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Preliminaries

For a positive integer n let [n] = {1, 2, . . . , n}. Let⊕ denote the addition in Zn2 and for i ∈ [n]
let ei denote the vector in Zn2 with 1 exactly in the ith coordinate. Let 0 and 1 denote
the vectors of all 0’s and 1’s, respectively. The Hamming distance of u = (u1, . . . , un),
v = (v1, . . . , vn) ∈ Zn2 is

dH(u, v) = |{ i ∈ [n] |ui 6= vi}| .

Definition 1 The n-dimensional hypercube Qn (also known as an n-cube, a Boolean cube,
a discrete cube) is an undirected graph with V (Qn) = Zn2 = {0, 1}n and

E(Qn) = {uv |u⊕ v = ei for some i ∈ [n]} = {uv | dH(u, v) = 1} .

If u⊕ v = ei, the edge uv ∈ E(Qn) is said to have direction i.

Hypercube architectures (an excerpt from history)

1983-87 Cosmic Cube – Caltech (n = 2, 6, 7)

1983-87 Connection Machine CM-1, CM-2, CM-200 – MIT1 (n = 16, 9, 13)

1985-90 Intel iPSC/1, iPSC/2, iPSC/860 (n = 7)

1986-89 nCUBE-1, nCUBE-2 – nCUBE Corporation (n = 10, 13)

1980’s other manufacturers: Floating Point Corporation (T series), Ametek

1997 SGI Origin 2000 – partly involves hypercubes [3]

2002 HyperCuP – p2p networks [11]

2006 BlueCube – Bluetooth networks [2]

2011 HyperD – dynamic distributed databases [12]

1Richard Feynman, an American theoretical physicist was involved in its design [4].
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Figure 1: Hypercubes Qn for n = 1, 2, 3, 4.

Alternative definitions of hypercubes

� Qn = Kn
2 = K2 �K2 � · · ·�K2︸ ︷︷ ︸

n−times

(if n ≥ 1) and Q0 = K1.

The Cartesian product G � H of graphs G and H is the graph with the vertex set
V (G�H) = V (G)× V (H) and the edge set

E(G�H) =
{

(u, v)(u′, v)
∣∣uu′ ∈ E(G)

}
∪
{

(u, v)(u, v′)
∣∣ vv′ ∈ E(H)

}
.

� Qn is the covering graph of the Boolean lattice Bn = (P(X),⊆) with |X| = n. 2

The covering graph of a poset is the graph of its Hasse diagram. For i ∈ [n] the i-th
level of Bn is Xi = {A ⊆ X | |A| = i}.

� Qn is the 1-skeleton of the polytope [0, 1]n.

The vertices (edges) are 0-faces (1-faces, resp.) of [0, 1]n.

� Qn = Cay(Zn2 , {e1, . . . , en}).
A Cayley graph of a group Γ generated by a set S ⊆ Γ that is closed under inverses
(to be undirected) and e /∈ S (to have no loops) is Cay(Γ, S) = (Γ,

{
uv | vu−1 ∈ S

}
).

Basic properties of hypercubes

For every n ≥ 1,

� |V (Qn)| = 2n.

� |E(Qn)| = n2n−1.

The edges of each direction form a perfect matching. Each direction splits Qn into two
copies of Qn−1. Since Qn has precisely n directions the number of edges is n2n−1.

� Qn is n-regular.

A graph is k-regular if every vertex has degree k. The neighborhood of u ∈ V (Qn) is
N(u) = {u⊕ ei | i ∈ [n]}.

2Equivalently, Qn is the covering graph of the (n − 1)-simplex face lattice. The n-simplex is a convex
hull of n− 1 points in a general position (e.g. 2-simplex is a triangle, 3-simplex is a tetrahedron). The face
lattice is formed by faces (together with ∅ representing the (−1)-dimensional face) ordered by inclusion.
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� Qn is bipartite.

The size of u is defined by |u| = dH(u,0) = |{ i ∈ [n] |ui = 1}|. This allows us to define
odd (even) vertices u by their size. They form the bipartition of Qn.

� diam(Qn) = rad(Qn) = n.

The diameter (radius) of a graph G is the maximal (minimal, resp.) eccentricity in G.
The eccentricity of a vertex is its greatest distance to any other vertex.

� Qn is both n-connected and n-edge-connected.

The (vertex)-connectivity and the edge connectivity of Qn is κ(Qn) = λ(Qn) = n.

� g(Qn) = 4 and circ(Qn) = 2n (i.e. Qn is Hamiltonian) if n ≥ 2.

The girth g(G) and the circumference circ(G) is the length of the shortest (the longest,
resp.) cycle in G.

� An example of a Hamiltonian cycle inQn is a reflected Gray code Γn defined recursively
by Γ1 = (0, 1) and Γn+1 = (0Γn, 1ΓRn ) where ΓRn is the reflection of Γn.

� Qn is bipancyclic.

