^{m} \boldsymbol{y}_{j} \boldsymbol{b}_{j}=\boldsymbol{b}^{\mathrm{T}} \boldsymbol{y}
$$

## Fourier-Motzkin elimination: Example

## Goal: Find a feasible solution

| $2 x-5 y+4 z$ | $\leq$ | 10 |  |
| :---: | :---: | :---: | :---: | :---: |
| $3 x-6 y+3 z$ | $\leq$ | 9 |  |
| $5 x+10 y-$ | - | $\leq$ | 15 |
| $-x+5 y-2 z$ | $\leq$ |  |  |
| $-3 x+2 y+6 z$ | $\leq$ | 12 |  |

## Express the variable $x$ in each condition

$$
\begin{aligned}
& x \leq 5+\frac{5}{2} y-2 z \\
& x \leq 3+2 y-2 \\
& x \leq 2 y+\frac{1}{5} z \\
& x \geq 2 z+2 z \\
& x \geq-4+\frac{2}{3} y+2 z
\end{aligned}
$$

## Eliminate the variable $x$

The original system has a feasible solution if and only if there exist $y$ and $z$ satisfying

$$
\max \left\{7+5 y-2 z,-4+\frac{2}{3} y+2 z\right\} \leq \min \left\{5+\frac{5}{2} y-2 z, 3+2 y-z, 3-2 y+\frac{1}{5} z\right\}
$$

## Fourier-Motzkin elimination: Example

## Rewrite into a system of inequalities

Real numbers $x$ and $y$ satisfy

$$
\max \left\{7+5 y-2 z,-4+\frac{2}{3} y+2 z\right\} \leq \min \left\{5+\frac{5}{2} y-2 z, 3+2 y-z, 3-2 y+\frac{1}{5} z\right\}
$$

if and only they satisfy

$$
\begin{gathered}
7+5 y-2 z \leq 5+\frac{5}{2} y-2 z \\
7+5 y-2 z \leq 3+2 y-2 z \\
7+2 y-2 z \leq 3+2 \\
-4+\frac{2}{3} y+2 z \\
-4+\frac{2}{3} y+2 z \leq 3+2 y-2 \\
-4+2 z \\
-4+\frac{2}{3} y+2 z
\end{gathered}
$$

## Next steps

Eliminate variables $y$ and $z$ in a similar way.

## Fourier-Motzkin elimination: In general

## Observation

Let $A \boldsymbol{x} \leq \boldsymbol{b}$ be a system with $n \geq 1$ variables and $m$ inequalities. There is a system $A^{\prime} \boldsymbol{x}^{\prime} \leq \boldsymbol{b}^{\prime}$ with $n-1$ variables and at most $\max \left\{m, m^{2} / 4\right\}$ inequalities, with the following properties:
(1) $A \boldsymbol{x} \leq \boldsymbol{b}$ has a solution if and only if $\boldsymbol{A}^{\prime} \boldsymbol{x}^{\prime} \leq \boldsymbol{b}^{\prime}$ has a solution, and
(2) each inequality of $A^{\prime} \boldsymbol{x}^{\prime} \leq \boldsymbol{b}^{\prime}$ is a positive linear combination of some inequalities from $A \boldsymbol{x} \leq \boldsymbol{b}$.

## Proof

(1) WLOG: $A_{i, 1} \in\{-1,0,1\}$ for all $i=1, \ldots, n$
(2) Let $C=\left\{i ; A_{i, 1}=1\right\}, F=\left\{i ; A_{i, 1}=-1\right\}$ and $L=\left\{i ; A_{i, 1}=0\right\}$
(3) Let $A^{\prime} \boldsymbol{x}^{\prime} \leq \boldsymbol{b}^{\prime}$ be the system of $n-1$ variables and $|C| \cdot|F|+|L|$ inequalities

$$
\begin{array}{lrl}
j \in C, k \in F: & \left(A_{j, \star}+A_{k, *}\right) \boldsymbol{x} & \leq \boldsymbol{b}_{j} \\
I \in L: & A_{l, x} \boldsymbol{x} & \leq \boldsymbol{b}_{l} \tag{2}
\end{array}
$$

(1) Assuming $\boldsymbol{A}^{\prime} \boldsymbol{x}^{\prime} \leq \boldsymbol{b}^{\prime}$ has a solution $\boldsymbol{x}^{\prime}$, we find a solution $\boldsymbol{x}$ of $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}$ :

- (1) is equivalent to $A_{k, x}^{\prime} \boldsymbol{x}^{\prime}-\boldsymbol{b}_{k} \leq \boldsymbol{b}_{j}-A_{j, \times}^{\prime} \boldsymbol{x}^{\prime}$ for all $j \in C, k \in F$,
- which is equivalent to $\max _{k \in F}\left\{A_{k, x^{\prime}}^{\prime}-\boldsymbol{b}_{k}\right\} \leq \min _{j \in C}\left\{\boldsymbol{b}_{j}-A_{j, *}^{\prime} \boldsymbol{x}^{\prime}\right\}$
- Choose $\boldsymbol{x}_{1}$ between these bounds and $\boldsymbol{x}=\left(\boldsymbol{x}_{1}, \boldsymbol{x}^{\prime}\right)$ satisfies $A \boldsymbol{x} \leq \boldsymbol{b}$


## Farkas lemma

## Definition

A cone generated by vectors $\mathbf{a}_{1}, \ldots, \boldsymbol{a}_{n} \in \mathbb{R}^{m}$ is the set of all non-negative combinations of $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}$, i.e. $\left\{\sum_{i=1}^{n} \alpha_{i} \mathbf{a}_{i} ; \alpha_{1}, \ldots, \alpha_{n} \geq 0\right\}$.

## Proposition (Farkas lemma geometrically)

Let $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}, \boldsymbol{b} \in \mathbb{R}^{m}$. Then exactly one of the following two possibilities occurs:
(1) The point $\boldsymbol{b}$ lies in the cone generated by $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}$.
(2) There exists a hyperplane $h=\left\{\boldsymbol{x} \in \mathbb{R}^{m} ; \boldsymbol{y}^{\mathrm{T}} \boldsymbol{x}=0\right\}$ containing $\mathbf{0}$ for some $\boldsymbol{y} \in \mathbb{R}^{m}$ separating $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}$ and $\boldsymbol{b}$, i.e. $\boldsymbol{y}^{\mathrm{T}} \boldsymbol{a}_{i} \geq 0$ for all $i=1, \ldots, n$ and $\boldsymbol{y}^{\mathrm{T}} \boldsymbol{b}<0$.

## Proposition (Farkas lemma)

Let $A \in R^{m \times n}$ and $\boldsymbol{b} \in \mathbb{R}^{m}$. Then exactly one of the following two possibilities occurs:
(1) There exists a vector $\boldsymbol{x} \in \mathbb{R}^{n}$ satisfying $A \boldsymbol{x}=\boldsymbol{b}$ and $\boldsymbol{x} \geq \mathbf{0}$.
(2) There exists a vector $\boldsymbol{y} \in \mathbb{R}^{m}$ satisfying $\boldsymbol{y}^{\mathrm{T}} A \geq \mathbf{0}$ and $\boldsymbol{y}^{\mathrm{T}} b<\mathbf{0}$.

## Farkas lemma

## Proposition (Farkas lemma)

Let $A \in R^{m \times n}$ and $\boldsymbol{b} \in \mathbb{R}^{m}$. The following statements hold.
(1) The system $A \boldsymbol{x}=\boldsymbol{b}$ has a non-negative solution $\boldsymbol{x} \in \mathbb{R}^{n}$ if and only if every $\boldsymbol{y} \in \mathbb{R}^{m}$ with $\boldsymbol{y}^{\mathrm{T}} A \geq \mathbf{0}^{\mathrm{T}}$ satisfies $\boldsymbol{y}^{\mathrm{T}} \boldsymbol{b} \geq 0$.
(2) The system $A \boldsymbol{x} \leq \boldsymbol{b}$ has a non-negative solution $\boldsymbol{x} \in \mathbb{R}^{n}$ if and only if every non-negative $\boldsymbol{y} \in \mathbb{R}^{m}$ with $\boldsymbol{y}^{\mathrm{T}} A \geq \boldsymbol{0}^{\mathrm{T}}$ satisfies $\boldsymbol{y}^{\mathrm{T}} \boldsymbol{b} \geq 0$.
(3) The system $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}$ has a solution $\boldsymbol{x} \in \mathbb{R}^{n}$ if and only if every non-negative $\boldsymbol{y} \in \mathbb{R}^{m}$ with $\boldsymbol{y}^{\mathrm{T}} A=\boldsymbol{0}^{\mathrm{T}}$ satisfies $\boldsymbol{y}^{\mathrm{T}} \boldsymbol{b} \geq 0$.

## Overview of the proof of duality

Fourier-Motzkin elimination
$\Downarrow$
Farkas lemma, 3rd version
$\Downarrow$
Farkas lemma, 2nd version
$\Downarrow$
Duality of linear programming

## Farkas lemma

## Proposition (Farkas lemma, 3rd version)

Let $\boldsymbol{A} \in R^{m \times n}$ and $\boldsymbol{b} \in \mathbb{R}^{m}$. Then, the system $A \boldsymbol{x} \leq \boldsymbol{b}$ has a solution $\boldsymbol{x} \in \mathbb{R}^{n}$ if and only if every non-negative $\boldsymbol{y} \in \mathbb{R}^{m}$ with $\boldsymbol{y}^{\mathrm{T}} \boldsymbol{A}=\mathbf{0}^{\mathrm{T}}$ satisfies $\boldsymbol{y}^{\mathrm{T}} \boldsymbol{b} \geq 0$.

