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1 Partial cubes

A subgraph H of G is isometric if dH(u, v) = dG(u, v) for every u, v ∈ V (H); that is, H
preserves all distances from G. Clearly, every isometric subgraph is an induced subgraph.
To see that the converse implication is not true, consider a path P4 in the cycle C5.
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v

Figure 1: A path P4 in the cycle C5 is induced but not isometric subgraph.

A graph G is a partial cube if it has an isometric embedding into Qn for some n. That
is, G is isomorphic to an isometric subgraph of Qn for some n. The smallest such n (if it
exists) is the isometric dimesion of G, denoted by dimI(G).

Observation 1

• dimI(T ) = n− 1 for every tree T on n vertices.

• dimI(C2n) = n for every n ≥ 2, with isometric embedding such that every direction is
used exactly twice, on antipodal edges.

Examples of partial cubes: the Desargues graph, the permutahedron, benzenoid graphs,
linear extension graphs, hyperplane arrangement graphs, Fibonacci cubes, see Figure 2.

2 Djoković-Winkler relation

Let G = (V,E) be a bipartite graph. For uv ∈ E let Wuv = {x ∈ V ; d(x, u) < d(x, v)} and
Wvu = {x ∈ V ; d(x, v) < d(x, u)}. Since G is bipartite, Wuv ∪Wvu is a partition of V .

Observation 2 All vertices on every shortest xu-path are in Wuv (that is, I(x, u) ⊆Wuv)
if x ∈Wuv.

The Djoković-Winkler1 relation, denoted by Θ, is defined as follows.

Definition 3 eΘf for edges e = uv and f if f joins a vertex in Wuv with a vertex in Wvu.
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Figure 2: Examples of partial cubes: (a) the Desargues graph (also known as the gener-
alized Petersen graph P (10, 3) or the middle level graph of Q5), (b) the permutahedron of
order 4 (also known as the truncated octahedron), (c) the linear extension graph of a (now
secret) poset, (d) a benzenoid graph.

From Observation 2 we obtain the following.

Observation 4 For every bipartite graph G,

• the relation Θ is reflexive and symmetric,

• if edges e, f both belong to a same shortest path in G, then e��Θf .

To see that the relation Θ does not have to be transitive, consider K2,3 on Figure 3(b).

1The definition given here is due to Djoković [8]. Winkler [17] defined another relation which in bipartite
graphs coincides with this definition. Hence it is commonly called Djoković-Winkler relation.
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Figure 3: (a) a partition of V to Wuv and Wvu, (b) K2,3 with eΘf1, eΘf2, but f1��Θf2.

3 Characterization of partial cubes

A set S ⊆ V is convex if I(u, v) ⊆ S for every u, v ∈ S where I(u, v) is the interval between
u and v. That is, with every two vertices S contains every shortest path between them.

Theorem 5 (Djoković [8], Winkler [17]) Let G = (V,E) be a connected graph. The
following statements are equivalent.

1. G is a partial cube,

2. G is bipartite and Wuv, Wvu are convex for every uv ∈ E,

3. G is bipartite and Θ is transitive (and consequently, an equivalence).

Proof

• 1) ⇒ 2) Let f : V → V (Qn) be an isometric embedding. The subgraph f(G) of Qn is
clearly bipartite which implies that G is bipartite.

If uv ∈ E then clearly f(u)⊕ f(v) = ei for some i. Assume without loss of generality
that f(u)i = 0. Since f(G) is an isometric subgraph of Qn and distances in Qn are
measured by the Hamming distance it follows that f(x)i = 0 for every x ∈ Wuv. A
shortest path between f(x1), f(x2) for x1, x2 ∈Wuv clearly contains at most one edge
of each direction. Thus, it does not contain any edge in the direction i and all vertices
on the shortest path have the i-th coordinate equal to 0. This means that the shortest
path between f(x1) and f(x2) stays in f(Wuv) so the same is true for its preimage -
the shortest path between x1, x2 ∈Wuv in G.

