Hypercube problems		
	Lecture 12 January 2, 2013	
Lecturer: Petr Gregor	Scribe by: Petr Gregor	Updated: March 5, 2013

1 Shadows

In the Boolean lattice $\mathcal{B}_n = (\mathcal{P}([n]), \subseteq)$ we denote X = [n] and for $0 \leq r \leq n$ the *r*-th level is $X^{(r)} = \{A \subseteq X; |X| = r\}$. For a set system $\mathcal{A} \subseteq X^{(r)}$, the lower (upper) shadow of \mathcal{A} is

$\partial_l \mathcal{A} = \{ B \in X^{(r-1)}; \ B \subset A \text{ for some } A \in \mathcal{A} \}$	(lower shadow),
$\partial_u \mathcal{A} = \{ B \in X^{(r+1)}; \ B \supset A \text{ for some } A \in \mathcal{A} \}$	(upper shadow).

By default, $\partial \mathcal{A}$ denotes the lower shadow. We will determine the minimal $|\partial \mathcal{A}|$ in terms of $|\mathcal{A}|, n, r$. For this end, we first look into properties of the colexicographical¹ order on $X^{(r)}$.

Definition 1 (colexicographical (colex) order) $A <_{colex} B$ if $\max(A \triangle B) \in B$.

The colex order can be extended on the whole $\mathbb{N}^{(<\omega)}_+$ (the set of all finite subsets of positive integers) by the map $\varphi(A) = \sum_{a \in A} 2^a$ and using the natural order of \mathbb{N} . Observe that the initial segment of the colex order on $X^{(r)}$ is independent² on n. For example for r = 3 we have:

 $\{1,2,3\},\{1,2,4\},\{1,3,4\},\{2,3,4\},\{1,2,5\},\{1,3,5\},\{2,3,5\},\{1,4,5\},\{2,4,5\},\{3,4,5\},\ldots$

To describe precisely the (lower) shadow of an initial segment of the colex order on $X^{(r)}$ we use the following definition. For $1 \le s \le m_s < m_{s+1} < \cdots < m_r$ let

$$B^{(r)}(m_r,\ldots,m_s) = \bigcup_{j=s}^r \left([m_j]^{(j)} \cdot \{m_{j+1}+1,\ldots,m_r+1\} \right)$$

where $\mathcal{A} \cdot M = \{A \cup M; A \in \mathcal{A}\}$. For example,

$$B^{(3)}(4,2,1) = [4]^{(3)} \cup ([2]^{(2)} \cdot \{5\}) \cup ([1]^{(1)} \cdot \{3,5\}) = [4]^{(3)} \cup \{\{1,2,5\},\{1,3,5\}\}.$$

¹Sometimes (e.g in [3]), this order is called *reversed lexicographical (revlex)* since it is a lexicographical order with respect to the reversed (natural) order of [n]. Here, the *lexicographical (lex) order* on $X^{(r)}$ is given by $A <_{lex} B$ if $\min(A \triangle B) \in B$; that is, lex is the standard lexicographical order of support vectors. However, note that Bollobás [1] defines the lexicographical order on $X^{(r)}$ reversely, by $A <_{lex'} B$ if $\min(A \triangle B) \in A$; that is, $A <_{lex'} B$ if and only if $B <_{lex} A$.

²This is not true neither for the lex nor for the lex' order. This explains why it is preferred to used the colex order instead of lex, although for fixed n reversing the order of [n] maps colex to lex.

Observe that $B^{(r)}(m_r,\ldots,m_s)$ is the initial segment of the colex order of $\mathbb{N}^{(r)}_+$ of length

$$|B^{(r)}(m_r, \dots, m_s)| = \sum_{j=s}^r \binom{m_j}{j}.$$
 (1)

On the other hand, it can be shown that every initial segment can be written as $B^{(r)}(m_r, \ldots, m_s)$, and that m_r, \ldots, m_s are determined uniquely from the segment length.

The above (rather technical) description is justified by the following observation.

Observation 2 For every $r, s \leq m_s < \cdots < m_r$

$$\partial B^{(r)}(m_r,\ldots,m_s) = B^{(r-1)}(m_r,\ldots,m_s).$$

In words, the shadow of the initial segment of the colex order of $X^{(r)}$ is the initial segment of the colex order of $X^{(r-1)}$ described by the same parameters.

Why are initial segments of the colex order so important? Because they have smallest shadows among all set systems of $X^{(r)}$ with fixed size. This classical result is well-known as the Kruskal-Katona theorem. To state it properly, we define $\partial^{(r)} : \mathbb{N} \to \mathbb{N}$ by

$$\partial^{(r)}(m) = \sum_{j=s}^{r} \binom{m_j}{j-1}$$

where $1 \le s \le m_s < \cdots < m_r$ are the unique numbers such that $m = \sum_{j=s}^r {m_j \choose j}$. That is, $\partial^{(r)}(m) = |\partial B^{(r)}(m_r, \ldots, m_s)|$ is the shadow size of the first *m r*-sets in the colex order.