## Proof

$\Rightarrow$ If $\boldsymbol{x}$ satisfies $A \boldsymbol{x} \leq \boldsymbol{b}$ and $\boldsymbol{y} \geq \mathbf{0}$ satifies $\boldsymbol{y}^{\mathrm{T}} A=\boldsymbol{0}^{\mathrm{T}}$, then $\boldsymbol{y}^{\mathrm{T}} \boldsymbol{b} \geq \boldsymbol{y}^{\mathrm{T}} A \boldsymbol{x} \geq \mathbf{0}^{\mathrm{T}} \boldsymbol{x}=\mathbf{0}$
$\Leftarrow$ If $A \boldsymbol{x} \leq \boldsymbol{b}$ has no solution, the find $\boldsymbol{y} \geq \mathbf{0}, \boldsymbol{y}^{\mathrm{T}} A=\mathbf{0}^{\mathrm{T}}, \boldsymbol{y}^{\mathrm{T}} \boldsymbol{b}<0$ by the induction on $n$
$n=0 \quad$ - The system $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}$ equals to $\mathbf{0} \leq \boldsymbol{b}$ which is infeasible, so $b_{i}<0$ for some $i$

- Choose $\boldsymbol{y}=e_{i}$ (the $i$-th unit vector)
$n>0$ - Using Fourier-Motzkin elimination we obtain an infeasible system $\boldsymbol{A}^{\prime} \boldsymbol{x}^{\prime} \leq \boldsymbol{b}^{\prime}$
- There exists a non-negative matrix $M$ such that $\left(\mathbf{0} \mid \boldsymbol{A}^{\prime}\right)=M \boldsymbol{A}$ and $\boldsymbol{b}^{\prime}=\bar{M} \boldsymbol{b}$
- By induction, there exists $\boldsymbol{y}^{\prime} \geq 0, \boldsymbol{y}^{\prime \mathrm{T}} \boldsymbol{A}^{\prime}=\boldsymbol{0}^{\mathrm{T}}, \boldsymbol{y}^{\prime \mathrm{T}} \boldsymbol{b}^{\prime}<0$
- We verify that $\boldsymbol{y}=M^{\mathrm{T}} \boldsymbol{y}^{\prime}$ satifies all requirements of the induction

$$
\begin{aligned}
& \boldsymbol{y}=M^{\mathrm{T}} \boldsymbol{y}^{\prime} \geq \mathbf{0} \\
& \boldsymbol{y}^{\mathrm{T}} A=\left(M^{\mathrm{T}} \boldsymbol{y}^{\prime}{ }^{\mathrm{T}} A=\boldsymbol{y}^{\prime \mathrm{T}} M \boldsymbol{A}=\boldsymbol{y}^{\prime \mathrm{T}}\left(\mathbf{0} \mid \boldsymbol{A}^{\prime}\right)=\mathbf{0}^{\mathrm{T}}\right. \\
& \boldsymbol{y}^{\mathrm{T}} \boldsymbol{b}=\left(\boldsymbol{M}^{\mathrm{T}} \boldsymbol{y}^{\prime}\right)^{\mathrm{T}} \boldsymbol{b}=\boldsymbol{y}^{\prime \mathrm{T}} M \boldsymbol{b}=\boldsymbol{y}^{\prime \mathrm{T}} \boldsymbol{b}^{\prime}<\mathbf{0}^{\mathrm{T}}
\end{aligned}
$$

## Farkas lemma

## Proposition (Farkas lemma, 3rd version)

Let $\boldsymbol{A} \in R^{m \times n}$ and $\boldsymbol{b} \in \mathbb{R}^{m}$. Then, the system $A \boldsymbol{x} \leq \boldsymbol{b}$ has a solution $\boldsymbol{x} \in \mathbb{R}^{n}$ if and only if every non-negative $\boldsymbol{y} \in \mathbb{R}^{m}$ with $\boldsymbol{y}^{\mathrm{T}} \boldsymbol{A}=\mathbf{0}^{\mathrm{T}}$ satisfies $\boldsymbol{y}^{\mathrm{T}} \boldsymbol{b} \geq 0$.

## Proposition (Farkas lemma, 2nd version)

Let $A \in R^{m \times n}$ and $\boldsymbol{b} \in \mathbb{R}^{m}$. The system $A \boldsymbol{x} \leq \boldsymbol{b}$ has a non-negative solution $\boldsymbol{x} \in \mathbb{R}^{n}$ if and only if every non-negative $\boldsymbol{y} \in \mathbb{R}^{m}$ with $\boldsymbol{y}^{\mathrm{T}} A \geq \boldsymbol{0}^{\mathrm{T}}$ satisfies $\boldsymbol{y}^{\mathrm{T}} \boldsymbol{b} \geq 0$.

## Proof of the 2nd version using the 3rd version

The following statements are equivalent
(1) $A x \leq b, x \geq 0$ has a solution
(2) $\binom{A}{-1} x \leq\binom{ b}{0}$ has a solution
(3. Every $\boldsymbol{y}, \boldsymbol{y}^{\prime} \geq \mathbf{0}$ with $\binom{\boldsymbol{y}}{\boldsymbol{y}^{\prime}}^{\mathrm{T}}\binom{A}{-1}=\mathbf{0}^{\mathrm{T}}$ satisfies $\binom{\boldsymbol{y}}{\boldsymbol{y}^{\prime}}^{\mathrm{T}}\binom{\boldsymbol{b}}{0} \geq 0$
(9) Every $\boldsymbol{y}, \boldsymbol{y}^{\prime} \geq 0$ with $\boldsymbol{y}^{\mathrm{T}} A=\boldsymbol{y}^{\prime}$ satisfies $\boldsymbol{y}^{\mathrm{T}} \boldsymbol{b} \geq 0$
(0. Every $\boldsymbol{y} \geq \mathbf{0}$ with $\boldsymbol{y}^{\mathrm{T}} A \geq \mathbf{0}$ satisfies $\boldsymbol{y}^{\mathrm{T}} \boldsymbol{b} \geq 0$

## Proof of the duality of linear programming

## Proposition (Farkas lemma, 2nd version)

Let $A \in R^{m \times n}$ and $\boldsymbol{b} \in \mathbb{R}^{m}$. The system $A \boldsymbol{x} \leq \boldsymbol{b}$ has a non-negative solution if and only if every non-negative $\boldsymbol{y} \in \mathbb{R}^{m}$ with $\boldsymbol{y}^{\mathrm{T}} A \geq \boldsymbol{0}^{\mathrm{T}}$ satisfies $\boldsymbol{y}^{\mathrm{T}} \boldsymbol{b} \geq 0$.

## Duality

- Primal: Maximize $\boldsymbol{c}^{T} \boldsymbol{x}$ subject to $\boldsymbol{A} \leq \boldsymbol{b}$ and $\boldsymbol{x} \geq \mathbf{0}$
- Dual: Minimize $\boldsymbol{b}^{\mathrm{T}} \boldsymbol{y}$ subject to $A^{\mathrm{T}} \boldsymbol{y} \geq \boldsymbol{c}$ and $\boldsymbol{y} \geq \mathbf{0}$

If the primal problem has an optimal solution $\boldsymbol{x}^{\star}$, then the dual problem has an optimal solution $\boldsymbol{y}^{\star}$ and $\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}^{\star}=\boldsymbol{b}^{\mathrm{T}} \boldsymbol{y}^{\star}$.

## Proof of duality using Farkas lemma

(1) Let $\boldsymbol{x}^{\star}$ be an optimal solution of the primal problem and $\gamma=\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}^{\star}$
(2) $\epsilon>0$ iff $A \boldsymbol{x} \leq \boldsymbol{b}$ and $\boldsymbol{x} \geq \mathbf{0}$ and $\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x} \geq \gamma+\epsilon$ is infeasible
(3) $\epsilon>0$ iff $\binom{A}{-c^{\mathrm{T}}} x \leq\binom{ b}{-\gamma-\epsilon}$ and $\boldsymbol{x} \geq 0$ is infeasible

(0) $\epsilon>0$ iff $\boldsymbol{u}, \boldsymbol{z} \geq 0$ and $\boldsymbol{A}^{\mathrm{T}} \boldsymbol{u} \geq \boldsymbol{z} \boldsymbol{c}$ and $\boldsymbol{b}^{\mathrm{T}} \boldsymbol{u}<z(\gamma+\epsilon)$ is feasible

## Proof of the duality of linear programming

## Duality

- Primal: Maximize $\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}$ subject to $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}$ and $\boldsymbol{x} \geq \mathbf{0}$
- Dual: Minimize $\boldsymbol{b}^{\mathrm{T}} \boldsymbol{y}$ subject to $A^{\mathrm{T}} \boldsymbol{y} \geq \boldsymbol{c}$ and $\boldsymbol{y} \geq \mathbf{0}$

If the primal problem has an optimal solution $\boldsymbol{x}^{\star}$, then the dual problem has an optimal solution $\boldsymbol{y}^{\star}$ and $\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}^{\star}=\boldsymbol{b}^{\mathrm{T}} \boldsymbol{y}^{\star}$.

## Proof of duality using Farkas lemma (continue)

(1) Let $\boldsymbol{x}^{\star}$ be an optimal solution of the primal problem and $\gamma=\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}^{\star}$
(2) $\epsilon>0$ iff $\boldsymbol{u}, z \geq 0$ and $\boldsymbol{A}^{\mathrm{T}} \boldsymbol{u} \geq \boldsymbol{z} \boldsymbol{c}$ and $\boldsymbol{b}^{\mathrm{T}} \boldsymbol{u}<z(\gamma+\epsilon)$ is feasible
(3) For $\epsilon>0$, there exists $\boldsymbol{u}^{\prime}, z^{\prime} \geq 0$ with $\boldsymbol{A}^{\mathrm{T}} \boldsymbol{u}^{\prime} \geq z^{\prime} \boldsymbol{c}$ and $\boldsymbol{b}^{\mathrm{T}} \boldsymbol{u}^{\prime}<z^{\prime}(\gamma+\epsilon)$
(9) For $\epsilon=0$ it holds that $\boldsymbol{u}^{\prime}, z^{\prime} \geq 0$ and $\boldsymbol{A}^{\mathrm{T}} \boldsymbol{u}^{\prime} \geq z^{\prime} \boldsymbol{c}$ so $\boldsymbol{b}^{\mathrm{T}} \boldsymbol{u}^{\prime} \geq z^{\prime} \gamma$
(6) Since $z^{\prime} \gamma \leq \boldsymbol{b}^{\mathrm{T}} \boldsymbol{u}^{\prime}<z^{\prime}(\gamma+\epsilon)$ and $z^{\prime} \geq 0$ it follows that $z^{\prime}>0$
(- Let $\boldsymbol{v}=\frac{1}{z^{\prime}} \boldsymbol{u}^{\prime}$
(3) Since $\boldsymbol{A}^{\mathrm{T}} \boldsymbol{v} \geq \boldsymbol{c}$ and $\boldsymbol{v} \geq \mathbf{0}$, the dual solution $\boldsymbol{v}$ is feasible
(3) Since the dual is feasible and bounded, there exists an optimal dual solution $\boldsymbol{y}^{\star}$
(- Hence, $\boldsymbol{b}^{\mathrm{T}} \boldsymbol{y}^{\star}<\gamma+\epsilon$ for every $\epsilon>0$, and so $\boldsymbol{b}^{\mathrm{T}} \boldsymbol{y}^{\star} \leq \gamma$
(1) From the weak duality theorem it follows that $\boldsymbol{b}^{\mathrm{T}} \boldsymbol{y}^{\star}=\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}^{\star}$

## Outline

(1) Linear programming
(2) Linear, affine and convex sets
(3) Simplex method
(4) Duality of linear programming

5 Integer linear programming
(6) Matching
(7) Ellipsoid method
(8) Vertex Cover
(9) Matroid

## Integer linear programming

## Integer linear programming

Integer linear programming problem is an optimization problem to find $\boldsymbol{x} \in \mathbb{Z}^{n}$ which maximizes $\boldsymbol{c}^{T} \boldsymbol{x}$ and satisfies $A \boldsymbol{x} \leq \boldsymbol{b}$ where $A \in \mathbb{R}^{m \times n}$ and $\boldsymbol{b} \in \mathbb{R}^{m}$.

