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In this lecture we list several characteristical properties of hypercubes.

1 Preliminaries

Let G = (V,E) be a graph. We denote E(A,B) := {ab ∈ E | a ∈ A, b ∈ B}.

Definition 1 G has (0, 2)-property if every two vertices share exactly 0 or 2 common
neighbors. We also say that G is a (0, 2)-graph.

An example of a (0, 2)-graph other than Qn is K4.

Definition 2 An interval between vertices u and v is

I(u, v) = {z ∈ V | d(u, z) + d(z, v) = d(u, v)} ,

that is, the set of vertices each of which is on some shortest (u, v)-path ( geodesic).

• Every interval in Qn forms a subcube. Specifically, I(u, v) is the vertex set of Qn[s] '
Qd(u,v) where s = (s1, . . . , sn) is given by

si =

{
∗ if ui 6= vi,

ui otherwise.

Definition 3 G is spherical if for every vertices u, v and x ∈ I(u, v) there is y ∈ I(u, v)
such that I(u, v) = I(x, y).

Such vertex y is unique and is called the antipodal vertex to x in I(u, v).
• Qn is spherical. The vertex y antipodal to x in Qn[s], is given by

yi =

{
xi if si 6= ∗,
xi if si = ∗.

Definition 4 A set S ⊆ V is convex if I(u, v) ⊆ S for every u, v ∈ S.

• In Qn, convex sets ≈ intervals ≈ (vertex sets of) subcubes.

• There are graphs containing non-convex intervals (e. g. K2,3).
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Definition 5 The antipodal projection (antiprojection) of x ∈ V into S ⊆ V is

AP (x, S) := {y ∈ S | d(x, y) ≥ d(x, s) for every s ∈ S} ,

that is, the set of furthest vertices from x in S.

• In Qn, any antipodal projection into any interval consists of a single vertex.

Definition 6 The median set of vertices u, v, w ∈ V is

Med(u, v, w) := I(u, v) ∩ I(v, w) ∩ I(u,w).

A graph G is median if |Med(u, v, w)| = 1 for every u, v, w ∈ V ; that is, every triple of
vertices has a unique median.

Examples of median graphs: trees, grids, hypercubes. We will see in the next lecture
that in some sense, they are all graphs “between” trees and hypercubes.

2 Characterizations of hypercubes

Let G = (V,E) be a connected graph. The following statements are equivalent:

2.1 G is a hypercube (of dimension n).

Usually, the fact that following conditions hold for hypercubes is obvious, and we just need
to show the other direction (sufficiency).

2.2 G is a (0, 2)-graph with |V | = 2n where n is the minimal degree. [9]

Proof Every hypercube is trivially a (0, 2)-graph. The proof of the other direction is
divided into three parts.

1. G is regular.
We show that every neighbor y of a vertex x has

deg(y) ≥ deg(x). For every neighbor xi of x other than
y, by (0, 2)-property, xi and y have another neighbor yi
other than x. Moreover all yi’s are distinct. From sym-
metry we get deg(x) = deg(y). Since G is connected, it
is also regular.

x y

x1 y1

x2 y2

2. |V | ≤ 2n.

We fix some vertex x and define a level decomposition V = L(0) ∪ L(1) ∪ . . . from x
by L(i) := {y ∈ V | d(x, y) = i}. It suffices to prove the following claim.

Claim 7 For every i ≥ 0 and u ∈ L(i) it holds |L(i)| ≤
(
n
i

)
and |N(u) ∩ L(i− 1)| ≥ i.

4-2



Proof By induction on i. It clearly holds for i = 0
and i = 1. Now i ≥ 2.

The second part: every u ∈ L(i) has a neighbor
v ∈ L(i− 1). By induction for v and by (0, 2)-property,
we have at least i− 1 other neighbors of u in L(i− 1).

