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We continue in study of isoperimetric parameters of hypercubes started in the previous
lecture. Recall that it remains to determine the edge isometric parameter Φe(m) which
gives the minimal size of an edge boundary E(S, S) over all sets S of m vertices in Qn.

1 Edge-isoperimetric problem

In hypercubes we may equivalently consider a dual problem of determining

fn(m) = max {|E(Qn[S])| : S ⊆ V (Qn), |S| = m},

the maximal number of edges in Qn spanned by m vertices. Indeed, since Qn is n-regular,

Φe(m) = nm− 2fn(m).

Intuitively, one would guess that for m = 2k the maximal number of edges is attained
by a subcube of dimension k. We will see that this intuition is correct. Let us start by a
definition of an auxiliary function.

Definition 1 For 0 ≤ l < m let

f(l,m) =

m−1∑
i=l

h(i)

where h(i) is the number of 1’s in the binary representation of i.

A proof of the following lemma is left as an exercise. Details can be found in [2].

Lemma 2 If 1 ≤ k ≤ l then f(l, l + k) ≥ f(0, k) + k.

At first it may not be clear what this seeming technical definition has to do with our
problem. But it turns out that it describes optimal solution given by prefixes of the lexi-
cographical ordering. For X = [n] the lexicographical order on P(X) is defined as follows.

Definition 3 (lexicographical order) A <lex B if min(A4B) ∈ B.

That is, the lexicographical order of support vectors, or the order of natural numbers in
their binary representation by sets of 1-indices.

Observation 4 If S is a prefix of lex, then |E(Qn[S])| = f(0, |S|).
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Proof If x ∈ S then all his down-neighbors are in S. Their number is the number of 1’s
in x. In this way, each edge spanned by S is counted exactly once in f(0, |S|).

The solution of the dual problem is described as follows.

Theorem 5 (Harper [9]) For every 1 ≤ m ≤ 2n it holds fn(m) = f(0,m).

Proof The inequality fn(m) ≥ f(0,m) follows from the above observation. We prove the
other inequality by induction on n. For n = 1 it clearly holds. Now, let S ⊆ V (Qn) with
|S| = m. We split S by the first bit into S0 ∪ S1 = S. Let m0 = |S0|, m1 = |S1| = m−m0

and assume that m0 ≥ m1. By induction, there are at most f(0,m0) edges in Q0
n[S0]

and at most f(0,m1) edges in Q1
n[S1]. Furthermore, there are at most m1 edges between.

Therefore,

|E(Qn[S])| ≤ f(0,m0) + f(0,m1) +m1 = f(0,m)− f(m0,m0 +m1) + f(0,m1) +m1

≤ f(0,m)

where the last step is by Lemma 2.

Corollary 6 For every n ≥ 1, 0 < m < 2n it holds

Φe(m) = nm− 2

m−1∑
i=0

h(i)

with optimum attained by prefixes of the lexicographical order.

Remark

• The above exact formula is inconvenient for practical purposes. It often suffices to
use an estimate

Φe(m) ≥ m(n− log2m)

with equality when m = 2k (attained by k-dimensional subcubes).

• Edges can be viewed as subcubes of dimension 1. The above results can be naturally
extended for subcubes of dimension d [3]. In particular, the maximal number of
d-dimensional subcubes of Qn spanned by m vertices is

fn(m, d) =

m−1∑
i=0

(
h(i)

d

)
.

• The subgraph of Qn induced by a prefix of the lexicographical order is sometimes [8]
called an incomplete hypercube.
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2 Linear layouts

Definition 7 Let G = (V,E) be a graph on n vertices. A linear layout of G is a bijection
ϕ : V → [n]. For a linear layout ϕ, i ∈ [n], and uv ∈ E let

• θϕ(i) = |{uv ∈ E; ϕ(u) ≤ i and ϕ(v) > i}| edge cut at i,

• δϕ(i) = |{u ∈ V ; ϕ(u) ≤ i and u has a neighbor v with ϕ(v) > i}| vertex cut at i,

• λϕ(uv) = |ϕ(u)− ϕ(v)| length of uv.

The index ϕ is omitted whenever clear. Linear layouts are also called linear arrangements,
linear orderings, or labelings.

