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1 Shadows

In the Boolean lattice Bn = (P([n]),⊆) we denote X = [n] and for 0 ≤ r ≤ n the r-th level
is X(r) = {A ⊆ X; |X| = r}. For a set system A ⊆ X(r), the lower (upper) shadow of A is

∂lA = {B ∈ X(r−1); B ⊂ A for some A ∈ A} (lower shadow),

∂uA = {B ∈ X(r+1); B ⊃ A for some A ∈ A} (upper shadow).

By default, ∂A denotes the lower shadow. We will determine the minimal |∂A| in terms of
|A|, n, r. For this end, we first look into properties of the colexicographical1 order on X(r).

Definition 1 (colexicographical (colex) order) A <colex B if max(A4B) ∈ B.

The colex order can be extended on the whole N(<ω)
+ (the set of all finite subsets of

positive integers) by the map ϕ(A) =
∑

a∈A 2a and using the natural order of N. Observe

that the initial segment of the colex order on X(r) is independent2 on n. For example for
r = 3 we have:

{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 5}, {1, 3, 5}, {2, 3, 5}, {1, 4, 5}, {2, 4, 5}, {3, 4, 5}, ...

To describe precisely the (lower) shadow of an initial segment of the colex order on X(r)

we use the following definition. For 1 ≤ s ≤ ms < ms+1 < · · · < mr let

B(r)(mr, . . . ,ms) =
r⋃

j=s

(
[mj ]

(j) · {mj+1 + 1, . . . ,mr + 1}
)

where A ·M = {A ∪M ; A ∈ A}. For example,

B(3)(4, 2, 1) = [4](3) ∪ ([2](2) · {5}) ∪ ([1](1) · {3, 5}) = [4](3) ∪ {{1, 2, 5}, {1, 3, 5}}.
1Sometimes (e.g in [3]), this order is called reversed lexicographical (revlex) since it is a lexicographical

order with respect to the reversed (natural) order of [n]. Here, the lexicographical (lex) order on X(r) is given
by A <lex B if min(A4B) ∈ B; that is, lex is the standard lexicographical order of support vectors. However,
note that Bollobás [1] defines the lexicographical order on X(r) reversely, by A <lex′ B if min(A4B) ∈ A;
that is, A <lex′ B if and only if B <lex A.

2This is not true neither for the lex nor for the lex’ order. This explains why it is preferred to used the
colex order instead of lex, although for fixed n reversing the order of [n] maps colex to lex.
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Observe that B(r)(mr, . . . ,ms) is the initial segment of the colex order of N(r)
+ of length

|B(r)(mr, . . . ,ms)| =
r∑

j=s

(
mj

j

)
. (1)

On the other hand, it can be shown that every initial segment can be written asB(r)(mr, . . . ,ms),
and that mr, . . . ,ms are determined uniquely from the segment length.

The above (rather technical) description is justified by the following observation.

Observation 2 For every r, s ≤ ms < · · · < mr

∂B(r)(mr, . . . ,ms) = B(r−1)(mr, . . . ,ms).

In words, the shadow of the initial segment of the colex order of X(r) is the initial segment
of the colex order of X(r−1) described by the same parameters.

Why are initial segments of the colex order so important? Because they have smallest
shadows among all set systems of X(r) with fixed size. This classical result is well-known
as the Kruskal-Katona theorem. To state it properly, we define ∂(r) : N→ N by

∂(r)(m) =
r∑

j=s

(
mj

j − 1

)
where 1 ≤ s ≤ ms < · · · < mr are the unique numbers such that m =

∑r
j=s

(mj

j

)
. That is,

∂(r)(m) = |∂B(r)(mr, . . . ,ms)| is the shadow size of the first m r-sets in the colex order.

Theorem 3 (Kruskal-Katona [7, 8]) For every A ⊆ Xr where r ≥ 1,

|∂A| ≥ ∂(r)(|A|).

Moreover, if |A| =
(
mr

r

)
for some mr ≥ r then equality holds if and only if A = [mr]

(r).

The original proof has been simplified over the years. We refer to Bollobás [1] for a
proof based on the compression operator, due to Frankl [4].

For upper shadows we apply Kruskal-Katona theorem on the family of complements.
Since complements of a prefix of the colex order on X(n−r) form a suffix of the colex order
on X(r), we obtain the following corollary.

Theorem 4 Let 1 ≤ r ≤ n− 1, A ⊆ X(r), and let B be the set of the last |A| elements of
X(r) in the colex order. Then

|∂uA| ≥ |∂uB|.

2 Intersecting families

A family A ⊆ P(X) is intersecting if A1 ∩ A2 6= ∅ for every A1, A2 ∈ A. We restrict here
only to showing that Kruskal-Katona theorem implies Erdős-Ko-Rado theorem, a classical
result on the maximal size of an intersecting family in the r-th level.

For x ∈ X and 1 ≤ r ≤ n let X
(r)
x = (X \{x})(r−1) · {x}; that is, Xr

x consists of all r-sets
containing x.
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Theorem 5 (Erdős-Ko-Rado [2]) For every intersecting A ⊆ X(r) where 2 ≤ r < n/2,

|A| ≤
(
n− 1

r − 1

)
(2)

with equality if and only if A = X
(r)
x for some x ∈ X.

