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1 Gray codes

In a broader context, a combinatorial Gray code refers to enumerating all objects of some
combinatorial class into a sequence so that consecutive objects differ only by a “small
amount”. For example enumerating all

– permutations in Sn so that consecutive permutations differ by an adjacent transposi-
tion,

– strings, necklaces differing by a flip in a single position,

– k-sets of an n-set, so that consecutive subsets can be obtained by swapping a single
element,

– set partitions of a set, where in each step of the enumeration a single element is moved
to an adjacent block,

– integer partitions of some natural number, only with increment or decrement by 1 in
only two parts, at each step of the enumeration,

– binary trees on n vertices differing by a single tree rotation,

– triangulations of a convex polygon, with consecutive ones differing by a flip of a single
diagonal,

– spanning trees for a given graph, such that consecutive spanning trees can be obtained
by swapping a single edge,

– acyclic orientations of a given graph, so that consecutive orientations differ only in
the orientation of a single edge,

– linear extensions of a poset differing by adjacent transpositions.

COMBOS (The Combinatorial Object Server) is a place one can play around with combi-
natorial Gray codes for various classes.

There are different algorithms one can hope for a combinatorial Gray code:

– Loopless : an algorithm that takes O(1) per object in enumeration.
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– CAT (a constant average time) : O(N) time is spend to enumerate all objects, N
being the total number of objects.

– Ranking/Un-ranking : A ranking algorithm aims to output the index in the enu-
meration given an object. And un-ranking algorithm computes the inverse function.

In a flip graph the combinatorial objects correspond to vertices and edges are between
vertices that correspond to objects obtainable by “small change” (flip). Thus a (cyclic)
combinatorial Gray code can also be thought of as a Hamiltonian path (cycle) in the corre-
sponding flip graph. For example,

– for binary strings of length n, with the “small change” being a single bit flip the
corresponding flip graph is an n-cube,

– for permutations of [n] w.r.t adjacent transposition (the “small change”), the corre-
sponding flip graph is a permutahedron,

– for binary trees on n vertices w.r.t single tree rotation (the “small change”), the
corresponding flip graph is an associahedron.

Remark As an informal remark, many flip graphs are usually highly symmetric, in the
sense they are vertex transitive and sometimes Cayley graphs. In this context the following
conjecture makes us optimistic about the existence of combinatorial Gray codes for various
classes.

Conjecture 1 (Lovász [18]) 1 Every connected vertex-transitive graph has a Hamilton
path.

Many flip graphs are cover graphs of some posets or skeletons of high dimensional polytopes.
For example,

– the hypercube is the cover graph of the Boolean lattice,

– the permutahedron is the cover of the weak (Bruhat) order2 of Sn,

– the associahedron is the cover graph of the Tamari lattice.

And the above examples can geometrically be seen as polytopes as well.

Definition 2 (Lattice congruence) A lattice congruence is an equivalence relation ≡ on
a lattice P that is compatible with taking joins and meets. Formally, if π ≡ π

′
and ρ ≡ ρ

′

then we also have π ∨ ρ ≡ π
′ ∨ ρ

′
and π ∧ ρ ≡ π

′ ∧ ρ
′
.

1The conjecture is open even for many subclasses of connected vertex-transitive graphs, including con-
nected Cayley graphs. Moreover, there are only five known examples of vertex- transitive graphs that have
a Hamilton path but do not have a Hamilton cycle (K2, the Peterson graph, the Coxeter graph, and two
graphs obtained from the Petersen and Coxeter graphs by replacing each vertex with a triangle ).

2the poset obtained by ordering all permutations from Sn by containment of their inversion sets, i.e.,
π < ρ for any two permutations π, ρ in the weak order if and only if inv(π) ⊆ inv(ρ).
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Definition 3 (Lattice quotient) For a congruence ≡ on a lattice P , the lattice quotient
P/ ≡ is obtained by taking the equivalence classes as elements, and ordering them by X < Y
if and only if there is a representative π ∈ X and a representative ρ ∈ Y such that π < ρ
in P .

Theorem 4 (Hoang, Mütze [13]) For every lattice congruence ≡ of the weak order on
Sn there is a Hamiltonian path in the cover graph of the lattice quotient Sn/ ≡.

Theorem 5 (Pilaud, Santos [24]) For every lattice congruence ≡ of the weak order on
Sn there exists a polytope called the quotientope for ≡, whose graph is exactly the cover
graph of the lattice quotient Sn/ ≡.

