Hypercube problems			
Lecture 1 October 11, 2012			
Lecturer: Petr Gr	egor Scribe by: Davi	d Pěgřímek Updated:	October 13, 2020

Preliminaries

For a positive integer n let $[n] = \{1, 2, ..., n\}$. Let \oplus denote the addition in \mathbb{Z}_2^n and for $i \in [n]$ let e_i denote the vector in \mathbb{Z}_2^n with 1 exactly in the *i*th coordinate. Let **0** and **1** denote the vectors of all 0's and 1's, respectively. The Hamming distance of $u = (u_1, ..., u_n)$, $v = (v_1, ..., v_n) \in \mathbb{Z}_2^n$ is

$$d_H(u, v) = |\{i \in [n] \mid u_i \neq v_i\}|.$$

Definition 1 The n-dimensional hypercube Q_n (also known as an n-cube, a Boolean cube, a discrete cube) is an undirected graph with $V(Q_n) = \mathbb{Z}_2^n = \{0,1\}^n$ and

$$E(Q_n) = \{ uv \mid u \oplus v = e_i \text{ for some } i \in [n] \} = \{ uv \mid d_H(u, v) = 1 \}$$

If $u \oplus v = e_i$, the edge $uv \in E(Q_n)$ is said to have *direction i*.

Hypercube architectures (an excerpt from history)

1983-87 Cosmic Cube – Caltech (n = 2, 6, 7)

1983-87 Connection Machine CM-1, CM-2, CM-200 – MIT^1 (n = 16, 9, 13)

1985-90 Intel iPSC/1, iPSC/2, iPSC/860 (n = 7)

1986-89 nCUBE-1, nCUBE-2 – nCUBE Corporation (n = 10, 13)

- 1980's other manufacturers: Floating Point Corporation (T series), Ametek
- 1997 SGI Origin 2000 partly involves hypercubes [3]
- 2002 HyperCuP p2p networks [11]
- 2006 BlueCube Bluetooth networks [2]
- 2011 HyperD dynamic distributed databases [12]

¹Richard Feynman, an American theoretical physicist was involved in its design [4].

Figure 1: Hypercubes Q_n for n = 1, 2, 3, 4.

Alternative definitions of hypercubes

• $Q_n = K_2^n = \underbrace{K_2 \square K_2 \square \cdots \square K_2}_{n-\text{times}}$ (if $n \ge 1$) and $Q_0 = K_1$.

The Cartesian product $G \Box H$ of graphs G and H is the graph with the vertex set $V(G \Box H) = V(G) \times V(H)$ and the edge set

$$E(G \Box H) = \left\{ (u, v)(u', v) \mid uu' \in E(G) \right\} \cup \left\{ (u, v)(u, v') \mid vv' \in E(H) \right\}.$$

- Q_n is the covering graph of the Boolean lattice $\mathcal{B}_n = (\mathcal{P}(X), \subseteq)$ with |X| = n.² The covering graph of a poset is the graph of its Hasse diagram. For $i \in [n]$ the *i*-th level of \mathcal{B}_n is $X^i = \{A \subseteq X \mid |A| = i\}$.
- Q_n is the 1-skeleton of the polytope $[0,1]^n$.

The vertices (edges) are 0-faces (1-faces, resp.) of $[0, 1]^n$.

• $Q_n = \operatorname{Cay}(\mathbb{Z}_2^n, \{e_1, \dots, e_n\}).$

A Cayley graph of a group Γ generated by a set $S \subseteq \Gamma$ that is closed under inverses (to be undirected) and $e \notin S$ (to have no loops) is $\operatorname{Cay}(\Gamma, S) = (\Gamma, \{uv \mid vu^{-1} \in S\})$.

Basic properties of hypercubes

For every $n \ge 1$,

- $|V(Q_n)| = 2^n$.
- $|E(Q_n)| = n2^{n-1}$.

The edges of each direction form a perfect matching. Each direction splits Q_n into two copies of Q_{n-1} . Since Q_n has precisely *n* directions the number of edges is $n2^{n-1}$.

• Q_n is *n*-regular.

A graph is k-regular if every vertex has degree k. The neighborhood of $u \in V(Q_n)$ is $N(u) = \{ u \oplus e_i \mid i \in [n] \}.$

²Equivalently, Q_n is the covering graph of the (n-1)-simplex face lattice. The *n*-simplex is a convex hull of n-1 points in a general position (e.g. 2-simplex is a triangle, 3-simplex is a tetrahedron). The face lattice is formed by faces (together with \emptyset representing the (-1)-dimensional face) ordered by inclusion.

• Q_n is bipartite.