## Mix integer linear programming

Some variables are integer and others are real.

## Relaxed problem and solution

- Given a (mix) integer linear programming problem, the corresponding relaxed problem is the linear programming problem where all integral constraints $\boldsymbol{x}_{i} \in \mathbb{Z}$ are relaxed; that is, replaced by $\boldsymbol{x}_{i} \in \mathbb{R}$.
- Relaxed solution is a feasible solution of the relaxed problem.
- Optimal relaxed solution is the optimal feasible solution of the relaxed problem.


## Observation

Let $\boldsymbol{x}^{\star}$ be an integral optimal solution and $\boldsymbol{x}^{r}$ be a relaxed optimal solution. Then, $\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}^{r} \geq \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}^{\star}$.

## Branch and bound

## Branch

Consider a mix integer linear programming problem $\max \left\{\boldsymbol{x} \in \mathbb{R}^{n} ; A \boldsymbol{x} \leq \boldsymbol{b}, \boldsymbol{x}_{i} \in \mathbb{Z}, i \in I\right\}$ where $I$ is a set of integral variables.

- Let $\boldsymbol{x}^{r}$ be the optimal relaxed solution.
- If $\boldsymbol{x}_{i}^{r} \in \mathbb{Z}$ for all $i \in I$, then $\boldsymbol{x}^{r}$ is an optimal solution.
- Otherwise, choose $j \in I$ such that $\boldsymbol{x}_{j}^{r} \notin \mathbb{Z}$ and
- recursively solve two subproblems

$$
\begin{aligned}
& \text { - } \max \left\{\boldsymbol{x} \in \mathbb{R}^{n} ; A \boldsymbol{x} \leq \boldsymbol{b}, \boldsymbol{x}_{j} \leq\left\lfloor\boldsymbol{x}_{j}^{r}\right\rfloor, \boldsymbol{x}_{i} \in \mathbb{Z}, i \in I\right\} \text { and } \\
& \text { • } \max \left\{\boldsymbol{x} \in \mathbb{R}^{n} ; A \boldsymbol{x} \leq \boldsymbol{b}, \boldsymbol{x}_{j} \geq\left\lceil\boldsymbol{x}_{j}^{r}\right\rceil, \boldsymbol{x}_{i} \in \mathbb{Z}, i \in I\right\} \text {. }
\end{aligned}
$$

- The optimal solution of the original problem is the better one of subproblems.


## Bound

Let $\boldsymbol{x}^{\prime}$ be an integral feasible solution and $\boldsymbol{x}^{r}$ be an optimal relaxed solution of a subproblem. If $\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}^{\prime} \geq \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}^{r}$, then the subproblem does not contain better integral feasible solution than $\boldsymbol{x}^{\prime}$.

## Observation

If the polyhedron $\left\{\boldsymbol{x} \in \mathbb{R}^{n} ; \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}\right\}$ is bounded, then the Brand and bound algorithm finds an optimal solution of the mix integer linear programming problem.

## Rational and integral polyhedrons

## Definition: Rational polyhedron

A polyhedron is called rational if it is defined by a rational linear system, that is $A \in \mathbb{Q}^{m \times n}$ and $\boldsymbol{b} \in \mathbb{Q}^{m}$.

## Exercise

Every vertex of a rational polyhedron is rational.

## Definition: Integral polyhedron

A rational polyhedron is called integral if every non-empty face contains an integral point.

## Observation

Let $P$ be a rational polyhedron which has a vertex. Then, $P$ is integral if and only if every vertex of $P$ is integral.

## Theorem

A rational polytope $P$ is integral if and only if for all integral vector $\boldsymbol{c}$ the optimal value of $\max \left\{\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x} ; \boldsymbol{x} \in P\right\}$ is an integer.

## Rational and integral polyhedrons

## Theorem

A rational polytope $P$ is integral if and only if for all integral vector $\boldsymbol{c}$ the optimal value of $\max \left\{\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x} ; \boldsymbol{x} \in P\right\}$ is an integer.

## Proof

$\Rightarrow$ Every vertex of $P$ is integral, so optimal values are integrals.
$\Leftarrow$ Let $\boldsymbol{v}$ be a vertex of $P$. We prove that $\boldsymbol{v}_{1}$ is an integer.
(1) Let $\boldsymbol{c}$ be an integer vector such that $\boldsymbol{v}$ is the only optimal solution.
(2) Since we can scale the vector $\boldsymbol{c}$, we assume that $\boldsymbol{c}^{\mathrm{T}} \boldsymbol{v}>\boldsymbol{c}^{\mathrm{T}} \boldsymbol{u}+\boldsymbol{u}_{1}-\boldsymbol{v}_{1}$ for all others vertices $u$ of $P$.
(3) Let $\boldsymbol{d}=\boldsymbol{c}+e_{1}$.
(4) Observe that $\boldsymbol{v}$ is an optimal of solution of $\max \left\{\boldsymbol{d}^{\mathrm{T}} \boldsymbol{x} ; \boldsymbol{x} \in P\right\}$.
(5) Hence, $\boldsymbol{v}_{1}=\boldsymbol{d}^{\mathrm{T}} \boldsymbol{v}-\boldsymbol{c}^{\mathrm{T}} \boldsymbol{v}$ is an integer.

## Gomory-Chvátal cutting plane: Example

## Interger linear programming problem

| Maximize |  |  | $\boldsymbol{x}_{2}$ |  |  |
| :--- | ---: | :--- | ---: | :--- | ---: |
| subject to | $2 \boldsymbol{x}_{1}$ | + | $3 \boldsymbol{x}_{2}$ | $\leq$ | 27 |
|  | $2 \boldsymbol{x}_{1}$ | - | $2 \boldsymbol{x}_{2}$ | $\leq$ | 7 |
|  | $-2 \boldsymbol{x}_{1}$ | - | $6 \boldsymbol{x}_{2}$ | $\leq$ | -11 |
|  | $-6 \boldsymbol{x}_{1}$ | + | $8 \boldsymbol{x}_{2}$ | $\leq$ | 21 |

## Relaxed problem

Optimal relaxed solution is $\left(\frac{9}{2}, 6\right)^{\mathrm{T}}$.
Cutting plane 1

| The last inequality | $-3 \boldsymbol{x}_{1}+4 \boldsymbol{x}_{2} \leq$ | $\frac{21}{2}$ |
| :--- | :--- | :--- | :--- |
| Every feasible $\boldsymbol{x} \in \mathbb{Z}^{2}$ satisfies | $-3 \boldsymbol{x}_{1}+4 \boldsymbol{x}_{2} \leq 10$ |  |

## Cutting plane 2

Cutting plane 1
The first inequality
Sum
Every feasible $\boldsymbol{x} \in \mathbb{Z}^{2}$ satisfies

| $-6 \boldsymbol{x}_{1}+8 \boldsymbol{x}_{2}$ | $\leq 20$ |  |
| ---: | :--- | ---: |
| $6 \boldsymbol{x}_{1}+9 \boldsymbol{x}_{2}$ | $\leq 81$ |  |
|  | $17 \boldsymbol{x}_{2}$ | $\leq 101$ |
| $\boldsymbol{x}_{2}$ | $\leq 5$ |  |

## Gomory-Chvátal cutting plane proof

## System of inequalities

Consider a system $P=\{\boldsymbol{x} ; A \boldsymbol{x} \leq \boldsymbol{b}\}$ with $n$ variables and $m$ inequalities.

## Definition: Gomory-Chvátal cutting plane

- Consider a non-negative linear combination of inequalities $\boldsymbol{y} \in \mathbb{R}^{m}$
- Let $\boldsymbol{c}=\boldsymbol{y}^{\mathrm{T}} A$ and $d=\boldsymbol{y}^{\mathrm{T}} \boldsymbol{b}$
- Every point $\boldsymbol{x} \in P$ satifies $\boldsymbol{c}^{T} \boldsymbol{x} \leq d$
- Furthermore, if $\boldsymbol{c}$ is integral, every integral point $\boldsymbol{x}$ satisfies $\boldsymbol{c}^{T} \boldsymbol{x} \leq\lfloor d\rfloor$
- The inequality $\boldsymbol{c}^{T} \boldsymbol{x} \leq\lfloor d\rfloor$ is called a Gomory-Chvátal cutting plane


## Definition: Gomory-Chvátal cutting plane proof

A cutting plane proof of an inequality $\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} \leq t$ is a sequence of inequalities $a_{m+k}^{\mathrm{T}} x \leq b_{m+k}$ where $k=1, \ldots, M$ such that

- for each $k=1, \ldots, M$ the inequality $a_{m+k}^{T} x \leq b_{m+k}$ is a cutting plane derived from the system $a_{i}^{\mathrm{T}} x \leq b_{i}$ for $i=1, \ldots, m+k-1$ and
- $\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} \leq t$ is the last inequality $\mathrm{a}_{m+M}^{\mathrm{T}} \boldsymbol{X} \leq b_{m+M}$.


## Gomory-Chvátal cutting plane: Theorems

## Theorem: Existence of a cutting plane proof for every valid inequality

Let $P=\{\boldsymbol{x} ; A \boldsymbol{x} \leq \boldsymbol{b}\}$ be a rational polytope and let $\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} \leq t$ be an inequality with $\boldsymbol{w}^{\mathrm{T}}$ intergal satisfied by all integral vectors in $P$. Then there exists a cutting plane proof of $\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} \leq t^{\prime}$ from $A \boldsymbol{x} \leq \boldsymbol{b}$ for some $t^{\prime} \leq t$.

