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Preliminaries
For a positive integer n let [n] = {1,2,...,n}. Let & denote the addition in Z% and for i € [n]
let e; denote the vector in Z# with 1 exactly in the ith coordinate. Let 0 and 1 denote
the vectors of all 0’s and 1’s, respectively. The Hamming distance of v = (uq,...,uy),
v=(v1,...,0n) € Zy is

drr(u,v) = {0 € [n] [u; # v},

Definition 1 The n-dimensional hypercube Qy, (also known as an n-cube, a Boolean cube,
a discrete cube) is an undirected graph with V(Q,) = Z5 = {0,1}" and

E(Qn) ={w |ud v =e; for some i € [n|]} = {wv |dy(u,v) =1}.

If u® v = e;, the edge uv € E(Q),,) is said to have direction i.

Hypercube architectures (an excerpt from history)

1983-87 Cosmic Cube — Caltech (n =2,6,7)

1983-87 Connection Machine CM-1, CM-2, CM-200 — MIT[Y| (n = 16,9, 13)
1985-90 Intel iPSC/1, iPSC/2, iPSC/860 (n = 7)

1986-89 nCUBE-1, nCUBE-2 — nCUBE Corporation (n = 10, 13)

1980’s other manufacturers: Floating Point Corporation (T series), Ametek
1997 SGI Origin 2000 — partly involves hypercubes [3]

2002 HyperCuP — p2p networks [11]

2006 BlueCube — Bluetooth networks [2]

2011 HyperD — dynamic distributed databases [12]

'Richard Feynman, an American theoretical physicist was involved in its design [4.
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Figure 1: Hypercubes @Q,, for n =1,2,3,4.

Alternative definitions of hypercubes

[ ] Qn:Kg:KQDKQDDKQ (1fn21) andQO:Kl.
n—times
The Cartesian product G [J H of graphs G and H is the graph with the vertex set
V(GO H) =V(G) x V(H) and the edge set

E(GOH) = {(u,v)(W,v) |uw € E(G)} U{(u,v)(u,?") |vv' € E(H)}.

e (O, is the covering graph of the Boolean lattice B, = (P(X),C) with | X| = n. EI

The covering graph of a poset is the graph of its Hasse diagram. For i € [n] the i-th
level of B, is X' ={A C X ||A] = i}.

e (), is the 1-skeleton of the polytope [0, 1]".
The vertices (edges) are 0-faces (1-faces, resp.) of [0, 1]™.

e Q= Cay(Z3,{e1,...,en}).
A Cayley graph of a group I' generated by a set S C I' that is closed under inverses
(to be undirected) and e ¢ S (to have no loops) is Cay(T', S) = (T, {uv |vu™! € S}).
Basic properties of hypercubes
For every n > 1,
o [V(Qn)|=2".
e |E(Qy,)| =n2m L.
The edges of each direction form a perfect matching. Each direction splits @, into two
copies of Q,_1. Since @,, has precisely n directions the number of edges is n2" .
e (), is n-regular.

A graph is k-regular if every vertex has degree k. The neighborhood of u € V(Q,,) is
N(u) ={u®e;|ie [n]}.

2Equivalently, @, is the covering graph of the (n — 1)-simplex face lattice. The n-simplex is a convex
hull of n — 1 points in a general position (e.g. 2-simplex is a triangle, 3-simplex is a tetrahedron). The face
lattice is formed by faces (together with () representing the (—1)-dimensional face) ordered by inclusion.
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e (), is bipartite.
The size of w is defined by |u| = dg(u,0) = |{i € [n] |u; = 1}|. This allows us to define
odd (even) vertices u by their size. They form the bipartition of Q.

o diam(Qy) = rad(Qy,) = n.

The diameter (radius) of a graph G is the maximal (minimal, resp.) eccentricity in G.
The eccentricity of a vertex is its greatest distance to any other vertex.

e (), is both n-connected and n-edge-connected.
The (vertex)-connectivity and the edge connectivity of @y, is K(Qn) = AM(@n) = n.
e g(Qn) =4 and circ(Qy) = 2" (i.e. @y is Hamiltonian) if n > 2.

The girth g(G) and the circumference circ(G) is the length of the shortest (the longest,
resp.) cycle in G.

e An example of a Hamiltonian cycle in Q,, is a reflected Gray code 1", defined recursively
by I'1 = (0,1) and Ty41 = (0T, ITE) where I'Z is the reflection of T,,.

e (), is bipancyclic.
A graph G is (bi)pancyclic if it has cycles of all (even) lengths [ for g(G) <1 < cire(G).

e (O, has (0,2)-property. (We also say that @, is a (0, 2)-graph.)