The size of u is defined by $|u| = d_H(u, \mathbf{0}) = |\{i \in [n] | u_i = 1\}|$. This allows us to define odd (even) vertices u by their size. They form the bipartition of Q_n .

• $diam(Q_n) = rad(Q_n) = n.$

The diameter (radius) of a graph G is the maximal (minimal, resp.) eccentricity in G. The eccentricity of a vertex is its greatest distance to any other vertex.

• Q_n is both *n*-connected and *n*-edge-connected.

The (vertex)-connectivity and the edge connectivity of Q_n is $\kappa(Q_n) = \lambda(Q_n) = n$.

- $g(Q_n) = 4$ and $circ(Q_n) = 2^n$ (i.e. Q_n is Hamiltonian) if $n \ge 2$. The girth g(G) and the circumference circ(G) is the length of the shortest (the longest, resp.) cycle in G.
- An example of a Hamiltonian cycle in Q_n is a *reflected Gray code* Γ_n defined recursively by $\Gamma_1 = (0, 1)$ and $\Gamma_{n+1} = (0\Gamma_n, 1\Gamma_n^R)$ where Γ_n^R is the reflection of Γ_n .
- Q_n is bipancyclic.

A graph G is (bi)pancyclic if it has cycles of all (even) lengths l for $g(G) \le l \le circ(G)$.

• Q_n has (0,2)-property. (We also say that Q_n is a (0,2)-graph.)

A graph G has (0,2)-property if every two vertices have 0 or 2 common neighbors. If x is a common neighbor of u and v, their second common neighbor is $u \oplus v \oplus x$.

• Q_n has $\binom{n}{k} 2^{n-k}$ k-dimensional subcubes and 3^n of all subcubes.

A k-dimensional subcube is a subgraph isomorphic to Q_k . All subcubes in Q_n are induced subcubes. Let $w \in \{0, 1, *\}^n$ and let k be the number of *'s in w. Then w uniquely represents the k-subcube (denoted by $Q_n[w]$) induced by

$$\{ (v_1, \ldots, v_n) \in \mathbb{Z}_2^n \mid v_i = w_i \text{ if } w_i \neq * \}$$

Thus, the number of k-subcubes is the number of $w \in \{0, 1, *\}^n$ with k stars.

• $Q_{n+m} \simeq Q_n \square Q_m$ for every $m \ge 1$.

For an *m*-tuple $I = (i_1, \ldots, i_m)$ where $i_j \in [n]$ are distinct and $w \in \{0, 1\}^m$ we denote

$$Q_{n+m}^{I,w} = Q_{n+m}[s] \text{ where } s_j = \begin{cases} * & \text{if } j \notin I \\ w_{i_j} & \text{if } j \in I \end{cases}$$

That is, $Q_{n+m}^{I,w}$ is the *n*-dimensional subcube with *m* coordinates *I* fixed by *w*.

The genus of the hypercube

The orientable genus $\gamma(G)$ of a graph G is the minimal genus of an orientable surface where G can be embedded without crossing (e.g. $\gamma(G) = 0$ if and only if G is planar).

Theorem 2 (Ringel [10]) For every $n \ge 2$, $\gamma(Q_n) = (n-4)2^{n-3} + 1$.

Proof Applying Euler's formula $V - E + F = 2 - 2\gamma(G)$ and the fact that $4F \leq 2E$ if G is triangle-free, we obtain $\gamma(G) \geq \frac{E}{4} - \frac{V}{2} + 1$. Substituting values for Q_n results in $\gamma(Q_n) \geq \frac{n2^{n-1}}{4} - 2^{n-1} + 1 = (n-4)2^{n-3} + 1$. Let us denote this number by γ_n .

Claim 3 For every $n \ge 2$, Q_n has an embedding to S_{γ_n} (an orientable surface of genus γ_n) such that every subcube *w* (of dimension 2) is a face.

We prove the claim by induction. For n = 2 it is obvious. Assuming it holds for n - 1 we prove it for n. We start with two copies Q_{n-1}^0 , Q_{n-1}^1 of Q_{n-1} , each embedded to its surface $S_{\gamma_{n-1}}^0$, $S_{\gamma_{n-1}}^1$. We add 0 to each vertex in Q_{n-1}^0 and 1 to each vertex in Q_{n-1}^1 . For each $w \in \{0,1\}^{n-3}$ we add a handle that connects a face *w*0 of Q_{n-1}^0 to a face *w*1 of Q_{n-1}^1 , see Figure 2. The first handle connects $S_{\gamma_{n-1}}^0$ and $S_{\gamma_{n-1}}^1$ into a surface of genus $2\gamma_{n-1}$. Each additional handle increases genus by one. Thus we obtain a surface of genus $2\gamma_{n-1} + 2^{n-3} - 1 = \gamma_n$. Observe on Figure 2 that each subcube *w* is a face in the obtained embedding of Q_n into S_{γ_n} .