Proof Let B = {A; A ∈ A}; that is, B is the family of complements in X(n−r). If A ∈ A
and B ∈ B then A * B. Consequently, ∂n−2rB ∩ A = ∅ where ∂n−2r denotes the shadow
taken n− 2r times.

Assume equality in (2). Since X
(r)
x is a maximal (with respect to inclusion) intersecting

family, it suffices to show that A = X
(r)
x . By Theorem 3, |∂n−2rB| ≥

(
n−1
r

)
with equality if

and only if B = (X \ {x})(n−r) for some x ∈ X which is equivalent to A = X
(r)
x .

3 Isoperimetric inequalities

The notion of isoperimetry (“having the same perimeter”) comes from geometry. The
isoperimetric inequality in the plane is the relation 4πA ≤ L2 between area A of a planar
region and length L of its enclosing curve (with equality if and only if the curve is a circle)3.

In a graph G = (V,E) we consider subsets S ⊆ V of vertices (instead of area in the
plane) and we are interested in their vertex and edge boundaries4:

∂vS = N(S) \ S = {v ∈ V \ S; uv ∈ E for some u ∈ S} (vertex boundary),

∂eS = E(S, S) = {uv ∈ E; u ∈ S, v /∈ S} (edge boundary).

In general, isoperimetric inequality is a lower bound on |∂S| in terms of |S| and other
parameters of G. Ideally, we determine for all 1 ≤ m < |V | the values of

ΦG
v (m) = min

S⊆V,|S|=m
|∂vS|, ΦG

e (m) = min
S⊆V,|S|=m

|∂eS|,

called the vertex and edge isoperimetric parameters of G. (We study these functions only
for the hypercube, so we omit the superscript G).

4 Vertex-isoperimetric problem

A Hamming sphere with a center C ⊆ X is a family A ⊆ P(X) such that

{B ⊆ X; dH(B,C) ≤ r} ⊆ A ⊂ {B ⊆ X; dH(B,C) ≤ r + 1}
for some 0 ≤ r ≤ n. That is, A contains the Hamming ball of radius r and is strictly
contained in the Hamming ball of radius r + 1, both centered in C.

The (Hamming) distance between two nonempty families A,B ⊆ P(X) is dH(A,B) =
min{dH(A,B); A ∈ A, B ∈ B}. The following theorem claims that Hamming spheres with
antipodal centers are among the “furthest” families of given sizes.

3This inequality was known to ancient Greeks, but it was rigorously proved no early than in 19th century.
4The notion of shadow is very close to the notion of vertex boundary in the hypercube. We keep the

symbol ∂ commonly used for both these notions.
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Theorem 6 For nonempty A,B ⊆ P(X) there are Hamming spheres A0, B0 centered at ∅
and X, respectively, with |A0| = |A|, |B0| = |B| such that dH(A0,B0) ≥ dH(A,B).

The proof is based on compressing A towards ∅, and simultaneously B towards X iteratively
by some coordinate x ∈ X. For details we refer to [1].

By the above theorem, a solution to the vertex-isoperimetric problem in Qn is attained
by a Hamming sphere. Indeed, for a nonempty A ⊂ P(X) of a fixed size with the smallest
vertex-boundary we take

B =

{
∂vA if A ∪ ∂vA = P(X),

P(X) \ (A ∪ ∂vA) otherwise.

In the first case, we have dH(A,B) = 1 and ∂vA0 ⊆ B0. In the latter case, we have
dH(A,B) = 2 and ∂vA0 ⊆ P(X)\ (A0∪B0). Hence, in both cases A0 does not have a larger
vertex-boundary than A.

Kruskal-Katona theorem for upper shadows tells us which sets from the last level X(r+1)

we should take in a Hamming sphereA to minimize its vertex boundary, see the figure below.

X(r)

X(r+1)

X(r+2)

A

∂vA

B

Figure 1: B = A ∩X(r+1) is the final segment of X(r+1) in the colex order.

To summarize the solution of the vertex isoperimetric problem, we define the following
order on P(X).

Definition 7 (simplicial order) A < B if |A| < |B| or |A| = |B| and max(A4B) ∈ A.

Theorem 8 (Harper [6]) For every A ⊆ P(X) it holds |∂vA| ≥ |∂vS| where S is the
system of first |A| sets in the simplicial order. In particular, if A =

∑r
i=0

(
n
i

)
for some r,

then ∂A ≥
(

n
r+1

)
.

Remark Since S ∪ ∂S is a prefix of the simplicial order if S is a prefix of the simplicial
order, the above theorem holds also for the vertex boundary in a general distance d.

Notes

The above classical results can be found in almost any book on combinatorics of finite sets.
We refer to the presentation given by Bollobás [1]. Theorem 6 is due to Frankl and Füredi
[5] who simplified Harper’s proof of Theorem 8.
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[5] P. Frankl and Z. Füredi, A short proof of a theorem of Harper about Hamming
spheres, Discrete Math. 34 (1981), 311–313.

[6] L. H. Harper, Optimal numberings and isoperimetric problems on graphs, J. Combin.
Theory 1 (1966), 385–394.

[7] G. O. H. Katona, A theorem on finite sets, in Theory of Graphs (P. Erdős and
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