A graph G is (bi)pancyclic if it has cycles of all (even) lengths l for g(G) ≤ l ≤ circ(G).

� Qn has (0, 2)-property. (We also say that Qn is a (0, 2)-graph.)

A graph G has (0, 2)-property if every two vertices have 0 or 2 common neighbors. If
x is a common neighbor of u and v, their second common neighbor is u⊕ v ⊕ x.

� Qn has
(
n
k

)
2n−k k-dimensional subcubes and 3n of all subcubes.

A k-dimensional subcube is a subgraph isomorphic to Qk. All subcubes in Qn are
induced subcubes. Let w ∈ {0, 1, ∗}n and let k be the number of ∗’s in w. Then w
uniquely represents the k-subcube (denoted by Qn[w]) induced by

{(v1, . . . , vn) ∈ Zn2 | vi = wi if wi 6= ∗} .

Thus, the number of k-subcubes is the number of w ∈ {0, 1, ∗}n with k stars.

� Qn+m ' Qn �Qm for every m ≥ 1.

For an m-tuple I = (i1, . . . , im) where ij ∈ [n] are distinct and w ∈ {0, 1}m we denote

QI,wn+m = Qn+m[s] where sj =

{
∗ if j /∈ I
wij if j ∈ I .

That is, QI,wn+m is the n-dimensional subcube with m coordinates I fixed by w.
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The genus of the hypercube

The orientable genus γ(G) of a graph G is the minimal genus of an orientable surface where
G can be embedded without crossing (e.g. γ(G) = 0 if and only if G is planar).

Theorem 2 (Ringel [10]) For every n ≥ 2, γ(Qn) = (n− 4)2n−3 + 1.

Proof Applying Euler’s formula V − E + F = 2 − 2γ(G) and the fact that 4F ≤ 2E
if G is triangle-free, we obtain γ(G) ≥ E

4 −
V
2 + 1. Substituting values for Qn results in

γ(Qn) ≥ n2n−1

4 − 2n−1 + 1 = (n− 4)2n−3 + 1. Let us denote this number by γn.

Claim 3 For every n ≥ 2, Qn has an embedding to Sγn (an orientable surface of genus γn)
such that every subcube ∗w∗ (of dimension 2) is a face.

We prove the claim by induction. For n = 2 it is obvious. Assuming it holds for n − 1
we prove it for n. We start with two copies Q0

n−1, Q
1
n−1 of Qn−1, each embedded to its

surface S0
γn−1

, S1
γn−1

. We add 0 to each vertex in Q0
n−1 and 1 to each vertex in Q1

n−1. For

each w ∈ {0, 1}n−3 we add a handle that connects a face ∗w∗0 of Q0
n−1 to a face ∗w∗1

of Q1
n−1, see Figure 2. The first handle connects S0

γn−1
and S1

γn−1
into a surface of genus

2γn−1. Each additional handle increases genus by one. Thus we obtain a surface of genus
2γn−1 +2n−3−1 = γn. Observe on Figure 2 that each subcube ∗w∗ is a face in the obtained
embedding of Qn into Sγn .
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Figure 2: The connection of faces ∗w∗0 and ∗w∗1.

The non-orientable genus γ̃(G) of a graph G is the minimal genus of a non-orientable
surface3 where G can be embedded without crossing.

Theorem 4 (Jungerman [8]) For every n ≥ 1,

γ̃(Qn) =


1 if n ≤ 3,
3 + 2n−2(n− 4) if n = 4, 5,
2 + 2n−2(n− 4) if n ≥ 6.

Let us define two following supergraphs of Qn. The first one has additional edges joining
antipodal vertices and is also known as a hypercube with diagonals.

3The genus of a non-orientable (closed connected) surface is the number of crosscaps needed to be attached
to a sphere to obtain a topologically equivalent surface. A crosscap is a circle twisted so that entering at one
side results in coming out from the opposite side (e.g. a sphere with one crosscap is the real projective plane,
a sphere with two crosscaps is the Klein bottle).
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Definition 5 The folded cube FQn of dimension n is a graph with V (FQn) = Zn2 and

E(FQn) = E(Qn) ∪ {uv | u⊕ v = 1}.

The second one has additional edges joining vertices that differ in a prefix.

Definition 6 The augmented cube AQn of dimension n is a graph with V (AQn) = Zn2 and

E(AQn) = E(Qn) ∪

uv |u⊕ v =

i∑
j=1

ej for some i ∈ [n]

 .

Problem 1 Determine γ(FQn), γ(AQn) and γ̃(FQn), γ̃(AQn).

Update: It is known [6] that γ(FQn) = (n− 3)2n−3 + 1 if n is odd and (n− 3)2n−3 + 1 ≤
γ(EQn) ≤ (n− 2)2n−3 + 1 if n is even.

Notes

A nice (but outdated) survey on properties of hypercubes is [7]. Hypercubes as intercon-
nection networks are studied in [3] and [9]. The above proof of Theorem 2 follows [1]. For
standard graph terminology see e.g. [5].
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