## Theorem: Cutting plane proof for $0^{\mathrm{T}} \boldsymbol{x} \leq-1$ in polytopes without integral point

 Let $P=\{\boldsymbol{x} ; A \boldsymbol{x} \leq \boldsymbol{b}\}$ be a rational polytope that contains no integral point. Then there exists a cutting plane proof of $\mathbf{O}^{\mathrm{T}} \boldsymbol{x} \leq-1$ from $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}$.
## Lemma

Let $F$ be a face of a rational polytope $P$. If $\boldsymbol{c}^{T} \boldsymbol{x} \leq\lfloor d\rfloor$ is a cutting plane for $F$, then there exists a cutting plane $\boldsymbol{c}^{\prime \mathrm{T}} \boldsymbol{x} \leq d^{\prime}$ such that

$$
F \cap\left\{\boldsymbol{x} ; \boldsymbol{c}^{\prime \mathrm{T}} \boldsymbol{x} \leq\left\lfloor d^{\prime}\right\rfloor\right\}=F \cap\left\{\boldsymbol{x} ; \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x} \leq\lfloor d\rfloor\right\} .
$$

## Gomory-Chvátal cutting plane: Proof of the lemma

## Lemma

Let $F$ be a face of a rational polytope $P$. If $\boldsymbol{c}^{T} \boldsymbol{x} \leq\lfloor d\rfloor$ is a cutting plane for $F$, then there exists a cutting plane $\boldsymbol{c}^{\prime T} \boldsymbol{x} \leq d^{\prime}$ such that

$$
F \cap\left\{\boldsymbol{x} ; \boldsymbol{c}^{\prime \mathrm{T}} \boldsymbol{x} \leq\left\lfloor d^{\prime}\right\rfloor\right\}=F \cap\left\{\boldsymbol{x} ; \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x} \leq\lfloor d\rfloor\right\} .
$$

## Proof

(1) Let $P=\left\{\boldsymbol{x} ; A^{\prime} \boldsymbol{x} \leq \boldsymbol{b}^{\prime}, \boldsymbol{A}^{\prime \prime} \boldsymbol{x} \leq \boldsymbol{b}^{\prime \prime}\right\}$ and $F=\left\{\boldsymbol{x} ; A^{\prime} \boldsymbol{x} \leq \boldsymbol{b}^{\prime}, \boldsymbol{A}^{\prime \prime} \boldsymbol{x}=\boldsymbol{b}^{\prime \prime}\right\}$ where $A^{\prime \prime}$ and $b^{\prime \prime}$ are integral
(2) Assume $d=\max \left\{\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x} ; \boldsymbol{x} \in F\right\}$
(3) By Farkas' lemma, there exists vectors $\boldsymbol{y}^{\prime} \geq \mathbf{0}$ and $\boldsymbol{y}^{\prime \prime}$ such that

$$
\boldsymbol{y}^{\prime \mathrm{T}} A^{\prime}+\boldsymbol{y}^{\prime \prime \mathrm{T}} A^{\prime \prime}=\boldsymbol{c}^{\mathrm{T}} \text { and } \boldsymbol{y}^{\prime \mathrm{T}} b^{\prime}+\boldsymbol{y}^{\prime / \mathrm{T}} b^{\prime \prime}=\bar{d}
$$

(4) $\boldsymbol{c}^{\prime}=\boldsymbol{c}-\left\lfloor\boldsymbol{y}^{\prime \prime}\right\rfloor^{\mathrm{T}} A^{\prime \prime}=\boldsymbol{y}^{\prime \mathrm{T}} A^{\prime}+\left(\boldsymbol{y}^{\prime \prime}-\left\lfloor\boldsymbol{y}^{\prime \prime}\right\rfloor\right)^{\mathrm{T}} A^{\prime \prime}$
$d^{\prime}=d-\left\lfloor\boldsymbol{y}^{\prime \prime}\right\rfloor^{\mathrm{T}} b^{\prime \prime}=\boldsymbol{y}^{\prime \mathrm{T}} b^{\prime}+\left(\boldsymbol{y}^{\prime \prime}-\left\lfloor\boldsymbol{y}^{\prime \prime}\right\rfloor\right)^{\mathrm{T}} b^{\prime \prime}$
(5) Since $\boldsymbol{y}^{\prime}$ and $\left(\boldsymbol{y}^{\prime \prime}-\left\lfloor\boldsymbol{y}^{\prime \prime}\right\rfloor\right)^{\mathrm{T}}$ are non-negative, $\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x} \leq \boldsymbol{d}^{\prime}$ is a valid inequality for $P$
(6) Hence, $F \cap\left\{\boldsymbol{x} ; \boldsymbol{c}^{\prime \mathrm{T}} \boldsymbol{x} \leq\left\lfloor d^{\prime}\right\rfloor\right\}=F \cap\left\{\boldsymbol{x} ; \boldsymbol{c}^{\prime \mathrm{T}} \boldsymbol{x} \leq\left\lfloor\boldsymbol{d}^{\prime}\right\rfloor,\left\lfloor\boldsymbol{y}^{\prime \prime \mathrm{T}}\right\rfloor A^{\prime \prime} \boldsymbol{x}=\left\lfloor\boldsymbol{y}^{\prime \prime \mathrm{T}}\right\rfloor \boldsymbol{b}^{\prime \prime}\right\}=$ $F \cap\left\{\boldsymbol{x} ; \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x} \leq\lfloor d\rfloor\right\}$.

## Gomory-Chvátal cutting plane: Proof of the Theorem

## Theorem: Cutting plane proof for $0^{T} x \leq-1$ in polytopes without integral point

Let $P=\{\boldsymbol{x} ; A \boldsymbol{x} \leq \boldsymbol{b}\}$ be a rational polytope that contains no integral point. Then there exists a cutting plane proof of $\mathbf{0}^{\mathrm{T}} \boldsymbol{x} \leq-1$ from $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}$.

## Proof

Induction by $\operatorname{dim}(P)$. Trivial for $\operatorname{dim}(P)=0$. Assume $\operatorname{dim}(P) \geq 1$.
(1) Let $\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} \leq l$ induces a proper face of $P$ and $\bar{P}=\left\{\boldsymbol{x} \in P ; \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} \leq\lfloor I\rfloor\right\}$
(2) We derive $\boldsymbol{0}^{\mathrm{T}} \boldsymbol{x} \leq-1$ from $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}, \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} \leq\lfloor I\rfloor$ by the following two cases

- If $\bar{P}=\emptyset$, we use Farkas' lemma
- If $\bar{P} \neq \emptyset$, let $F=\left\{\boldsymbol{x} \in P ; \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}=\lfloor I\rfloor\right\}$
- Since $\operatorname{dim}(F)<\operatorname{dim}(P)$, there exists a cutting plane proof of $\boldsymbol{0}^{\mathrm{T}} \boldsymbol{x} \leq-1$ from $A \boldsymbol{x} \leq b$, $\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}=\lfloor!\rfloor$
- By lemma, there exists a cutting plane proof of $\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x} \leq\lfloor d\rfloor$ such that

$$
\bar{P} \cap\left\{\boldsymbol{x} ; \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x} \leq\lfloor d\rfloor, \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}=\lfloor I\rfloor\right\}=\emptyset
$$

- Applying these sequence of cuts to $\bar{P}$, we obtain $\boldsymbol{w}^{T} \boldsymbol{x} \leq\lfloor I\rfloor-1$
- Repeat these steps on $\bar{P}=\left\{\boldsymbol{x} \in P ; \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} \leq\lfloor I\rfloor-1\right\}$
- The number of repetitions is finite since $P$ is bounded


## Gomory-Chvátal cutting plane: Proof of the Theorem

## Theorem: Existence of a cutting plane proof for every valid inequality

Let $P=\{\boldsymbol{x} ; A \boldsymbol{x} \leq \boldsymbol{b}\}$ be a rational polytope and let $\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} \leq t$ be an inequality with $\boldsymbol{w}^{\mathrm{T}}$ integral satisfied by all integral vectors in $P$. Then there exists a cutting plane proof of $\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} \leq t^{\prime}$ from $A \boldsymbol{x} \leq \boldsymbol{b}$ for some $t^{\prime} \leq t$.

## Proof

Let $I=\max \left\{\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} ; \boldsymbol{x} \in P\right\}$ and $\bar{P}=\left\{\boldsymbol{x} \in P ; \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} \leq\lfloor I\rfloor\right\}$

- If $P$ contains no integer point, then there exists a cutting plane proof of $\boldsymbol{0}^{\mathrm{T}} \boldsymbol{x} \leq-1$ and $\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} \leq t^{\prime}$ for some $t^{\prime} \leq t$
- If $P$ contains an integral point, then:
(1) If $\lfloor I\rfloor \leq t$, we are finished, so we suppose not
(2) $F=\left\{\boldsymbol{x} \in \bar{P}: \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}=\lfloor I\rfloor\right\}$ is a face of $\bar{P}$
(3) Since $F$ has no integral point, we derive $\mathbf{0}^{\mathrm{T}} \boldsymbol{x} \leq-1$ from $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}, \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}=\lfloor!\rfloor$
(4) By lemma, there exists a cutting plane proof of $\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x} \leq\lfloor d\rfloor$ from $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}, \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} \leq\lfloor I\rfloor$ such that $\bar{P} \cap\left\{\boldsymbol{x} ; \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x} \leq\lfloor d\rfloor, \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}=\lfloor I\rfloor\right\}=\emptyset$
(5) We apply this sequence of cuts to $\bar{P}$ to obtain cutting plane $\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} \leq\lfloor I\rfloor-1$
(6) Now, we continue until we derive $\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} \leq t^{\prime}$ for some $t^{\prime} \leq t$


## Total unimodularity

## Questions

- How to recognise whether a polytope $P=\{\boldsymbol{x} ; A \boldsymbol{x} \leq \boldsymbol{b}\}$ is integral?
- When $P$ is integral for every integral vector $\boldsymbol{b}$ ?


## Proposition

Let $A \in \mathbb{R}^{m \times m}$ be an integral and regular matrix. Then, $A^{-1} b$ is integral for every integral vector $\boldsymbol{b} \in \mathbb{R}^{m}$ if and only if $\operatorname{det}(A) \in\{1,-1\}$.

## Proof

$\Leftarrow$ By Cramer's rule, $A^{-1}$ is integral, so $A^{-1} b$ is integral for every integral $\boldsymbol{b}$
$\Rightarrow \quad \bullet A_{\star, i}^{-1}=A^{-1} e_{i}$ is integral for every $i=1, \ldots, m$

- Since $A$ and $A^{-1}$ are integral, also $\operatorname{det}(A)$ and $\operatorname{det}\left(A^{-1}\right)$ are both integers
- From $1=\operatorname{det}(A) \cdot \operatorname{det}\left(A^{-1}\right)$ it follows that $\operatorname{det}(A)=\operatorname{det}\left(A^{-1}\right) \in\{1,-1\}$


## Unimodular matrix

## Definition

A full row rank matrix $A$ is unimodular if $A$ is integral and each basis of $A$ has determinant $\pm 1$.

## Theorem

Let $A \in \mathbb{R}^{m \times n}$ be an integral full row rank matrix. Then, the polyhedron $P=\{\boldsymbol{x} ; \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}, \boldsymbol{x} \geq \mathbf{0}\}$ is integral for every integral vector $\boldsymbol{b}$ if and only if $A$ is unimodular.