Remark The polytopes as per Theorem 5 generalize many known polytopes, such as
hypercubes, associahedra, permutahedra etc. Thus Theorem 4 and Theorem 5 are examples
of “unification” where some Gray code problem for different combinatorial classes can be
unified under some general poset.

Going forward we will focus on the case of enumerating all binary strings of a fixed length
so that consecutive strings differ in a single coordinate.

2 Binary Gray codes

Definition 6 (Gray code) A (cyclic) binary Gray code of dimension n is a Hamiltonian
path (cycle) in Qn.

Let us mention some references where Gray codes appeared, mainly from the history of
communication:

1872 L. A. Gross described [10] the mathematical background of so called Chinese ring
puzzle (also known as Baguenaudier) which anticipated Gray codes,

1878 E. Baudot3 used Gray codes to design a telegraphic alphabet (he used a code of
dimension 5 to design an alphabet of 31 symbols),

1943 The idea of Gray codes is inherently present in the patent of G. Stiblitz,

1953 F. Gray from Bell Labs patented [6] the code (the patent application was for a pulse
code modulation tube which was used for analog transmission of digital signals).

There are also a lot of applications of binary Gray codes such as signal processing, binary
counters, data compression, logical circuits, rotary encoders, image processing, campanol-
ogy etc.

3In his honor the unit for communication speed was named baud, denoted by Bd. (The number of bauds
signifies the number of changes made to a transmission medium per second.)
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3 Reflected Gray code

Definition 7 (Binary reflected Gray code (BRGC)) A binary reflected Gray code
Γn is defined recursively:

� Γ0 = λ (that is, an empty word),

� Γn+1 = (0Γn, 1Γ
R
n )

where ΓR
n denotes the reversed sequence Γn, and αΓ denotes the sequence obtained from Γ

by adding the symbol α in front of each element of Γ.

We will use the following definitions. Let Γn = (v0, . . . , v2n−1) be the reflected Gray
code of dimension n. For 0 ≤ i < 2n let (i)2 denote the binary representation of i in n bits,
and let sh0(x) = 0x1 . . . xn−1 for x ∈ Zn

2 (that is, the right shift).
It is not hard to deduce formulae that tell how to compute the i-th element vi of the

reflected Gray code, and vice versa, how to compute the index i of a given element vi.
The proof is left as an exercise. Thus the observation below gives us a ranking/un-ranking
algorithm for the reflected Gray code.

Observation 8 In the reflected Gray code Γn, for every 0 ≤ i < 2n

vi = (i)2 ⊕ (⌊i/2⌋)2,

(i)2 = vi ⊕ sh0(vi)⊕ sh20(vi)⊕ . . .⊕ shn−1
0 (vi).

There also exists a simple successor function (giving the next element in the enumeration)
for the reflected Gray code, defined as

suc(x) =

{
x⊕ e1 if |x| is even,
x⊕ ei+1 otherwise

(1)

where x = xn · · ·x1 and i ≥ 1 is the smallest integer such that xi = 1 (i := n − 1 for
x = 10 . . . 0). This gives a loopless algorithm for the reflected Gray code. We mention some
interesting properties of the reflected Gray code:

– The restriction to any level4 gives a Gray code for (n, k) combinations, where the
“small change” is a swap of a single element,

4where levels are based on Hamming weight.
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– It follows so called genlex ordering5, i.e., all (bit) strings with the same prefix occur
consecutively in the code,

– If dH(u, v) = t, then ⌈2t3 ⌉ ≤ dΓn(u, v) ≤ 2n−⌈2t3 ⌉, where dH(u, v) and dΓn(u, v) stand
for the Hamming distance between u and v and the distance between u and v in Γn

respectively,

– The transition counts for the reflected Gray code are: 2, 2, 4, 8, · · · , 2n−1,

– The transition graph corresponding to the reflected Gray code (in Qn) is a starK1,n−1.

4 Generation via permutation languages

In this section, we look at a general framework and how it can be used to generate combina-
torial Gray codes. The idea of the framework is to encode objects of the given combinatorial
class by permutations with some forbidden patterns.

x1x2x3 f(x1x2x3)

000 1 2 3 4

001 4 1 2 3

011 4 3 1 2

010 3 1 2 4

110 3 2 1 4

111 4 3 2 1

101 4 2 1 3

100 2 1 3 4

Table 1: Encoding of Γ3 by (2).