• 2) ⇒ 3) Let (uv)Θ(xy), say x ∈ Wuv and y ∈ Wvu. Symmetry of Θ implies that
u ∈ Wxy and v ∈ Wyx. We claim that Wuv = Wxy. Suppose w ∈ Wuv \ Wxy.
Then u is on a shortest wv-path and w ∈ Wyx. The convexity of Wyx and the fact
that w, v ∈ Wyx imply that u ∈ Wyx, a contradiction. The claim implies that Θ is
transitive.
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• 3) ⇒ 1) We prove this implication by constructing an isometric embedding f of G to
Qn where n is the index of Θ, i.e. n = |E / Θ|. Let ei = uivi be a representative of
the i-th class of Θ. The embedding f : V (G)→ Zn

2 is defined as follows.

f(x)i =

{
0 if x ∈Wuivi

1 if x ∈Wviui

Note that eΘe′ if and only if f(e) and f(e′) are of the same direction in Qn.

For distinct x, y ∈ V a shortest xy-path has edges from distinct Θ-classes which means
that f(x) 6= f(y), so f is injective. By the same reason, f maps shortest paths from
G to shortest paths in Qn. Thus, f is an isometric embedding.

Note that from the proof it follows that dimI(G) is the index of Θ. Since the relation
Θ can be found and tested for transitivity in a polynomial time, we obtain the following.

Corollary 6 Partial cubes can be recognized in polynomial time.

In fact, they can be recognized in O(mn) time and O(n2) space where n = |V | and m = |E|
[1].

4 Median graphs

A set of medians for a triple of vertices x, y, z is defined by

Med(x, y, z) = I(x, y) ∩ I(y, z) ∩ I(z, x).

A graph G is a median graph if |Med(x, y, z)| = 1 for every x, y, z ∈ V (G). That is, every
triple has a unique median, which is then denoted by med(x, y, z).

The class of median graphs includes all trees, grids, hypercubes (by the following propo-
sition). We will see that median graphs are in some sense graphs “between” trees and
hypercubes. They occur in many at first seemingly unrelated areas such as the study of so-
lutions of 2-SAT [10], stable configurations of nonexpansive networks [10], stable matchings
in the well-known stable roommate problem [7], median semilattices [4].

Proposition 7 Qn is a median graph for every n ≥ 1 with med(x, y, z) = maj(x, y, z)
where maj is the coordinate-wise majority function.

Proof If two vertices agree in a coordinate, say xi = yi, then every m ∈Med(x, y, z) has
mi = xi = yi since m belongs to a shortest xy-path, so m = maj(x, y, z). On the other
hand, if m = maj(x, y, z) then xi = yi implies mi = xi = yi, so m lies on a shortest path
between every pair of vertices.

Every median graph is bipartite. Indeed, for a contradiction consider a shortest odd
cycle with a vertex x antipodal to an edge yz. Then Med(x, y, z) = ∅.

Theorem 8 Every median graph G = (V,E) is a partial cube.
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Figure 4: (a) The sets Uuv and Uvu, (b) a shortest xu-path P in Uuv and adjacent vertices
from Uvu, (c) the shortest paths between x and y, x and u, y and u.

Proof For uv ∈ E let Uuv = {x ∈Wuv | x has a neighbor in Wvu} and similarly Uvu.

Claim 9 If x ∈ Uuv then every shortest xu-path belongs to Uuv (that is, I(x, u) ⊆ Uuv).

Let z be a neighbor of x on a shortest xu-path P , see Figure 4(b). Clearly, d(z, y) = 2
and d(z, v) = d(x, u) = d(y, v). Then m = med(z, y, v) must be a neighbor of z lying on a
shortest yv-path. Therefore z ∈ Uuv. Then we continue this argument for the next vertex
z′ on P until we reach u.

Claim 10 Uuv induces an isometric subgraph.

Let x, y ∈ Uuv and m = med(x, y, u). Let P1 be a shortest xm-path, P2 a shortest ym-path
and P3 a shortest um-path, see Figure 4(c). By Claim 4, P1P3 and P2P3 are in Uuv which
means that P1P2 also lies in Uuv (i.e. d〈Uuv〉(x, y) = dG(x, y)).