## Proof

$\Leftarrow \quad$ - Let $\boldsymbol{b}$ be an integral vector and let $\boldsymbol{x}^{\prime}$ be a vertex of $P$

- Columns of $A$ corresponding to non-zero components of $\boldsymbol{x}^{\prime}$ are linearly independent and we extend these columns into a basis $A_{B}$
- Hence, $\boldsymbol{x}_{B}^{\prime}=A_{B}^{-1} \boldsymbol{b}$ is integral and $\boldsymbol{x}_{N}^{\prime}=\mathbf{0}$
$\Rightarrow \quad$ - We prove that $A_{B}^{-1} \boldsymbol{v}$ is integral for every base $B$ and integral vector $\boldsymbol{v}$
- Let $\boldsymbol{y}$ be integral vector such that $\boldsymbol{y}+A_{B}^{-1} \boldsymbol{v} \geq 0$
- Let $\boldsymbol{b}=A_{B}\left(\boldsymbol{y}+A_{B}^{-1} \boldsymbol{v}\right)=A_{B} \boldsymbol{y}+\boldsymbol{v}$ which is integral
- Let $\boldsymbol{z}_{B}=\boldsymbol{y}+B^{-1} \boldsymbol{v}$ and $\boldsymbol{z}_{N}=\mathbf{0}$
- From $A \boldsymbol{z}=A_{B}\left(\boldsymbol{y}+B^{-1} \boldsymbol{v}\right)=\boldsymbol{b}$ and $\boldsymbol{z} \geq \mathbf{0}$, it follows that $\boldsymbol{z} \in P$ and $\boldsymbol{z}$ is a vertex of $P$
- Hence, $A_{B}^{-1} \boldsymbol{v}=\boldsymbol{z}_{B}-\boldsymbol{y}$ is integral


## Totally unimodular matrix

## Definition

A matrix is totally unimodular if all of its square submatrices have determinant 0,1 or -1 .

## Exercise

Prove that every element of a totally unimodular matrix is 0,1 or -1 .
Find a matrix $A \in\{0,1,-1\}^{m \times n}$ which is not totally unimodular.

## Exercise

Prove that $A$ is totally unimodular if and only if $(A \mid I)$ is unimodular.

## Totally unimodular matrix

## Theorem: Hoffman-Kruskal

Let $A \in \mathbb{Z}^{m \times n}$ and $P=\{\boldsymbol{x} ; A \boldsymbol{x} \leq \boldsymbol{b}, \boldsymbol{x} \geq \mathbf{0}\}$. The polyhedron $P$ is integral for every integral $\boldsymbol{b}$ if and only if $A$ is totally unimodular.

## Proof

Adding slack variables, we observe that the following statements are equivalent.
(1) $\{\boldsymbol{x} ; \boldsymbol{A x} \leq \boldsymbol{b}, \boldsymbol{x} \geq \mathbf{0}\}$ is integral for every integral $\boldsymbol{b}$
(2) $\{\boldsymbol{x} ;(A \mid I) \boldsymbol{z}=\boldsymbol{b}, \boldsymbol{z} \geq \mathbf{0}\}$ is integral for every integral $\boldsymbol{b}$
(3) $(A \mid I)$ is unimodular
( $A$ is totally unimodular

## Theorem

Let $A$ be an totally unimodular matrix and let $b$ be an integral vector. Then, The polyhedron defined by $\boldsymbol{A x} \leq \boldsymbol{b}$ is integral.

## Proof

- Let $F=\left\{\boldsymbol{x} ; A^{\prime} \boldsymbol{x} \leq \boldsymbol{b}^{\prime}, A^{\prime \prime} \boldsymbol{x}=\boldsymbol{b}^{\prime \prime}\right\}$ be a minimal face where $A^{\prime \prime}$ has full row rank
- Let $B$ be a basis of $A^{\prime \prime}$
- Then, $\boldsymbol{x}_{B}=A_{B}^{\prime \prime-1} \boldsymbol{b}^{\prime \prime}$ and $\boldsymbol{x}_{N}=\mathbf{0}$ is an integral point in $F$


## Totally unimodular matrix: Application

## Observation

Let $A$ be a matrix of 0,1 and -1 where every column has at most one +1 and at most one -1 . Then, $A$ is totally unimodular.

## Proof

By the induction on $k$ prove that every $k \times k$ submatrix $N$ has determinant $0,+1$ or -1 $k=1$ Trivial
$k>1 \quad$ - If $N$ has a column with at most one non-zero element, then we expand this column and use induction

- If $N$ has exactly one +1 and -1 in every column, then the sum of all rows is 0 , so $N$ is singular


## Corollary

The incidence matrix of an oriented graph is totally unimodular.

## Observation: Other totally unimodular (TU) matrices

$A$ is TU iff $\quad A^{\mathrm{T}}$ is TU iff $\quad(A \mid I)$ is TU iff $\quad(A \mid A)$ is TU iff $\quad(A \mid-A)$ is TU

## Network flow

## Definition: Network flow

Let $G=(V, E)$ be an oriented graph with non-negative capacities of edges $c \in \mathbb{R}^{E}$. A network flow in $G$ is a vector $f \in \mathbb{R}^{E}$ such that
Conservation: $\sum_{u v \in E} f_{u v}=\sum_{v u \in E} f_{v u}$ for every vertex $v \in V$
Capacity: $0 \leq f \leq c$
The network flow problem is the optimization problem of finding a flow $f$ in $G$ that maximize $f_{t s}$ on a given edge $t s \in E$.

## Theorem

The polytope of network flow is integral for every integral c.

## Proof

(1) Let $A$ be the incidence matrix of $G$
(2) $A$ is totally unimodular
(3) $(A \mid-A)$ and $(A|-A| I)$ are totally unimodular
(9) $\left\{f ;\left(\begin{array}{c}A \\ -A \\ I\end{array}\right) f \leq\left(\begin{array}{l}0 \\ 0 \\ c\end{array}\right), f \geq 0\right\}$ is an integral polytope

## Duality of the network flow problem

## Primal: Network flow

Maximize $f_{t s}$ subject to $A f=\mathbf{0}, f \leq c$ and $f \geq \mathbf{0}$.

## Primal dual

Minimize $c z$ subject to $A^{\mathrm{T}} \boldsymbol{y}+\boldsymbol{z} \geq e_{t s}$, that is $-\boldsymbol{y}_{u}+\boldsymbol{y}_{v}+\boldsymbol{z}_{u v} \geq 0$ for $u v \neq t s$ and $-\boldsymbol{y}_{t}+\boldsymbol{y}_{s} \geq 1$ assuming $f(t s)$ is unbounded.

## Observation

Dual problem has an integral optimal solution.

## Theorem

The dual problem is the minimal cut problem where $Z=\left\{u v \in E ; z_{u v}=1\right\}$ are cut edges and $U=\left\{u \in V_{;} \boldsymbol{y}_{u}>\boldsymbol{y}_{t}\right\}$ is partition of vertices.

## Outline

(1) Linear programming

2 Linear, affine and convex sets
(3) Simplex method
(4) Duality of linear programming
(5) Integer linear programming

6 Matching
(7) Ellipsoid method
(8) Vertex Cover
(9) Matroid

## Augmenting paths

## Definitions

Let $M \subseteq E$ a matching of a graph $G=(V, E)$.

- A vertex $v \in V$ is $M$-covered if some edge of $M$ is incident with $v$.
- A vertex $v \in V$ is $M$-exposed if $v$ is not $M$-coveder.
- A path $P$ is $M$-alternating if its edges are alternately in and not in $M$.
- An $M$-alternating path is $M$-augmenting if both end-vertices are $M$-exposed.


## Augmenting path theorem of matchings

A matching $M$ in a graph $G=(V, E)$ is maximum if and only if there is no $M$-augmenting path.

## Proof

$\Rightarrow$ Every $M$-augmenting path increases the size of $M$
$\Leftarrow$ Let $N$ be a matching such that $|N|>|M|$ and we find an $M$-augmenting path
(1) The graph ( $V, N \cup M$ ) contains a component $K$ which has more $N$ edges than $M$ edges
2. $K$ has at least two vertices $u$ and $v$ which are $N$-covered and $M$-exposed
(3) Verteces $u$ and $v$ are joined by a path $P$ in $K$
(4) Observe that $P$ is $M$-augmenting

## Tutte-Berge Formula

## Definition

Let $\operatorname{def}(G)$ be the number of exposed edges by a maximal-size matching in $G=(V, E)$.

## Definition

Let $o c(G)$ be the number of odd components of a graph $G$.

## Observation

For every $A \subseteq V$ it holds that $\operatorname{def}(G) \geq \mathrm{oc}(G \backslash A)-|A|$.
Theorem: Tutte-Berge Formula $\operatorname{def}(G)=\min \{\operatorname{oc}(G \backslash A)-|A| ; A \subseteq V\}$

## Proof

$\geq$ Follows from the previous observation.
$\leq$ An algorithm presented later.

## Tutte's matching theorem

A graph $G$ has a perfect matching if and only if $\mathrm{oc}(G \backslash A) \leq|A|$ for every $A \subseteq V$.

## Alternating tree

Construction of an $M$-alternating tree $T$ on vertices $A \dot{\cup} B$
Init: $A=\emptyset$ and $B=\{r\}$ where $r$ is an $M$-exposed root
Step: Let $u v \in E$ such that $u \in B, v \notin A \cup B$ and $v z \in M$ for some $z \in V$ Add $v$ to $A$ and $z$ to $B$

## Properties

- $r$ is the only $M$-exposed vertex of $T$
- For every $v$ of $T$, the path in $T$ from $v$ to $r$ is $M$-alternating


## Definition

$M$-alternation path $T$ is frustrated if every edge of $G$ having one ege in $B$ has the other end in $A$

## Observation

If $G$ has a matching $M$ and a frustrated $M$-alternating tree, then $G$ has no perfect matching.

## Proof

$B$ are single vertex components of $G \backslash A$, so oc $(G \backslash A) \geq|B|>|A|$

## Operations

## Use $u v \in E$ to extend $T$

Input: A matching $M$ of a graph $G$, an $M$-alternating tree $T$, edge $u v \in E$ such that $u \in B$ and $v \notin A \cup B$ and $v$ is $M$-covered
Action: Let $v z \in M$ and extend $T$ by edges $u v$ and $v z$

## Use $u v \in E$ to augment $M$

Input: A matching $M$ of a graph $G$, an $M$-alternating tree $T$ with root $r$, edge $u v \in E$ such that $u \in B$ and $v \notin A \cup B$ and $v$ is $M$-exposed
Action: Let $P$ be the path obtained by attaching $u v$ to the path from $r$ to $v$ in $T$. Replace $M$ by $M \triangle E(P)$.

## Perfect matchings algorithm in a non-weighted bipartite graph

## Algorithm

1 Init: $M=\emptyset$ and $T=(\{r\}, \emptyset)$ where $r$ is an arbitrary vertex
2 while there exists $u v \in E$ with $u \in B(T)$ and $v \notin V(T)$ do
if $v$ is $M$-exposed then
Use $u v$ to augment $M$
if there is no $M$-exposed node in $G$ then return $M$
else
Replace $T$ by $(\{r\}, \emptyset)$ where $r$ is an $M$-exposed vertex
else
$\lfloor$ Use $u v$ to extend $T$
return $G$ has no perfect matching since $T$ is a frustrated $M$-alternating path

## Theorem

The algorithm decides whether a given bipartite graph $G$ has a perfect matching and find one if exists. The algorithm calls $O(n)$ augmenting operations and $O\left(n^{2}\right)$ extending operations.