For example consider the encoding of binary strings
fn : {0, 1}n → Sn+1, given by f0(ϵ) := 1 (for ϵ de-
noting the empty string) and fn for n ≥ 1 is defined
recursively as

fn(x1x2 · · ·xn) =

{
fn−1(x1x2 · · ·xn−1) ◦ (n+ 1) if xn = 0

(n+ 1) ◦ fn−1(x1x2 · · ·xn−1) if xn = 1

(2)
For example see Table 1 for encoding of bitstrings

of length 3.

Definition 9 A permutation π ∈ Sn is said to con-
tain a pattern τ ∈ Sk if π = a1a2 · · · an contains a
sub-sequence ai1ai2 · · · aik that is order-isomorphic6 to
τ .

Observation 10 f encodes all binary strings (bijec-
tively) into permutations that avoid peaks, i.e. pat-

terns : 1

3

2 and 2

3

1 (for example see
Table 1).

5ordering of a set of strings in which strings sharing a common prefix occur together. An example of
genlex ordering is the lexicographic ordering.

6For example the permutation 5 2 4 3 1 contains the pattern 1 3 2.
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Next we describe an algorithm that produces all permutations Ln ⊆ Sn which avoid some
given “forbidden” patterns.

Definition 11 Given a permutation π = a1 · · · an with a substring ai · · · aj with ai >
ai+1, · · · , aj, a right jump of the value ai by j−i steps is a cyclic left rotation of this substring
by one position to ai+1 · · · ajai. Similarly, given a substring ai · · · aj with aj > ai, · · · , aj−1,
a left jump of the value aj by j − i steps is a cyclic right rotation of this substring to
ajai · · · aj−1.

Algorithm J (Greedy minimal jumps).

This algorithm attempts to greedily generate a set of permutations Ln ⊆ Sn using minimal
jumps starting from an initial permutation π0 ∈ Ln.

J1. [Initialize] Visit the initial permutation π0.
J2. [Jump] Generate an unvisited permutation from Ln by performing a minimal jump of
the largest possible value in the most recently visited permutation. If no such jump exists,
or the jump direction is ambiguous, then terminate. Otherwise, visit this permutation
and repeat J2.

Theorem 12 ([11]) If F is a propositional formula of ANDs ∧, ORs ∨ and patterns that
do not have the largest value at the leftmost or the rightmost position, then the set Sn(F )
(set of permutations from Sn that avoid patterns given by formula F ) can be generated by
Algorithm J.

For example, for F = 1 3 2 ∧ 2 3 1 (i.e., the peak avoiding permutations) Sn(F ) can be
generated by Algorithm J.

What is interesting is that f−1(J(Ln)), where J(Ln) is the order in which peak avoid-
ing permutations Ln are generated by Algorithm J from the identity permutation π0 := id
gives us BRGC. This gives us a simple greedy algorithm for generating BRGC.

J1. Start with 0 · · · 0.
J2. Flip the rightmost bit that yields a previously unvisited string and repeat J2.

Following are some other remarks about Algorithm J.

– When F = ∅ (i.e., all permutations), Algorithm J yields an ordering of permutations
by adjacent transpositions, which coincides with the well-known Steinhaus-Johnson-
Trotter order.

– Permutations not containing the pattern F = 231 encode Catalan families (eg., binary
trees by rotations, triangulations by edge flips, etc.). Algorithm J produces some
known Gray codes for these classes (for examples see [19]).
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– Algorithm J works for a much larger family of permutation languages (called zigzag
languages; see [11]) initialized with the identity permutation.

– Algorithm J is not efficient but applying f−1 (where f is the encoding function for
the combinatorial class) usually leads to a simple greedy algorithm.

– It can be described where it produces a cyclic order.

– The choice of the initial permutation in the algorithm matters.

5 Monotone Gray codes

Definition 13 (monotone Gray code) A binary Gray code Γ = (v1, . . . , v2n) is mono-
tone if |vi| ≤ |vi+2| for every 1 ≤ i ≤ 2n − 2.

The idea of monotone Gray codes is illustrated in the figure below. The vertices of the
hypercube are depicted in the levels by their number of 1’s. A monotone Gray starts in 0
or in the first level (but in that case it goes to 0 in the first step), afterwards it always has
to oscillate between two consecutive levels until the lower one is entirely covered, and then
it continues one level higher. Finally, it ends in 1 or in the penultimate level.

Theorem 14 (Savage, Winkler [27]) Qn has a monotone Gray code for every n ≥ 1.

Proof We construct recursively by n a monotone Gray code with chains X = (x0 =
0, x1, . . . , xn = 1), Y = (y0 = 0, y1, . . . , yn = 1) such that for every odd i, the edges xixi+1

and yiyi+1 are the first and the last edge, respectively, of the code between levels i and i+1.
For n = 1 such code clearly exists.