Therefore, Wuv and similarly Wvu are convex and we may apply Theorem 5.

Not every partial cube is a median graph, see Figure 5.
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Figure 5: Two examples of partial cubes that are not median graphs

5 Mulder’s convex expansion

Let G = (V,E) be a connected graph and S ⊆ V be a convex set. The expanded graph
G′ = exp(G,S) is obtained as follows:

• for every vertex u in S add a copy u′ and join u and u′ by an edge,
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• insert an edge u′v′ between new vertices whenever uv is an edge of 〈S〉.

The set of new vertices in denoted by S′ (a copy of S), see Figure 6.

G

S
S ′

Figure 6: The expansion procedure.

Since a subgraph of a median graph induced by a convex set is clearly median, by
considering all cases for triples in G′ it can be shown that if G is a median graph, then G′

is also a median graph.
Interestingly, every median graph can be obtained by this procedure2 starting from a

single vertex. This shows us a “tree-like” structure of median graphs.

Theorem 11 (Mulder [14]) A graph G is a median graph if and only if it can be obtained
from a single vertex by a sequence of convex expansions.

For a proof we refer to [14].

Figure 7: Examples of convex expansions.

6 Euler-type formula

Recall that vertices and edges can be seen as 0-faces and 1-faces, respectively. Thus the
following relation can been regarded as an Euler-type formula.

Theorem 12 (Škrekovski [16]) Let G be a median graph, k = dimI(G), and let qi be the
number of subcubes of dimension i in G. Then,∑

i≥0
(−1)iqi = 1 and k = −

∑
i≥0

(−1)iiqi.

2Originally, the convex expansion is described in a more general way. However, it can be shown that this
simplified version suffices.

5-6



Proof Let G = exp(G′, S), q′i be the number of copies of Qi in G′, qSi be the number of
copies of Qi in 〈S〉. From the expansion procedure, observe that qi = q′i + qSi + qSi−1 for
every i ≥ 0 (where we define qS−1 = 0). Then,∑

i≥0
(−1)iqi =

∑
i≥0

(−1)iq′i +
∑
i≥0

(−1)iqSi +
∑
i≥−1

(−1)i+1qSi︸ ︷︷ ︸
= 0 since qS−1 = 0

= 1 (1)

by induction for G′. Furthermore, applying induction for G′ and (1) for 〈S〉 gives us

k = k′ + 1 = −
∑
i≥0

(−1)iiq′i +
∑
i≥0

(−1)iqSi =

= −
∑
i≥0

(−1)iiq′i −
∑
i≥0

(−1)i(iqSi − (i + 1)qSi ) =

= −
∑
i≥0

(−1)iiq′i −
∑
i≥0

(−1)iiqSi −
∑
i≥1

(−1)iiqSi−1 = −
∑
i≥0

(−1)iqi.

7 Open problems

Problem 1 (Eppstein [9]) Find a nonplanar cubic partial cube other than the Desargues
graph.

(Here, cubic means 3-regular.)

Conjecture 13 (Brešar et al. [5]) Every cubic partial cube is Hamiltonian.

Problem 2 Characterize Hamiltonian partial cubes (median graphs).

A partial cube G = (V,E) is Θ-graceful if there is a bijection f : V → {0, . . . , |V | − 1}
such that for every e1, e2 ∈ E :

e1Θe2 if and only if f ′(e1) = f ′(e2)

where f ′(uv) = |f(u)− f(v)|.
Conjecture 14 (Brešar, Klavžar [6]) Every partial cube is Θ-graceful.

Remark This conjecture implies the graceful tree conjecture.

8 Notes

Median graphs were first studied by Avann [2], Nebeský [15], and independently by Mulder
[14]. There is an extensive literature on median graphs, see [3, 13] for surveys. A good
starting reference is also the book3 of Imrich and Klavžar [12].

3The second edition [11] is already available.
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