## Perfect matchings in bipartite graphs

## Minimal-weight perfect matching

Let $G$ be a graph with weights $\boldsymbol{c} \geq \mathbf{0}$ on edges. The minimal-weight perfect matching problem is minimizing $\boldsymbol{c x}$ subject to $A \boldsymbol{x}=\mathbf{1}$ and $\boldsymbol{x} \in\{0,1\}^{E}$ where $A$ is the incidence matrix.

## Observation

The incidence matrix $A$ of a bipartite graph $G$ is totally unimodular.

## Proof

By the induction on $k$ prove that every $k \times k$ submatrix $N$ has determinant $0,+1$ or -1 $k=1$ Trivial
$k>1$ - If $N$ has a column or a row with at most one non-zero element, then we expand this column and use induction

- Otherwise, the subgraph of edges corresponing to rows of $N$ contains a cycle and rows corresponing to edges of a cycle are linearly dependent.


## Theorem

If $A$ is an incidence matrix of a bipartite graph, then $\{\boldsymbol{x} ; A \boldsymbol{x}=\mathbf{1}, \boldsymbol{x} \geq \mathbf{0}\}$ is integral.

## Duality and complementary slackness of perfect matchings

## Primal: relaxed perfect matching

Minimize $\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}$ subject to $\boldsymbol{A} \boldsymbol{x}=\mathbf{1}$ and $\boldsymbol{x} \geq \mathbf{0}$.

## Dual

Maximize $\mathbf{1} \boldsymbol{y}$ subject to $A^{\mathrm{T}} \boldsymbol{y} \leq \boldsymbol{c}$ and $\boldsymbol{y} \in \mathbb{R}^{E}$, that is $\boldsymbol{y}_{u}+\boldsymbol{y}_{v} \leq \boldsymbol{c}_{u v}$.
Idea of primal-dual algorithms
If we find a primal and a dual feasible solutions satisfying the complementary slackness, then solutions are optimal (relaxed) solutions.

## Definition

- An edge $u v \in E$ is called tight if $\boldsymbol{y}_{u}+\boldsymbol{y}_{v}=\boldsymbol{c}_{u v}$.
- Let $E_{y}$ be the set of a tight edges of the dual solution $\boldsymbol{y}$.
- Let $M_{\boldsymbol{x}}=\left\{u v \in E ; \boldsymbol{x}_{u v}=1\right\}$ be the set of matching edge of the primal solution $\boldsymbol{x}$.


## Complementary slackness

$\boldsymbol{x}_{u v}=0$ or $\boldsymbol{y}_{u}+\boldsymbol{y}_{v}=\boldsymbol{c}_{u v}$ for every edge $u v \in E$, that is $M_{\boldsymbol{x}} \subseteq E_{\boldsymbol{y}}$

## Weighted perfect matchings in a bipartite graph: Overview

## Complementary slackness

$\boldsymbol{x}_{u v}=0$ or $\boldsymbol{y}_{u}+\boldsymbol{y}_{v}=\boldsymbol{c}_{u v}$ for every edge $u v \in E$, that is $M_{\boldsymbol{x}} \subseteq E_{y}$
Invariants

- Dual solution is feasible, that is $\boldsymbol{y}_{u}+\boldsymbol{y}_{v} \leq \boldsymbol{c}_{u v}$
- Every matching edge is tight
- $\boldsymbol{x} \in\{0,1\}^{E}$ and $M_{\boldsymbol{x}}=\left\{u v \in E ; \boldsymbol{x}_{u v}=1\right\}$ form a matching


## Initial solution satisfying invariants

$\boldsymbol{x}=\mathbf{0}$ and $\boldsymbol{y}=\mathbf{0}$

## Lemma: optimality

If $M_{x}$ is a perfect matching, then $M_{x}$ is a perfect matching with the minimal weight.

## Idea of the algorithm

- If there exists an $M_{x}$-augmenting path $P$ in $\left(V, E_{y}\right)$, then $M_{x} \triangle P$ is a new matching.
- Otherwise, update the dual solution $y$ to enlarge $E_{y}$.


## Minimal weight perfect matchings algorithm in a bipartite graph

## Algorithm

1 Init: $\boldsymbol{y}=\mathbf{0}$ and $M=\emptyset$ and $T=(\{r\}, \emptyset)$ where $r$ is an arbitrary vertex
2 Loop
Find a perfect matching $M$ in $\left(V, E_{y}\right)$ or flustrated $M$-alternating tree if $M$ is a perfect matching of $G$ then return Perfect matching $M$
$\epsilon=\min \left\{c_{u v}-\boldsymbol{y}_{u}-\boldsymbol{y}_{v} ; u, v \in E, u \in B(T), v \notin T\right\}$
if $\epsilon=\infty$ then
return Dual problem is unbounded, so there is no perfect matching
$\boldsymbol{y}_{u}:=\boldsymbol{y}_{u}+\epsilon$ for all $u \in B$
$\boldsymbol{y}_{v}:=\boldsymbol{y}_{v}-\epsilon$ for all $v \in A$

## Theorem

The algorithm decides whether a given bipartite graph $G$ has a perfect matching and a minimal-weight perfect matching if exists. The algorithm calls $O(n)$ augmenting operations and $O\left(n^{2}\right)$ extending operations and $O\left(n^{2}\right)$ dual changes.

## Shrinking odd circuits

## Definition

Let $C$ be an odd circuit in $G$. The graph $G \times C$ has vertices $(V(G) \backslash V(C)) \cup\left\{c^{\prime}\right\}$ where $c^{\prime}$ is a new vertex and edges

- $E(G)$ with both end-vertices in $V(G) \backslash V(C)$ and
- and $u c^{\prime}$ for every edge $u v$ with $u \notin V(C)$ and $v \in V(C)$.

Edges $E(C)$ are removed.

## Proposition

Let $C$ be an odd circuit of $G$ and $M^{\prime}$ be a matching $G \times C$. Then, there exists a matching $M$ of $G$ such that $M \subseteq M^{\prime} \cup E(C)$ and the number of $M^{\prime}$-exposed nodes of $G$ is the same as the number of $M^{\prime}$-exposed nodes in $G \times C$.

Corollary
$\operatorname{def}(G) \leq \operatorname{def}(G \times C)$

## Exercise

Find a graph $G$ with odd circuit $C$ such that $\operatorname{def}(G)<\operatorname{def}(G \times C)$.

## Perfect matching in general graphs

## Use $u v$ to shrink and update $M^{\prime}$ and $T$

Input: A matching $M^{\prime}$ of a graph $G^{\prime}$, an $M^{\prime}$-alternating tree $T$, edge $u v \in E^{\prime}$ such that $u, v \in B$
Action: Let $C$ be the circuit formed by $u v$ together with the path in $T$ from $u$ to $v$. Replace $G^{\prime}$ by $G^{\prime} \times C, M^{\prime}$ by $M^{\prime} \backslash E(C)$ and $T$ by the tree having edge-set $E(T) \backslash E(C)$.

## Observation

Let $G^{\prime}$ be a graph obtained from $G$ by a sequence of odd-circuit shrinkings. Let $M^{\prime}$ be matching of $G^{\prime}$ and let $T$ be an $M^{\prime}$ alternating tree of $G^{\prime}$ such that all vertices of $A$ are original vertices of $G$. If $T$ is frustrated, then $G$ has no perfect matching.

## Perfect matchings algorithm in a non-weighted graph

## Algorithm

Init: $M^{\prime}=M=\emptyset, G^{\prime}=G$ and $T=(\{r\}, \emptyset)$ where $r$ is an arbitrary vertex
2 while there exists $u v \in E^{\prime}$ with $u \in B$ and $v \notin A$ do
if $v \notin T$ is $M^{\prime}$-exposed then
Use $u v$ to augment $M^{\prime}$
Extend $M^{\prime}$ to a matching $G$
Replace $M^{\prime}$ by $M$ and $G^{\prime}$ by $G$
if there is no $M^{\prime}$-exposed node in $G^{\prime}$ then return Perfect matching $M$
else
Replace $T$ by $(\{r\}, \emptyset)$ where $r$ is an $M^{\prime}$-exposed vertex
else if $v \notin T$ is $M^{\prime}$-covered then
Use $u v$ to extend $T$
else if $v \in B$ then
Use $u v$ to shrink and update $M^{\prime}$ and $T$
return $G$ has no perfect matching since $T$ is a frustrated $M$-alternating path

## Minimum-Weight perfect matchings in general graphs

## Observation

Let $M$ be a perfect matching of $G$ and $D$ be an odd set of vertices of $G$. Then there exists at least one edge $u v \in M$ between $D$ and $V \backslash D$.

Linear programming for Minimum-Weight perfect matchings in general graphs

| Minimize | $\boldsymbol{c x}$ |  |
| :--- | :--- | :--- |
| subject to | $\delta^{u} \boldsymbol{x}$ | $=1 \quad$ for all $u \in V$ |
|  | $\delta^{D} \boldsymbol{x}$ | $\geq 1 \quad$ for all $D \in \mathcal{C}$ |
| $\boldsymbol{x}$ | $\geq 0$ |  |

Where $\delta^{D} \in\{0,1\}^{E}$ is a vector such that $\delta_{u v}^{D}=1$ if $|u v \cap D|=1$ and $\delta^{w}=\delta^{\{w\}}$ and $\mathcal{C}$ is the set of all odd-size subsets of $V$.

## Exercise

Find a cutting plane proof of all odd-subset conditions.

## Theorem

Let $G$ be a graph and $\boldsymbol{c} \in \mathbb{R}^{E}$. Then $G$ has a perfect matching if and only if the LP problem is feasible. Moreover, if $G$ has a perfect matching, the minimum weight of a perfect matching is equal to the optimal value of the LP problem.