Theorem 3 (Kruskal-Katona [7, 8]) For every $\mathcal{A} \subseteq X^r$ where $r \ge 1$,

$$|\partial \mathcal{A}| \ge \partial^{(r)}(|\mathcal{A}|).$$

Moreover, if $|\mathcal{A}| = \binom{m_r}{r}$ for some $m_r \ge r$ then equality holds if and only if $\mathcal{A} = [m_r]^{(r)}$.

The original proof has been simplified over the years. We refer to Bollobás [1] for a proof based on the compression operator, due to Frankl [4].

For upper shadows we apply Kruskal-Katona theorem on the family of complements. Since complements of a prefix of the colex order on $X^{(n-r)}$ form a suffix of the colex order on $X^{(r)}$, we obtain the following corollary.

Theorem 4 Let $1 \le r \le n-1$, $\mathcal{A} \subseteq X^{(r)}$, and let \mathcal{B} be the set of the last $|\mathcal{A}|$ elements of $X^{(r)}$ in the colex order. Then

$$|\partial_u \mathcal{A}| \ge |\partial_u \mathcal{B}|.$$

2 Intersecting families

A family $\mathcal{A} \subseteq \mathcal{P}(X)$ is *intersecting* if $A_1 \cap A_2 \neq \emptyset$ for every $A_1, A_2 \in \mathcal{A}$. We restrict here only to showing that Kruskal-Katona theorem implies Erdős-Ko-Rado theorem, a classical result on the maximal size of an intersecting family in the *r*-th level.

For $x \in X$ and $1 \le r \le n$ let $X_x^{(r)} = (X \setminus \{x\})^{(r-1)} \cdot \{x\}$; that is, X_x^r consists of all r-sets containing x.

Theorem 5 (Erdős-Ko-Rado [2]) For every intersecting $\mathcal{A} \subseteq X^{(r)}$ where $2 \leq r < n/2$,

$$|\mathcal{A}| \le \binom{n-1}{r-1} \tag{2}$$

with equality if and only if $\mathcal{A} = X_x^{(r)}$ for some $x \in X$.

Proof Let $\mathcal{B} = \{\overline{A}; A \in \mathcal{A}\}$; that is, \mathcal{B} is the family of complements in $X^{(n-r)}$. If $A \in \mathcal{A}$ and $B \in \mathcal{B}$ then $A \nsubseteq B$. Consequently, $\partial^{n-2r} \mathcal{B} \cap \mathcal{A} = \emptyset$ where ∂^{n-2r} denotes the shadow taken n - 2r times.

Assume equality in (2). Since $X_x^{(r)}$ is a maximal (with respect to inclusion) intersecting family, it suffices to show that $\mathcal{A} = X_x^{(r)}$. By Theorem 3, $|\partial^{n-2r}\mathcal{B}| \ge \binom{n-1}{r}$ with equality if and only if $B = (X \setminus \{x\})^{(n-r)}$ for some $x \in X$ which is equivalent to $\mathcal{A} = X_x^{(r)}$.

3 Isoperimetric inequalities

The notion of isoperimetry ("having the same perimeter") comes from geometry. The isoperimetric inequality in the plane is the relation $4\pi A \leq L^2$ between area A of a planar region and length L of its enclosing curve (with equality if and only if the curve is a circle)³.

In a graph G = (V, E) we consider subsets $S \subseteq V$ of vertices (instead of area in the plane) and we are interested in their *vertex* and *edge boundaries*⁴:

$$\partial_v S = N(S) \setminus S = \{ v \in V \setminus S; uv \in E \text{ for some } u \in S \}$$
 (vertex boundary),
$$\partial_e S = E(S, \overline{S}) = \{ uv \in E; u \in S, v \notin S \}$$
 (edge boundary).

In general, isoperimetric inequality is a lower bound on $|\partial S|$ in terms of |S| and other parameters of G. Ideally, we determine for all $1 \le m < |V|$ the values of

$$\Phi_v^G(m) = \min_{S \subseteq V, |S|=m} |\partial_v S|, \quad \Phi_e^G(m) = \min_{S \subseteq V, |S|=m} |\partial_e S|,$$

called the *vertex* and *edge isoperimetric parameters* of G. (We study these functions only for the hypercube, so we omit the superscript G).

4 Vertex-isoperimetric problem

A Hamming sphere with a center $C \subseteq X$ is a family $\mathcal{A} \subseteq \mathcal{P}(X)$ such that

$$\{B \subseteq X; \ d_H(B,C) \le r\} \subseteq \mathcal{A} \subset \{B \subseteq X; \ d_H(B,C) \le r+1\}$$

for some $0 \leq r \leq n$. That is, \mathcal{A} contains the Hamming ball of radius r and is strictly contained in the Hamming ball of radius r + 1, both centered in C.