For the induction step, let us assume that we have such a monotone Gray code of
dimension n in Q0

n+1. From the previous lectures, we know that there is a rotation r ∈ Rn

such that r(xi) = yi. In Q1
n+1 we take the same code rotated by r. The desired code will

be created by joining this two codes together as depicted in the following figure.
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Remark Monotone Gray codes have the maximal number of peaks amongst all Gray
codes. A peak of a path in Qn is a subpath (x, y, z) with |x| = |z|.

Definition 15 (Order preserving Gray code [14]) A binary Gray code (v1, v2, · · · , v2n)
is order preserving if for every X ⊆ Y , X precedes Y or X follows immediately after Y
(where X and Y are vertices of Qn interpreted as sets).

Remark An order-preserving Gray code is monotone, but the converse is not true.

Problem 16 Does Qn have an order preserving Gray code for every n ≥ 2?

Remark It is known that all subsets of [n] of size at most 3 (and some of 4) can be
ordered in the way as prescribed by Definition 15, as part of some Gray code.

6 Middle and Central level problems

Definition 17 The middle level graph in Q2k+1 is the subgraph induced by levels k and
k + 1.

Havel [12] and Buck and Wiedemann [4] asked: Is the middle level graph in Q2k+1 Hamil-
tonian ? The following theorem answers the question positively.

Theorem 18 (Mütze [21]) The middle level graph in Q2k+1 is Hamiltonian for every
k ≥ 17.

Theorem 18 is extended by the following two theorems:

7For previous progress see [28] and [15], for a shorter proof see [9].
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Theorem 19 (Merino, Mička and Mütze [20]) The middle level graph in Q2k+1 has a
Hamiltonian cycle that is invariant to cyclic shifts8.

Theorem 20 The middle level graph in Q2k+1 is Hamiltonian laceable; that is, for any two
vertices x and y from levels k and k + 1, there is a Hamiltonian path between x and y.

For 0 ≤ k ≤ l ≤ n let Q
[k,l]
n denote the subgraph of Qn induced by levels k, k + 1, · · · , l.

Then the following theorem generalizes Theorem 18.

Theorem 21 (Gregor, Mička and Mütze [8]) Q
[k−c,k+1+c]
2k+1 (called the central level graph)

is Hamiltonian for every k ≥ 1 and 0 ≤ c ≤ k.

Definition 22 A saturating cycle in a bipartite graph is a cycle that visits all vertices in
the smaller partition class.

Definition 23 A tight enumeration of a (bipartite) subgraph of the cube is a cyclic listing
of all its vertices, where the total number of bits flipped is exactly the number of vertices
plus the difference in size between the two partition classes.

Corollary 24 Q
[k,l]
n has a saturating cycle and a tight enumeration for any 0 ≤ k ≤ l.

7 Symmetric chain decomposition (SCD)

In this section, we switch to the language of Boolean lattices Bn = (P([n]),⊆).

Definition 25 A symmetric chain in Bn is a sequence of sets Xk ⊂ Xk+1 ⊂ . . . ⊂ Xn−k

with |Xi| = i for every k ≤ i ≤ n− k.

Remark Equivalently, a symmetric chain in Qn is a path Xk, Xk+1, · · · , Xn−k such that
|Xi| = i for every k ≤ i ≤ n− k.

Proposition 26 Bn has a decomposition into symmetric chains for every n ≥ 1.

Proof We give the proof by describing the symmetric decomposition due to Greene and
Kleitman[7] (called the Greene-Kleitman SCD). We proceed by induction on n. For n = 1
the statement clearly holds since B1 consists of a single symmetric chain (∅, {1}).

For a symmetric chain C = (Xk, . . . , Xn−k) in Bn let C ′ = (Xk, . . . , Xn−k, Xn−k∪{n+1})
and if k < n/2, let C ′′ = (Xk ∪ {n + 1}, . . . , Xn−k−1 ∪ {n + 1}). If k = n/2 then C ′′ is
undefined. Note that C ′ and C ′′ are symmetric chains in Bn+1, see the figure below. Observe
that if C is a symmetric chain decomposition of Bn, then {C ′, C ′′ | C ∈ C} is a symmetric
chain decomposition of Bn+1.