## Minimum-Weight perfect matchings in general graphs: Duality

## Primal

$$
\begin{array}{ll}
\text { Minimize } & \boldsymbol{c x} \\
\text { subject to } & \delta^{u} \boldsymbol{x}=1 \quad \text { for all } u \in V \\
& \delta^{D} \boldsymbol{x} \geq 1 \quad \text { for all } D \in \mathcal{C}
\end{array}
$$

Maximize $\quad \sum_{v \in V} \boldsymbol{y}_{v}+\sum_{D \in \mathcal{C}} \boldsymbol{z}_{D}$
subject to $\boldsymbol{y}_{u}+\boldsymbol{y}_{v}+\sum_{u v \in D \in \mathcal{C}} \boldsymbol{z}_{D} \leq \boldsymbol{c}_{u v} \quad$ for all $u v \in E$

Notation: Reduced cost
$\overline{\boldsymbol{c}}_{u v}:=\boldsymbol{c}_{u v}-\boldsymbol{y}_{u}-\boldsymbol{y}_{v}-\sum_{u v \in D \in \mathcal{C}} \boldsymbol{z}_{D}$
An edge $e$ is tight if $\overline{\boldsymbol{c}}_{e}=0$
Complementary slackness

- $x_{e}>0$ implies $e$ is tight for all $e \in E$
- $\boldsymbol{z}_{D}>0$ implies $\delta^{D} \boldsymbol{x}=1$ for all $D \in \mathcal{C}$


## Minimum-Weight perfect matchings in general graphs: Change of $y$

## Updates weights and dual solution when shrinking a circuit $C$

Replace $\boldsymbol{c}_{u v}^{\prime}$ by $\boldsymbol{c}_{u v}^{\prime}-\boldsymbol{y}_{v}^{\prime}$ for $u \in C$ and $v \notin C$ and set $\boldsymbol{y}_{c^{\prime}}^{\prime}=0$ for the new vertex $c^{\prime}$. Note that the reduced cost is unchanged.

## Expand $c^{\prime}$ into circuit $C$

- Set $\boldsymbol{z}_{C}^{\prime}=\boldsymbol{y}_{C^{\prime}}^{\prime}$
- Replace $\boldsymbol{c}_{u v}^{\prime}$ by $\boldsymbol{c}_{u v}^{\prime}+\boldsymbol{y}_{v}^{\prime}$ for $u \in C$ and $v \notin C$
- Update $M^{\prime}$ and $T$

Change of $y$ and $\mathbf{z}$ on a frustrated tree
Input: A graph $G^{\prime}$ with weights $\boldsymbol{c}^{\prime}$, a feasible dual solution $\boldsymbol{y}^{\prime}$, a matching $M^{\prime}$ of tight edges of $G^{\prime}$ and an $M^{\prime}$-alternating tree $T$ of tight edges of $G^{\prime}$.
Action: - $\epsilon_{1}=\min \left\{\overline{\boldsymbol{c}}_{e}{ }^{\prime} ;\right.$ e joins a vertex in $B$ and a vertex not in $\left.T\right\}$

- $\epsilon_{2}=\min \left\{\overline{\boldsymbol{c}}_{e}^{\prime} / 2 ;\right.$ e joins two vertices of $\left.B\right\}$
- $\epsilon_{3}=\min \left\{\boldsymbol{y}_{v}^{\prime} ; v \in A\right.$ and $v$ is a pseudonode of $\left.G\right\}$
- $\epsilon=\min \left\{\epsilon_{1}, \epsilon_{2}, \epsilon_{3}\right\}$
- Replace $\boldsymbol{y}_{v}^{\prime}$ by $\boldsymbol{y}_{v}^{\prime}+\epsilon$ for all $v \in B$
- Replace $\boldsymbol{y}_{v}^{\prime}$ by $\boldsymbol{y}_{v}^{\prime}-\epsilon$ for all $v \in A$


## Minimal weight perfect matchings algorithm in a general graph

## Algorithm

1 Init: $M^{\prime}=M=\emptyset, G^{\prime}=G$ and $T=(\{r\}, \emptyset)$ where $r$ is an arbitrary vertex
2 Loop
$3 \quad$ if there exists $u v \in E_{y}, u \in B, v \notin E(T), v$ is $M^{\prime}$-exposed then
Use $u v$ to augment $M^{\prime}$
if there is no $M^{\prime}$-exposed node then
return extended $M^{\prime}$ to a perfect matching $G$
else
Replace $T$ by $(\{r\}, \emptyset)$ where $r$ is an $M^{\prime}$-exposed vertex
else if there exists $u v \in E_{y}, u \in B, v \notin E(T)$, $v$ is $M^{\prime}$-covered then Use $u v$ to extend $T^{\prime}$
else if there exists $u v \in E_{y}, u, v \in B$ then Use $u v$ to shrink and update $M^{\prime}, T^{\prime}, c^{\prime}$ else if there exists a pseudonode $v \in A$ with $\boldsymbol{y}_{v}=0$ then Expand $v$ and update $M^{\prime}, T$, and $c^{\prime}$ else

Change $y$ if $\epsilon=\infty$ then return $G$ has no perfect matching

## Maximum-weight (general) matching

## Reduction to perfect matching problem

Let $G$ be a graph with non-negative weights $c$.

- Let $G_{1}$ and $G_{2}$ be two copies of $G$
- Let $P$ be a perfect matching between $G_{1}$ and $G_{2}$ joining copied vertices
- Let $G^{\star}$ be a graph of vertices $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and edges $E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup P$
- For $e \in E\left(G_{1}\right) \cup E\left(G_{2}\right)$ let $c^{\star}(e)$ be the weight of the original edge $e$ on $G$
- For $e \in P$ let $\boldsymbol{c}^{\star}(e)=0$


## Theorem

The maximal weight of a perfect matching in $G^{\star}$ equals twice the maximal weight of a matching in $G$.

## Note

For maximal-size matching, use weights $\boldsymbol{c}=\mathbf{1}$.

## Tutte's matching theorem

A graph $G$ has a perfect matching if and only if oc $(G \backslash A) \leq|A|$ for every $A \subseteq V$.

## Outline

(1) Linear programming
(2) Linear, affine and convex sets
(3) Simplex method
(4) Duality of linear programming
(5) Integer linear programming
6) Matching
(7) Ellipsoid method
(8) Vertex Cover

## Ellipsoid method: Preliminaries

## Problem

Determine whether a given fully-dimensional convex compact set $Z \subseteq \mathbb{R}^{n}$ (e.g. a polytope) is non-empty and find a point in $Z$ if exists.

## Separation oracle

Separation oracle determines whether a point $s$ belongs into $Z$. If $s \notin Z$, the oracle finds a hyperplane that separates $s$ and $Z$.

## Inputs

- Radius $R>0$ of a ball $B(0, R)$ containing $Z$
- Radius $\epsilon>0$ such that $Z$ contains $B(s, \epsilon)$ for some point $s$ if $Z$ is non-empty
- Separation oracle


## Ellipsoid method

## Idea

Consider an ellipsoid $E$ containing $Z$. In every step, reduce the volume of $E$ using an hyperplane provided by the oracle.

## Algorithm

1 Init: $s=\mathbf{0}, E=B(s, R)$
2 Loop
3 if volume of $E$ is smaller than volume of $B(0, \epsilon)$ then

Call the oracle
if $s \in Z$ then
return $s$ is a point of $Z$
Update $s$ and $Z$ using the separation hyperplane fount by oracle

## Ellipsoid

## Definition: Ball

The ball in the centre $\boldsymbol{s} \in \mathbb{R}^{n}$ and radius $R \geq 0$ is $B(\boldsymbol{s}, R)=\left\{\boldsymbol{x} \in \mathbb{R}^{n} ;\|\boldsymbol{x}-\boldsymbol{s}\| \leq R\right\}$.

## Definition

Ellipsoid $E$ is an affine transformation of the unit ball $B(\mathbf{0}, \mathbf{1})$. That is, $E=\{M \boldsymbol{x}+\boldsymbol{s} ; \boldsymbol{x} \in B(0,1)\}$ where $M$ is a regular matrix and $s$ is the centre of $E$.

## Notation

$$
\begin{aligned}
E & =\left\{\boldsymbol{y} \in \mathbb{R}^{n} ; M^{-1}(\boldsymbol{y}-\boldsymbol{s}) \in B(\mathbf{0}, 1)\right\} \\
& =\left\{\boldsymbol{y} \in \mathbb{R}^{n} ;(\boldsymbol{y}-\boldsymbol{s})^{\mathrm{T}}\left(M^{-1}\right)^{\mathrm{T}} M^{-1}(\boldsymbol{y}-\boldsymbol{s}) \leq 1\right\} \\
& =\left\{\boldsymbol{y} \in \mathbb{R}^{n} ;(\boldsymbol{y}-\boldsymbol{s})^{\mathrm{T}} Q^{-1}(\boldsymbol{y}-\boldsymbol{s}) \leq 1\right\}
\end{aligned}
$$

where $Q=M M^{\mathrm{T}}$ is a positive definite matrix

## Ellipsoid method: update of the ellipsoid

## Separation hyperplane

Consider a hyperplane $\boldsymbol{a}^{T} \boldsymbol{x}=b$ such that $\boldsymbol{a}^{T} \boldsymbol{s} \geq b$ and $Z \subseteq\left\{\boldsymbol{x} ; \boldsymbol{a}^{T} \boldsymbol{x} \leq b\right\}$. For simplicity, assume that the hyperplane contains $\boldsymbol{s}$, that is $\boldsymbol{a}^{\mathrm{T}} \boldsymbol{s}=b$.

Update formulas (without proof)

$$
\begin{gathered}
\boldsymbol{s}^{\prime}=\boldsymbol{s}-\frac{1}{n+1} \frac{Q \boldsymbol{a}}{\sqrt{\mathbf{a}^{\mathrm{T}} Q \boldsymbol{a}}} \\
Q^{\prime}=\frac{n^{2}}{n^{2}-1}\left(Q-\frac{2}{n+1} \frac{Q \boldsymbol{a} \boldsymbol{a}^{\mathrm{T}} Q}{\mathbf{a}^{\mathrm{T}} Q \mathbf{a}}\right)
\end{gathered}
$$

Reduce of the volume (without proof)

$$
\frac{\text { volume }\left(E^{\prime}\right)}{\text { volume }(E)} \leq e^{-\frac{1}{2 n+2}}
$$

## Corollary

The number of steps of the Ellipsoid method is at most $\left\lceil n(2 n+2) \ln \frac{R}{\epsilon}\right\rceil$.

## Ellipsoid method: Estimation of radii for rational polytopes

## Largest coefficient of $\boldsymbol{A}$ and $\boldsymbol{b}$

Let $L$ be the maximal absolute value of all coefficients of $A$ and $b$.

## Estimation of $R$

We find $R^{\prime}$ such that $\|\boldsymbol{x}\|_{\infty} \leq R^{\prime}$ for all $\boldsymbol{x}$ satisfying $A \boldsymbol{x} \leq \boldsymbol{b}$ :

- Consider a vertex of the polytope satisfying a subsystem $A^{\prime} \boldsymbol{x}=\boldsymbol{b}^{\prime}$
- Cramer's rule: $\boldsymbol{x}_{i}=\frac{\operatorname{det} A_{i}^{\prime}}{\operatorname{det} A^{\prime}}$
- $\left|\operatorname{det}\left(A_{i}^{\prime}\right)\right| \leq n!L^{n}$ using the definition of determinant
- $\left|\operatorname{det}\left(A^{\prime}\right)\right| \geq 1$ since $A^{\prime}$ is integral and regular

From the choice $R^{\prime}=n!L^{n}$, it follows that $\log (R)=O\left(n^{2} \log (n) \log (L)\right)$

## Estimation of $\epsilon$ (without proof)

A non-empty rational fully-dimensional polytope contains a ball with radius $\epsilon$ where $\log \frac{1}{\epsilon}=O(p o l y(n, m, \log L))$.