1 2 3 4 5

θ(3) = 4, δ(3) = 3

Definition 8 For a linear layout ϕ of G = (V,E) we define the following costs:

• bw(ϕ) = max
uv∈E

λ(uv) bandwidth,

• la(ϕ) =
∑
uv∈E

λ(uv) linear arrangement ( wirelength),

• cw(ϕ) = max
i∈[n]

θ(i) cutwidth,

• vs(ϕ) = max
i∈[n]

δ(i) vertex separation,

• sc(ϕ) =
∑
i∈[n]

δ(i) sum cut.

A layout problem is to find a linear layout of a given graph with the minimal cost. Thus
we define the bandwidth bw(G) of a graph G to be the minimal bandwidth over all linear
layouts of G. Similarly for other costs.

Since each uv ∈ E contributes to λ(uv) edge cuts, linear arrangement has an alternative
formula.

Observation 9 [9] For every graph G and layout ϕ of G,

la(ϕ) =
∑
i∈[n]

θ(i).

Remark Linear layouts can be seen as embeddings to paths and can be generalized to
cycles, grids, etc.

We will see that the solution of vertex and edge isoperimetric problems in Qn implies
exact formulae for above linear layout problems in Qn. The key idea is that the lexicograph-
ical ordering minimizes θ(i) uniformly for every i ∈ [2n]. Similarly, the simplicial ordering,
defined in the previous lecture, minimizes δ(i) uniformly.
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2.1 Linear arrangement

By Observation 9 and the above remark, lexicographical ordering gives an optimal solution
of the linear arrangement problem. Since every edge uv in direction n−i has λlex(uv) = 2i−1,
we obtain

la(Qn) = la(lex) = 2n−1
(
1 + 2 + 4 + · · ·+ 2n−1

)
= 2n−1(2n − 1). [9]

Remark The solution of the linear arrangement problem has an interesting application.
Consider the problem of finding an encoding of numbers 0, . . . , 2n − 1 into binary strings
of length n with minimal average error (absolute arithmetic difference after decoding back)
when one bit changes. It turns out that the natural binary encoding wins!

2.2 Bandwidth

Observation 10 For every graph G and layout ϕ of G,

bw(ϕ) ≥ vs(ϕ).

Proof Let G = (V,E) and n = |V |. For every i ∈ [n] in the set

{u ∈ V ; ϕ(u) ≤ i and u has a neighbor v with ϕ(v) > i}

there is a vertex u with ϕ(u) ≤ i − δ(i) + 1. Since u has a neighbor v with ϕ(v) > i, we
have λ(uv) ≥ δ(i). The rest follows from definitions.

For a set S ⊆ V let us define the surface of S by

σS = {v ∈ S | v has a neighbour not in S},

that is, σS = ∂vS̄. Note that in terms of linear layouts, for the prefix S = {u ∈ V ; ϕ(u) ≤ i}
of length i we have |σS| = δ(i).

In the hypercube, observe that the automorphism to antipodal vertices maps the sim-
plicial ordering to its reverse. Thus, the prefixes of the simplicial ordering minimize also
the size of surfaces uniformly for each size of the prefix. Consequently,

vs(Qn) = vs(simp).

Finally, recall that for every prefix S of the simplicial order, σS is the suffix of S. Hence,
if there is an edge between vertices u and v with labels i and j (i < j), then all vertices
with labels from i to j − 1 are in the vertex cut at j − 1. In other words, λ(uv) ≤ δ(j − 1).
Therefore bw(simp) = vs(simp). Altogether with Observation 10,

bw(Qn) = bw(simp) = vs(simp) = vs(Qn) =

n−1∑
m=0

(
m

bm/2c

)
.

The exact formula can be proved by induction on n [10].
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2.3 Antibandwidth

Definition 11 The antibandwidth of a graph G is abw(G) = max
ϕ

min
uv∈E(G)

λϕ(uv).

It is known [13] that an optimal ordering for antibandwith on Qn is, in set notation,

X(0), X(2), . . . X(1), X(3), . . .

with colexicographical order (revlex) in each level. Explicitly, we obtain

abw(Qn) = 2n−1 −
n−2∑
m=0

(
m

bm/2c

)
.