The first part: from the second part we have
that i |L(i)| ≤ |E(L(i), L(i− 1))|. Furthermore, by n-
regularity and the second part for L(i − 1), we have
|E(L(i), L(i− 1))| ≤ (n− i + 1) |L(i− 1)|. Hence,

|L(i)| ≤ |L(i− 1)| n− i + 1

i
≤
(

n

i− 1

)
n− i + 1

i
=

(
n

i

)
.

u

v

L(i)L(i− 2)

≥ i− 1

3. |V | = 2n implies Qn.

First, |V | = 2n implies equalities in Claim 7 for every i. Thus, there are no edges
within levels (G is bipartite) and the following property holds.

Property 8 In every level decomposition, every 4-cycle intersects exactly three levels.

Definition 9 For u ∈ L(i) and A ⊆ E(u, L(i + 1)) let C(u,A) be the smallest (0, 2)-
subgraph of G containing A.

Claim 10 C(u,A) ' Q|A| for every u and A.

Proof By induction on |A|. It clearly holds for
|A| ∈ {0, 1, 2}.

Otherwise, let A = A1∪{uu′}. By (0, 2)-property
we have a set of corresponding edges A′1 from u′ (see
figure on the right). By induction, we have disjoint
subcubes C(u,A1) ' Q|A|−1 and C(u′, A′1) ' Q|A|−1.

Moreover, by inductively using the (0, 2)-property
we find a perfect matching between corresponding
vertices of the subcubes, which gives us Q|A|.

A1

A′
1

u

L(i+ 1)

a

L(i+ 2)L(i)

u′

C(u,A1)
�

Q|A1|

C(u′, A′
1)

�
Q|A′

1|

2.2’ G is a (0, 2)-graph with Property 8. [3]

Proof Property 8 implies Claim 7 with equalities for every i and we repeat the rest of
the proof for (2.2) to imply Qn.
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2.3 G is n-regular, |V | = 2n, and E(N(u), N(v)) is a perfect matching
for every edge uv. [14]

Proof The last condition implies (0, 2)-property. Apply condition (2.2).

2.4 G is bipartite, the number of shortest uv-paths is d(u, v)! for every
u, v ∈ V . [5]

Proof The condition implies (0, 2)-property. Furthermore, bipartiteness implies Claim 7
with equalities for every i, hence |V | = 2n. We finish the proof by applying (2.2).

2.5 |AP (x, I(u, v))| = 1 for every x, u, v ∈ V . [3]

That is, antiprojections into intervals are unique.
Proof

1. G is bipartite.

By contradiction, consider a shortest odd cycle C, select x arbitrarily on C and uv as
the “opposite” edge to x on C. Then AP (x, I(u, v)) = {u, v}.

2. G is a (0, 2)-graph.

For ux, xv ∈ E there is exactly one common neighbor of u and v other than x,
otherwise |AP (x, I(u, v))| 6= 1.

3. Property 8 holds.

Suppose there is a 4-cycle (u, a, v, b) in a level decomposition from x with u, v ∈ L(i),
a, b ∈ L(i − 1) for some i. Since G is bipartite and (0, 2)-graph, we have I(u, v) =
{u, v, a, b}. Then we obtain a contradiction |AP (x, I(u, v))| = {u, v}.

We finish the proof by applying condition (2.2’).

2.5’ G is K2,3-free and |AP (x,C)| = 1 for every x ∈ V and a convex set
C ⊆ V . [3]

Proof

1. G is bipartite. As in the previous condition.

2. G is a (0, 2)-graph.

If ux, xv ∈ E, there exists another common neighbour w of u and v, otherwise
|AP (x, {u, x, v})| 6= 1. A third common neighbour would form K2,3 ({u, v} as one
partite, their common neighbours as the other one).