## Complexity of Ellipsoid method

Time complexity of Ellipsoid method is polynomial in the length of binary encoding of $A$ and $b$.

Ellipsoid method is not strongly polynomial (without proof)
For every $M$ there exists a linear program with 2 variables and 2 constrains such that the ellipsoid method executes at least $M$ mathematical operations.

## Open problem

Decide whether there exist an algorithm for linear programming which is polynomial in the number of variables and constrains.

## Outline

## (1) Linear programming

(2) Linear, affine and convex sets
(3) Simplex method
(4) Duality of linear programming
(5) Integer linear programming
(6) Matching
(7) Ellipsoid method
(8) Vertex Cover
(9) Matroid

## Minimum vertex cover problem

## Definition

A vertex cover in a graph $G=(V, E)$ is a set of vertices $S$ such that every edge of $E$ has at least one end vertex in $S$. Finding a minimal-size vertex cover is the minimum vertex cover problem.

## Integer linear programming formulation

Minimize $\quad \sum_{v \in V} \boldsymbol{x}_{V}$
subject to $\quad x_{u}+x_{v} \geq 1 \quad$ for all $u v \in E$

$$
x_{v} \in\{0, \overline{1}\} \quad \text { for all } v \in V
$$

## Relaxed problem

Minimize
subject to

$$
\begin{array}{ll}
\sum_{v \in V} \boldsymbol{x}_{v} \\
\boldsymbol{x}_{u}+\boldsymbol{x}_{v} \geq 1 & \text { for all } u v \in E \\
0 \leq \boldsymbol{x}_{v} \leq 1 & \text { for all } v \in V
\end{array}
$$

## Approximation algorithm for vertex cover problem

## Algorithm

- Let $\boldsymbol{x}^{\star}$ the optimal relaxed solution
- Let $S_{L P}=\left\{v \in V ; \boldsymbol{x}_{v}^{\star} \geq \frac{1}{2}\right\}$


## Observation

$S_{L P}$ is a vertex cover.

## Observation

Let $S_{O P T}$ be the minimal vertex cover. Then $\frac{\left|S_{L P}\right|}{\left|S_{O P T}\right|} \leq 2$.

## Proof

- Since $\boldsymbol{x}^{\star}$ is the optimal relaxed solution, $\sum_{v \in V} \boldsymbol{x}_{V}^{\star} \leq\left|S_{O P T}\right|$
- From the rounding rule, it follows that $\left|S_{L P}\right| \leq 2 \sum_{v \in V} \boldsymbol{x}_{V}^{\star}$
- Hence, $\left|S_{L P}\right| \leq 2 \sum_{v \in V} x_{v}^{\star} \leq 2\left|S_{O P T}\right|$


## Maximum independent set problem

## Definition

An independent set in a graph $G=(V, E)$ is a set of vertices $S$ such that every edge of $E$ has at most one end vertex in $S$. Finding a maximal-size independent is the maximal independent problem.

Integer linear programming formulation
Minimize $\quad \sum_{v \in V} \boldsymbol{x}_{V}$
subject to $\quad x_{u}+x_{v} \leq 1 \quad$ for all $u v \in E$
$\boldsymbol{x}_{v} \in\{0,1\} \quad$ for all $v \in V$

## Relaxed problem

Minimize
subject to $\quad \boldsymbol{x}_{u}+\boldsymbol{x}_{v} \leq 1 \quad$ for all $u v \in E$
$0 \leq \boldsymbol{x}_{v} \leq 1 \quad$ for all $v \in V$

## Maximum independent set problem

## Relaxed solution

The relaxed solution $\boldsymbol{x}_{v}=\frac{1}{2}$ for all $v \in V$ is feasible, so the optimal relaxed solution is at least $\frac{n}{2}$.

## Optimal integer solution

The maximal independent set of a complete graph $K_{n}$ is a single vertex.

## Conclusion

In general, an optimal integer solution can be far from an optimal relaxed solution and cannot be obtained by a simple rounding.

## Inapproximability of the minimmum independent set problem

Unless $P=N P$, for every $C$ there is no polynomial-time approximation algorithm for the maximum independent set with the approximation error at most $C$.

## Outline

(1) Linear programming
(2) Linear, affine and convex sets
(3) Simplex method
(4) Duality of linear programming
(5) Integer linear programming
(6) Matching
(7) Ellipsoid method
(8) Vertex Cover
(9) Matroid

## Greedy algorithm for spanning tree problem

## Definition

A subtree $(V, J)$ of a connected graph $(V, E)$ is called a spanning tree.
Maximum-weight spanning tree is a problem to find the spanning of maximum weight.

Greedy algorithm for finding a non-weighted spanning tree
Init: $J=\emptyset$
2 while there exists an edge $e \notin J$ such that $J \cup\{e\}$ is a forest do Choose an arbitrary such $e$ Replace $J$ by $J \cup\{e\}$

## Greedy algorithm for finding a maximal-weight spanning tree

Init: $J=\emptyset$
while there exists an edge $e \notin J$ such that $J \cup\{e\}$ is a forest do
Choose such e with maximum weight
Replace $J$ by $J \cup\{e\}$

## General greedy algorithm

## Family of subsets

Consider a finite set $S$ with weights $c: S \rightarrow \mathbb{R}$ and a family of subsets $\mathcal{I} \subseteq 2^{S}$ called independent. Our problem is to find $A \in \mathcal{I}$

- with maximum cardinality or
- with maximum weight.


## When the following algorithm finds the maximal subset?

Init: $J=\emptyset$
2 while there exists an element $e \in S \backslash J$ such that $J \cup\{e\} \in \mathcal{I}$ do
Choose such e (with maximum weight)
Replace $J$ by $J \cup\{e\}$

## Examples

$\checkmark$ Spanning tree
$\times$ Matching
$\times$ Independent set of vertices

## Matroid

## Definition

A pair $(S, \mathcal{I})$ where $S$ is a finite set and $\mathcal{I} \subseteq 2^{\mathcal{I}}$ is called a matroid if
(MO) $\emptyset \in \mathcal{I}$
(M1) If $J^{\prime} \subseteq J \in \mathcal{I}$, then $J^{\prime} \in \mathcal{I}$
(M2) For every $A \subseteq S$, every maximal independent subset of $A$ has the same cardinality The cardinality of maximal independent subset of $A$ is called rank $r(A)$.

## Examples

- Forest matroid: $S$ are edges of a graph and every forest is independent
- Linear matroid: $S$ are vectors of a linear space and $\mathcal{I}$ contains linearly independent vectors
- Uniform matroid: $\mathcal{I}=\{J \subseteq S ;|J| \leq k\}$ for some $k$


## Theorem

Let ( $S, \mathcal{I}$ ) satisfies (M0) and (M1). Then the Greedy algorithm finds an optimal independent set of every $c \in \mathbb{R}^{S}$ if and only if $(S, \mathcal{I})$ is a matroid.

## Matroid and Greedy algorithm

## Theorem

Let ( $S, \mathcal{I}$ ) satisfies (M0) and (M1). Then the Greedy algorithm finds an optimal independent set of every $c \in \mathbb{R}^{S}$ if and only if $(S, \mathcal{I})$ is a matroid.

## Proof

$\Rightarrow \quad \bullet$ For contradiction, consider $J \subseteq A \subseteq S$ such that $J \in \mathcal{I}$ is inclusion-maximal subset of $A$ which is not cardinality-maximal

- Let $c$ be a characteristic vector of $A$
- The Greedy algorithm may find $J$ although it is not the maximal-weight independent set
$\Leftarrow \quad$ - Let $J=\left\{e_{1}, \ldots, e_{m}\right\}$ be fount by the Greedy algorithm
- Let $J^{\prime}=\left\{q_{1}, \ldots, q_{l}\right\}$ be an optimal solution
- Let $k$ be the least index with $c\left(q_{k}\right)>c\left(e_{k}\right)$
- Let $A=\left\{e_{1}, \ldots, e_{k-1}, q_{1}, \ldots, q_{k}\right\}$
- $\left\{e_{1}, \ldots, e_{k-1}\right\} \subseteq J$ and $\left\{q_{1}, \ldots, q_{k}\right\} \subseteq J^{\prime}$ are independent by (M1)
- $\left\{e_{1}, \ldots, e_{k-1}, q_{i}\right\}$ is dependent for every $q_{i} \in\left\{q_{1}, \ldots, q_{k}\right\} \backslash\left\{e_{1}, \ldots, e_{k-1}\right\}$ since the Greedy algorithm does not choose $q_{i}$ in the $k$-th step
- Sets $A,\left\{e_{1}, \ldots, e_{k-1}\right\}$ and $\left\{q_{1}, \ldots, q_{k}\right\}$ contradict (M2)


## Complexity of the Greedy algorithm

## Inefficient

Enumerating whole $\mathcal{I}$ is inefficient, e.g. providing all forests in the input.

## Oracula

The input contains $S$ and $c$ and an oracula which decides whether a given $A \subseteq S$ is independent.

## Complexity

Complexity is determined in the size of $S$ and the number of calls of oracula.

## Equivalent definitions of a matroid

## Theorem

A set system $(S, \mathcal{I})$ is a matroid if and only if
(IO) $\emptyset \in \mathcal{I}$
(11) If $J^{\prime} \subseteq J \in \mathcal{I}$, then $J^{\prime} \in \mathcal{I}$
(I2) For every $A, B \in \mathcal{I}$ with $|A|>|B|$ there exists $e \in A \backslash B$ such that $B \cup\{e\} \in \mathcal{I}$

## Definition

A circuit of a set system $(M, \mathcal{I})$ is a minimal dependent set.

## Observation

Let $(S, \mathcal{I})$ be a matroid, let $J \in \mathcal{I}$ and $e \in S$. Then $J \cup\{e\}$ contains at most one circuit.

## Theorem

A set $C$ of subsets of $S$ is the set of circuits of a matroid if and only if
(C0) $\emptyset \notin C$
(C1) If $C_{1}, C_{2} \in C$ and $C_{1} \subseteq C_{2}$, then $C_{1}=C_{2}$
(C2) If $C_{1}, C_{2} \in C, C_{1} \neq C_{2}$ and $e \in C_{1} \cap C_{2}$, then there exists $C^{\prime} \in C$, $C \subseteq\left(C_{1} \cup C_{2}\right) \backslash\{e\}$