2.4 Cutwidth

As we already know, for hypercubes the optimum is attained by the lexicographic ordering
[9]. Again, the antipodal automorphism of the hypercube maps lex to its reverse. Hence,

θlex(i) = θlex(2n − i)

for every 0 ≤ i ≤ 2n. Furthermore, observe on figure below that

θlex(i) =

{
2i+ θ

Qn−2

lex (i) if 0 ≤ i ≤ 2n−2,

2n−1 + θ
Qn−2

lex

(
i− 2n−2

)
if 2n−2 ≤ i ≤ 2n−1.

i ≤ 2n−2

i

i

2n−2 ≤ i ≤ 2n−1

2 · 2n−2

Therefore, cw(Qn) = 2n−1+cw(Qn−2) if n ≥ 2 and cw(Q0) = 0, cw(Q1) = 1. Explicitly,

cw(Qn) =

{
2n+1−2

3 if n is even,
2n+1−1

3 if n is odd.
[1]

Conjecture 12 [4] For cyclic cutwidth (embeddings to cycles instead of paths) of hyper-
cubes, the minimum is attained by the reflected cyclic Gray code.
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2.5 Pathwidth

Definition 13 A path-decomposition of a graph G = (V,E) is a sequence X1, . . . , Xr of
subsets of V such that:

(i)
⋃r

i=1Xi = V ,

(ii) for every uv ∈ E there is Xi ⊇ {u, v}, and

(iii) Xi ∩Xk ⊆ Xj for every i ≤ j ≤ k.

The width of a path-decomposition is maxi∈[r] |Xi| − 1. The pathwidth pw(G) of a graph
G is the minimum width over all path-decompositions.

The condition (iii) says that every vertex appears in a contiguous segment of the subsets
(subpath). The term −1 in the definition of width is only technical, it ensures that the
pathwidth of a path is 1. Intuitively, the pathwidth expresses how much the graph looks
like a path.

Theorem 14 For any graph G it holds that pw(G) = vs(G).

Proof First we show pw(G) ≥ vs(G). Consider an optimal path decomposition and
choose an arbitrary ordering of first occurrences in Xi. Then every vertex u with first
occurrence in Xi has all vertices from his vertex cut in Xi. In other words, δ(ϕ(u)) ≤ |Xi|−1.

Secondly, we show pw(G) ≤ vs(G). Let ϕ be an ordering of G with minimal vertex
separation. Denote ui the vertex with ϕ(ui) = i and let Si = {uj | j ≤ i}. Then for i ∈ [n]
we put Xi = {umax(1,i−vs(ϕ)), . . . , ui} and we observe that (Xi)i form a path decomposition
of width vs(ϕ).

Corollary 15 ([12]) For every n ≥ 1,

pw(Qn) = bw(Qn) =
n−1∑
m=0

(
m

bm/2c

)
.

Problem 1 Determine the exact value of treewidth1 tw(Qn).

It is known [12] that tw(Qn) ∈ Θ(2n/
√
n).

2.6 Book embedding (also stack layout)

Definition 16 Let ϕ be a linear layout of a graph G.

• Edges uv and xy cross in ϕ if ϕ(u) < ϕ(x) < ϕ(v) < ϕ(y)

• A page ( stack) in ϕ is a set of pairwise non-crossing edges.

1Threewidth is more general concept than pathwidth. The difference is that sets Xi form a tree instead
of a sequence (path) and it is required that for every vertex u the sets containing u form a subtree instead
of a subpath.
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• A book embedding ( stack-layout) of G is a linear layout of G with a partition of
E(G) into pages.

• The page-number pn(G) ( stack-number) is the minimum number of pages in a book
embedding of G.

Theorem 17 ([5, 11]) pn(Qn) = n− 1 for every n ≥ 2.

Proof Take the ordering given by the reflected Gray code and put edges of direction 1
and 2 into the same page, and let each other direction take another page. This gives an
embedding into n− 1 pages. The proof of optimality is omitted.

2.7 Queue layout

Definition 18 Let ϕ be a linear layout of a graph G.

• An edge uv nest an edge xy in ϕ if ϕ(u) < ϕ(x) < ϕ(y) < ϕ(v).

• A queue in ϕ is a set of pairwise non-nested edges.

• A queue-layout of G is a linear layout of G with a partition of E(G) into queues.

• The queue-number qn(G) is the minimum number of queues in a queue layout of G.

Conjecture 19 ([7]) qn(Qn) ∈ n−Θ(log n).

It is known [7] that (n− 2)/3 ≤ qn(Qn) ≤ n− blog2 nc.

Notes

For a survey on linear layouts see [6].
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