8The problem was proposed by Knuth [17].
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By definition, every symmetric chain intersects the middle level (both middle levels if n
is odd). Thus, there is exactly

(
n

⌊n/2⌋
)
chains in a symmetric chain decomposition. On the

other hand, every pair of sets from the same level is incomparable (by inclusion); that is, a
level forms an antichain. Since every antichain contains at most one set from each chain of
decomposition, we obtain the classical Sperner theorem.

Corollary 27 (Sperner [31]) The maximal size of an antichain in Bn is
(

n
⌊n/2⌋

)
.

Theorem 28 (Gregor, Mička and Mütze [8]) For every n ≥ 2 the Greene-Kleitman
SCD extends to a Hamiltonian cycle in Qn.

Remark Gray codes corresponding to Hamiltonian cycles obtained by extending sym-
metric chain decompositions have a minimal number of peaks.

Conjecture 29 ([8]) Every SCD can be extended to a Hamilton cycle in Qn.

8 Transitional Sequences

Definition 30 (Transitional sequence) A transitional sequence of a cyclic Gray code
Γ = (v1, . . . , v2n) is a sequence t(Γ) = (t1, . . . , t2n) over [n] such that vi ⊕ vi+1 = eti for
every 1 ≤ i ≤ 2n (we consider v2n+1 = v1).

Definition 31 (Transition counts) For a cyclic Gray code Γ = (v1, . . . , v2n), let ci (i ∈
[n]) denote the number of occurrences of i in t(Γ). Then c1, c2, · · · , cn are called the tran-
sition counts for Γ.

Definition 32 (Balanced Gray code) A cyclic Gray code Γ is called (almost) balanced
if ci =

2n

n for every i ∈ [n] (respectively,
∣∣ci− 2n

n

∣∣ ≤ 2) where c1, c2, · · · , cn are its transition
counts.

Theorem 33 ([1, 25, 32]) For every n ≥ 1 there is an almost balanced Gray code. In
particular, for n = 2k there is a balanced Gray code.

26-10



Theorem 34 (Perezhogin [23]) Let c1 ≤ c2 ≤ · · · ≤ cn be the supposed transition counts.
Qn has a Hamiltonian cycle with these counts if and only if 9

n∑
i=1

ci = 2n and

k∑
i=1

ci ≥ 2k for 1 ≤ k ≤ n .

(3)

The necessity part of the above theorem can be checked by considering a projection of a
such code into subcubes of dimension k.

Definition 35 (Transition graph) The graph G(Γ) = (V,E) induced by a Gray code Γ
has the vertex set V = [n] and ij ∈ E if i and j are consecutive in the transitional sequence
t(Γ).

It is known [5] that for every n ≤ 6 there is a Gray code inducing the path Pn but there
is no Gray code inducing P7. Despite considerable effort, no Gray codes inducing longer
paths have been found. That leads to the following conjecture.

Conjecture 36 (Bultena, Ruskey [5], Slater [29]) For every n ≥ 7, the path Pn is not
inducible by a Gray code in Qn.

Another interesting question [5] is whether there is a Gray code that induces a cycle Cn

for every (large enough) n.

Definition 37 For a Gray code Γ, the run length r(Γ) is the minimal number of steps in
which some direction repeats in t(Γ). Furthermore, a maximal run length in Qn is

r(n) = max{r(Γ) | Γ is a Gray code in Qn}.

Problem 38 ([17]) Determine r(n) for every n.

The values of r(n) are known for n ≤ 7, for example r(5) = 4. Furthermore, asymptot-
ically it holds r(n) = n−O(log n).

9 Antipodal Gray codes

Definition 39 (Antipodal Gray code) A Gray code Γ in Qn is antipodal if every pair
of antipodal vertices in Qn is at distance exactly n in Γ.

Theorem 40 (Kilian, Savage [16]) An antipodal Gray code in Qn exists if n = 2k and
only if n is even.

Let us note that for n = 2k the proof is constructive. On the other hand, it is known
[16] that there is no antipodal Gray code for n = 6. Hence, it would be interesting to know
whether n = 2k is also a necessary condition.

Problem 41 ([16]) Does an antipodal code in Qn exist only if n = 2k?
9The necessity part can be checked by considering a projection of such code into a k-dimensional subcube.
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Notes

For Gray codes in a broader context, we refer to an excellent survey by Mütze [22] that
updates the previous survey of Savage [26]. A part of Knuth’s famous monograph [17] is
devoted to Gray codes which is recommended for further study. For example, details of the
proof of Observation 8 can be found there. Proposition 26 is involved in Kleitman’s solution
of the Littlewood-Offord problem, for details see e.g. [3].
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