The (Hamming) distance between two nonempty families $\mathcal{A}, \mathcal{B} \subseteq \mathcal{P}(X)$ is $d_H(\mathcal{A}, \mathcal{B}) = \min\{d_H(A, B); A \in \mathcal{A}, B \in \mathcal{B}\}$. The following theorem claims that Hamming spheres with antipodal centers are among the "furthest" families of given sizes.

³This inequality was known to ancient Greeks, but it was rigorously proved no early than in 19th century.

⁴The notion of shadow is very close to the notion of vertex boundary in the hypercube. We keep the symbol ∂ commonly used for both these notions.

Theorem 6 For nonempty $\mathcal{A}, \mathcal{B} \subseteq \mathcal{P}(X)$ there are Hamming spheres $\mathcal{A}_0, \mathcal{B}_0$ centered at \emptyset and X, respectively, with $|\mathcal{A}_0| = |\mathcal{A}|, |\mathcal{B}_0| = |\mathcal{B}|$ such that $d_H(\mathcal{A}_0, \mathcal{B}_0) \ge d_H(\mathcal{A}, \mathcal{B})$.

The proof is based on compressing \mathcal{A} towards \emptyset , and simultaneously \mathcal{B} towards X iteratively by some coordinate $x \in X$. For details we refer to [1].

By the above theorem, a solution to the vertex-isoperimetric problem in Q_n is attained by a Hamming sphere. Indeed, for a nonempty $\mathcal{A} \subset \mathcal{P}(X)$ of a fixed size with the smallest vertex-boundary we take

$$\mathcal{B} = \begin{cases} \partial_v \mathcal{A} & \text{if } \mathcal{A} \cup \partial_v \mathcal{A} = \mathcal{P}(X), \\ \mathcal{P}(X) \setminus (\mathcal{A} \cup \partial_v \mathcal{A}) & \text{otherwise.} \end{cases}$$

In the first case, we have $d_H(\mathcal{A}, \mathcal{B}) = 1$ and $\partial_v \mathcal{A}_0 \subseteq \mathcal{B}_0$. In the latter case, we have $d_H(\mathcal{A}, \mathcal{B}) = 2$ and $\partial_v \mathcal{A}_0 \subseteq \mathcal{P}(X) \setminus (\mathcal{A}_0 \cup \mathcal{B}_0)$. Hence, in both cases \mathcal{A}_0 does not have a larger vertex-boundary than \mathcal{A} .

Kruskal-Katona theorem for upper shadows tells us which sets from the last level $X^{(r+1)}$ we should take in a Hamming sphere \mathcal{A} to minimize its vertex boundary, see the figure below.

Figure 1: $\mathcal{B} = \mathcal{A} \cap X^{(r+1)}$ is the final segment of $X^{(r+1)}$ in the colex order.

To summarize the solution of the vertex isoperimetric problem, we define the following order on $\mathcal{P}(X)$.

Definition 7 (simplicial order) A < B if |A| < |B| or |A| = |B| and $\max(A \triangle B) \in A$.

Theorem 8 (Harper [6]) For every $\mathcal{A} \subseteq \mathcal{P}(X)$ it holds $|\partial_v \mathcal{A}| \geq |\partial_v \mathcal{S}|$ where \mathcal{S} is the system of first $|\mathcal{A}|$ sets in the simplicial order. In particular, if $\mathcal{A} = \sum_{i=0}^r \binom{n}{i}$ for some r, then $\partial \mathcal{A} \geq \binom{n}{r+1}$.

Remark Since $S \cup \partial S$ is a prefix of the simplicial order if S is a prefix of the simplicial order, the above theorem holds also for the vertex boundary in a general distance d.

Notes

The above classical results can be found in almost any book on combinatorics of finite sets. We refer to the presentation given by Bollobás [1]. Theorem 6 is due to Frankl and Füredi [5] who simplified Harper's proof of Theorem 8.

References

- [1] B. BOLLOBÁS, Combinatorics: set systems, hypergraphs, families of vectors, and combinatorial probability, Cambridge University Press, Cambridge, 1986.
- [2] P. ERDŐS, C. KO., AND R. RADO, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford 12 (1961), 313–320.
- [3] S. FELSNER AND M. MASSOW, Linear extension diameter of downset lattices of twodimensional posets, SIAM J. Discrete Math. 25 (2011), 112-129.
- [4] P. FRANKL, A new short proof of the Kruskal-Katona theorem, Discrete Math. 48 (1984), 327–329.
- [5] P. FRANKL AND Z. FÜREDI, A short proof of a theorem of Harper about Hamming spheres, Discrete Math. 34 (1981), 311–313.
- [6] L. H. HARPER, Optimal numberings and isoperimetric problems on graphs, J. Combin. Theory 1 (1966), 385–394.
- [7] G. O. H. KATONA, A theorem on finite sets, in Theory of Graphs (P. Erdős and G. O. H. Katona, eds.), Akadémiai Kiadó, Budapest, 1968, 187–207.
- [8] J. B. KRUSKAL, The number of simplices in a complex, in Mathematical Optimization Techniques, Univ. California Press, Berkeley, 1963, 251–278.