3. Property 8 holds. Since 4-cycles in a (0, 2)-graph are convex, we can proceed as in the
previous condition.

We finish the proof by applying condition (2.2’).
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2.6 G is bipartite and every interval induces a (0, 2)-graph. [11]

Proof

1. G is (0, 2)-graph. If ux, xv ∈ E, then I(u, v) is a 4-cycle (the only (0, 2)-supergraph).

2. Property 8 holds. Otherwise, an interval from x (the starting vertex of a level decom-
position) could contain only three vertices from some 4-cycle, which would not induce
a (0, 2)-graph.

We finish the proof by applying condition (2.2’).

2.7 |V | = 2n and Q0, Q1, . . . , Qn−1, G are the all nonisomorphic convex
subgraphs of G. [15]

Proof P3, C3, and K2,3 are not convex subgraphs of G, so it is a (0, 2)-graph. We finish
the proof by applying condition (2.2).

2.8 G is bipartite and spherical. [2, 16]

Proof omitted.

2.8’ G is triangle-free and spherical. [8]

Proof omitted as well.

2.9 G is bipartite and interval-regular. [12]

Definition 11 G is interval-regular if |N(u) ∩ I(u, v)| = d(u, v) for every u, v ∈ V (G).

Proof

1. G is (0, 2)-graph. If ux, xv ∈ E, then d(u, v) = 2 (since G is bipartite). By |N(u) ∩
I(u, v)| = 2, there is exactly one common neighbor of u and v other than x.

2. G is n-regular (for some n). As in condition (2.2) step 1.

3. V = 2n.

Take a level decomposition from x. Again, we show Claim 7 with equalities using
the assumption that every u ∈ L(i) has exactly i neighbors in L(i − 1) by interval
regularity for I(u, x). Thus, every u ∈ L(i − 1) is left with n − (i − 1) neighbors in
L(i) and every v ∈ L(i) has i neighbors in L(i− 1). By induction, we have

|L(i)| = |L(i− 1)| n− (i− 1)

i
=

(
n

i− 1

)
n− (i− 1)

i
=

(
n

i

)
.

Consequently,
∑

i |L(i)| = 2n.

We finish the proof by applying condition (2.2) (only step 3 is needed).

The following characterizations are listed for completeness, proofs are omitted.
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2.10 G is bipartite, antipodal, and (0, 2)-graph. [13]

Definition 12 G is antipodal if for every vertex u there is a vertex v such that I(u, v) = V .

Note that the vertex v is unique since we cannot have at the same time a shortest (u, v)-path
through v′ and a shortest (u, v′)-path through v.

2.11 G is distance monotone, interval monotone, and (δ(G) ≥ 3 or G ∈
{Q0, Q1, Q2}). [4]

Definition 13

• An interval I is closed if for every w ∈ V \ I there is w′ ∈ I with d(w,w′) > diam(I).

• G is distance monotone if every interval in G is closed.

• G is interval monotone if every interval in G is convex.

2.12 G is bipartite, interval distance monotone, and (δ(G) ≥ 3 or G ∈
{Q0, Q1, Q2}). [1]

Definition 14 G is interval distance monotone if every subgraph induced by interval in G
is distance monotone.

Interval distance monotonicity is trivially implied by distance monotonicity, but not vice-
versa (consider e. g. C2k+1). The proof of the following characterizations will follow from
the next lecture.

2.13 G is n-regular and median. [11]

2.14 G is median and |Wuv| = |V |/2 for every uv ∈ E.

Definition 15 For an edge uv we denote

Wuv := {x ∈ V | d(x, u) < d(x, v)} .

2.15 G is median and Wuv = Uuv for every uv ∈ E.

Definition 16 For an edge uv we denote

Uuv := {x ∈Wuv |x has a neighbour in Wvu} .

2.16 G is median and for every ab, uv ∈ E, if Wab and Wuv are disjoint,
then Wab ∪Wuv = V . [7]

Problems

1. Determine whether bipartite can be weakened to triangle-free (or another weaker
condition) in the above characterizations.

2. Find “completely” new characterizations of hypercubes.
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Notes

Characterizations (2.14) and (2.15) are proved in [6].
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