A graph G has (0, 2)-property if every two vertices have 0 or 2 common neighbors. If
x is a common neighbor of « and v, their second common neighbor is u v & z.

e (), has (Z) 2"~k L-dimensional subcubes and 3" of all subcubes.

A k-dimensional subcube is a subgraph isomorphic to ;. All subcubes in @Q,, are
induced subcubes. Let w € {0,1,*}" and let k& be the number of *’s in w. Then w
uniquely represents the k-subcube (denoted by @Q,[w]) induced by

{(v1,...,vn) € Zy |v; = w; if w; # *}.
Thus, the number of k-subcubes is the number of w € {0, 1, *}"™ with k stars.

o Qnim ~ Qn0Q, for every m > 1.

For an m-tuple I = (i1, ..., %,) where ¢; € [n] are distinct and w € {0,1}" we denote
Tw _ s ifjel
Qrtm = Qnim|s] where s; = { w, ifjel

That is, Qéfm is the n-dimensional subcube with m coordinates I fixed by w.
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The genus of the hypercube

The orientable genus v(G) of a graph G is the minimal genus of an orientable surface where
G can be embedded without crossing (e.g. v(G) = 0 if and only if G is planar).

Theorem 2 (Ringel [10]) For every n > 2, v(Qn) = (n —4)2" 3 + 1.

Proof Applying Euler’s formula V — E + F = 2 — 2y(G) and the fact that 4F < 2F
if G is triangle-free, we obtain v(G) > % — % + 1. Substituting values for @, results in

Y(Qn) > %71 — 2"l 4 1= (n—4)2"73 4+ 1. Let us denote this number by ~,.

Claim 3 For every n > 2, Q, has an embedding to S, (an orientable surface of genus yp)
such that every subcube xw* (of dimension 2) is a face.

We prove the claim by induction. For n = 2 it is obvious. Assuming it holds for n — 1
we prove it for n. We start with two copies Q% ;, QL ;| of Q,_1, each embedded to its
surface Sgn_l, S%n_l. We add 0 to each vertex in QY_; and 1 to each vertex in QL ;. For
each w € {0, 1}n_3 we add a handle that connects a face xw*0 of Q2_; to a face xwx1
of QL_,, see Figure 2. The first handle connects Sgn_l and S}m_l into a surface of genus
29n—1. Each additional handle increases genus by one. Thus we obtain a surface of genus
29,-1+2"73 —1 = ~,. Observe on Figure 2 that each subcube *wx is a face in the obtained
embedding of @), into S,,. B

0wl0 ﬁ@ Owll

0w00 1w00 1w01 0w01
Figure 2: The connection of faces w0 and xwx*1.

The non-orientable genus 5(G) of a graph G is the minimal genus of a non-orientable
surfacd’] where G can be embedded without crossing.

Theorem 4 (Jungerman [8]) For every n > 1,

1 ifn <3,
(Qn) =1 3+2"%(n—4) ifn=45
2+2"2(n—4) ifn>6.

Let us define two following supergraphs of ),,. The first one has additional edges joining
antipodal vertices and is also known as a hypercube with diagonals.

3The genus of a non-orientable (closed connected) surface is the number of crosscaps needed to be attached
to a sphere to obtain a topologically equivalent surface. A crosscap is a circle twisted so that entering at one
side results in coming out from the opposite side (e.g. a sphere with one crosscap is the real projective plane,
a sphere with two crosscaps is the Klein bottle).
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Definition 5 The folded cube FQ,, of dimension n is a graph with V(FQ,) = Z4 and
E(FQn) = E(Qn) U{w |udv=1}.
The second one has additional edges joining vertices that differ in a prefiz.
Definition 6 The augmented cube AQy, of dimension n is a graph with V(AQy,) = Z% and
E(AQ,) =EQn) U uwv |ludv= Zej for some i € [n]
j=1

Problem 1 Determine v(FQy), 7(AQn) and ¥(FQy), Y(AQy).

Update: It is known [6] that v(FQ,) = (n — 3)2" 3 + 1 if n is odd and (n — 3)2" 3 +1 <
Y(EQy) < (n—2)2"3 4+ 1 if n is even.

Notes

A nice (but outdated) survey on properties of hypercubes is [7]. Hypercubes as intercon-
nection networks are studied in [3] and [9]. The above proof of Theorem [2f follows [I]. For
standard graph terminology see e.g. [5].
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