Figure 2: The connection of faces *w*0 and *w*1.

The non-orientable genus $\tilde{\gamma}(G)$ of a graph G is the minimal genus of a non-orientable surface³ where G can be embedded without crossing.

Theorem 4 (Jungerman [8]) For every $n \ge 1$,

$$\tilde{\gamma}(Q_n) = \begin{cases} 1 & \text{if } n \leq 3, \\ 3 + 2^{n-2}(n-4) & \text{if } n = 4, 5, \\ 2 + 2^{n-2}(n-4) & \text{if } n \geq 6. \end{cases}$$

Let us define two following supergraphs of Q_n . The first one has additional edges joining *antipodal* vertices and is also known as a *hypercube with diagonals*.

³The genus of a non-orientable (closed connected) surface is the number of crosscaps needed to be attached to a sphere to obtain a topologically equivalent surface. A crosscap is a circle twisted so that entering at one side results in coming out from the opposite side (e.g. a sphere with one crosscap is the real projective plane, a sphere with two crosscaps is the Klein bottle).

Definition 5 The folded cube FQ_n of dimension n is a graph with $V(FQ_n) = \mathbb{Z}_2^n$ and

$$E(FQ_n) = E(Q_n) \cup \{uv \mid u \oplus v = \mathbf{1}\}.$$

The second one has additional edges joining vertices that differ in a *prefix*.

Definition 6 The augmented cube AQ_n of dimension n is a graph with $V(AQ_n) = \mathbb{Z}_2^n$ and

$$E(AQ_n) = E(Q_n) \cup \left\{ uv \mid u \oplus v = \sum_{j=1}^{i} e_j \text{ for some } i \in [n] \right\}.$$

Problem 1 Determine $\gamma(FQ_n)$, $\gamma(AQ_n)$ and $\tilde{\gamma}(FQ_n)$, $\tilde{\gamma}(AQ_n)$.

Update: It is known [6] that $\gamma(FQ_n) = (n-3)2^{n-3} + 1$ if *n* is odd and $(n-3)2^{n-3} + 1 \le \gamma(EQ_n) \le (n-2)2^{n-3} + 1$ if *n* is even.

Notes

A nice (but outdated) survey on properties of hypercubes is [7]. Hypercubes as interconnection networks are studied in [3] and [9]. The above proof of Theorem 2 follows [1]. For standard graph terminology see e.g. [5].

References

- L. W. BEINEKE, F. HARARY, The genus of the n-cube, Canad. J. Math. 17 (1965), 494–496.
- [2] C.-T. CHANG, C.-Y. CHANG, J.-P. SHEU, BlueCube: Constructing a hypercube parallel computing and communication environment over Bluetooth radio systems, Journal of Parallel and Distributed Computing 66 (2006), 1243–1258.
- [3] W. J. DALLY, B. TOWLES, Principles and Practices of Interconnection Networks, Morgan Kaufmann, 2004.
- [4] W. DANIEL HILLIS, Richard Feynman and The Connection Machine, Physics Today 42(2), 1989, p.78. (a Czech translation by L. Motl.)
- [5] R. DIESTEL, Graph Theory, Springer-Verlag, 2005.
- [6] R.-X. HAO, W. CAIREN, AND H. LIU, The Genus of the Folded Hypercube, International J. Math. Combin. 1 (2014), 28–36.
- [7] F. HARARY, J. P. HAYES, AND H.-J. WU, A survey of the theory of hypercube graphs, Comput. Math. Applic. 15 (1988), 277–289.
- [8] M. JUNGERMAN, The non-orientable genus of the n-cube, Pacific Journal of Mathematics 76 (1978), 443–451.

- [9] F. T. LEIGHTON, Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes, Morgan Kaufmann, San Mateo, CA, 1992.
- [10] G. RINGEL, Uber drei kombinatorische Probleme am n-dimensionalen Würfel and Würfelgitter, Abh. Math. Sem. Univ. Hamburg 20 (1955), 10–19.
- [11] M. T. SCHLOSSER, M. SINTEK, S. DECKER, W. NEJDL, A HyperCuP Hypercubes, Ontologies, and Efficient Search on Peer-to-Peer Networks, In: Proc. of Agents and Peer-to-Peer Computing (AP2PC 2002), LNCS 2530, 2002.
- [12] A. TOCE, A. MOWSHOWITZ, P. STONE, HyperD: A Hypercube Topology for Dynamic Distributed Federated Databases, 5th Annual Conference of the International Technology Alliance (ACITA 2011).