1 The number of perfect matchings

We determine asymptotically the number of perfect matchings of Q_n. Let us recall that in a balanced bipartite graph G on $2m$ vertices the number of perfect matchings $pm(G)$ is the permanent $per(M_G)$ of its biadjacency $m \times m$ matrix $M_G = (m_{ij})$; that is,

$$pm(G) = per(M_G) = \sum_{\pi \in S_m} \prod_{i=1}^{m} m_{i, \pi(i)}.$$

A real matrix is doubly stochastic if all its elements are nonnegative and every row and every column sums to 1. The following result says that the minimal permanent over all doubly stochastic matrices is attained by the uniform matrix; that is, the matrix with $1/m$ in each position. It was posed as a conjecture by van der Waerden\footnote{There is another result named after him, the van der Waerden’s theorem on arithmetic progressions.} and it took half a century till it was proved, independently, by Egoryčev \cite{5} and Falikman \cite{6}.

Theorem 1 (van der Waerden’s conjecture \cite{5, 6}) For every doubly stochastic $m \times m$ matrix M,

$$per(M) \geq \frac{m!}{m^m}.$$

There is also an upper bound on permanent of binary matrices based on row sums that was conjectured by Minc \cite{16}.

Theorem 2 (Brègman \cite{3}) For every binary $m \times m$ matrix M with sum r_i in the i-th row for $1 \leq i \leq m$,

$$per(M) \leq \prod_{i=1}^{m} (r_i!)^{1/r_i}.$$

Corollary 3 For every n-regular balanced bipartite graph G on $2m$ vertices,

$$n^m \frac{m!}{m^m} \leq pm(G) \leq (n!)^{\frac{m}{n}}.$$

Using a standard approximation of $m!$ we get

$$pm(G) \geq \left(\frac{n}{m}\right)^m \left(\frac{m}{e}\right)^m = \left(\frac{n}{e}\right)^m. \quad (1)$$
In fact, for the hypercube it can be computed \[4\] that

\[
\text{pm}(Q_n) = \left[\frac{n}{e}(1 + o(1))\right]^{2^{n-1}}.
\]

The exact value of \(\text{pm}(Q_n)\) is known for \(n \leq 7\) \[20\].

2 Maximal forcing number

Recall from the previous lecture that the forcing number \(f(M)\) of a perfect matching \(M\) of a graph \(G\) is the minimal size of a subset \(S \subseteq M\) that is not in other perfect matching of \(G\). The maximal forcing number \(f_{\text{max}}(G)\) of \(G\) is the maximal \(f(M)\) over all perfect matchings \(M\) of \(G\).

Perhaps surprisingly, compared to the results on minimal forcing number, the following proposition shows that \(f_{\text{max}}(Q_n)\) grows above any constant fraction of a perfect matching.

Proposition 4 (Alon, see [18]) For any constant \(0 < c < 1\) there exists a perfect matching \(M\) in \(Q_n\) for sufficiently large \(n\) with \(f(M) > c2^{n-1}\).

Proof We proceed by contradiction. If \(f_{\text{max}}(Q_n) \leq c2^{n-1}\) then there are at least \(\text{pm}(Q_n)\) forcing sets of size at most \(c2^{n-1}\). The number of such matchings is at most \(2^{2^{n-1}-1}c2^{n-1}\) (the number of subsets of one bipartite class multiplied by the number of ways to choose directions for edges from the selected vertices). Thus, applying (1), we have

\[
\left(\frac{n}{e}\right)^{2^{n-1}} < \text{pm}(Q_n) < 2^{2^{n-1}2^{n-1}}.
\]

This gives us the inequality

\[
\frac{n}{e} < 2n^c
\]

which is false if \(n\) is large. \[\square\]

3 Fink’s theorem

Kreweras \[14\] conjectured that every perfect matching in \(Q_n\) for \(n \geq 2\) extends to a Hamiltonian cycle. Fink \[7\] confirmed this assertion by proving a more general result.\[7\] Let \(K(Q_n)\) denote the complete graph on \(V(Q_n) = \mathbb{Z}_2^n\).

Theorem 5 (Fink [7]) For every perfect matching \(P\) of \(K(Q_n)\) where \(n \geq 2\) there is a perfect matching \(R\) of \(Q_n\) such that \(P \cup R\) forms a Hamiltonian cycle in \(K(Q_n)\).

Proof We proceed by induction on \(n\). For \(n = 2\) there are three cases as shown on Figure 1. Assuming the statement holds for \(n - 1\), we prove it for \(n\). We divide \(Q_n\) into \(Q_{n-1}^0\) and \(Q_{n-1}^1\) along some direction \(i\) that is crossed by some edge of \(P\). Let \(P'\) denote the set of edges from \(P\) crossing the direction \(i\), and let \(P_0\) and \(P_1\) denote the rest of edges from \(P\) in \(Q_{n-1}^0\) or \(Q_{n-1}^1\), respectively. Note that \(|P'|\) is even.

\[\text{His proof is a textbook example that considering a stronger statement often helps in induction.}\]
First, we focus on $Q_{n-1}^{i,0}$, see Figure 2(a). Choose an arbitrary perfect matching S_0 (blue) on the endvertices of P' in $Q_{n-1}^{i,0}$. Then by the induction hypothesis for $P_0 \cup S_0$ we obtain a perfect matching R_0 of $Q_{n-1}^{i,0}$ (green) such that $P_0 \cup S_0 \cup R_0$ forms a Hamiltonian cycle in $K(Q_{n-1}^{i,0})$.

Then, we “delete” the edges S_0 and focus on $Q_{n-1}^{i,1}$, see Figure 2(b). Let S_1 (blue) be the perfect matching on the endvertices of P' in $Q_{n-1}^{i,1}$ such that every edge from S_1 represents the path between the same vertices formed by $P' \cup P_1 \cup R_0$. Applying induction for $P_1 \cup S_1$ we obtain a perfect matching R_1 of $Q_{n-1}^{i,1}$ (green) such that $P_1 \cup S_1 \cup R_1$ forms a Hamiltonian cycle in $K(Q_{n-1}^{i,1})$. By “deleting” the edges S_1 we have a desired matching $R = R_0 \cup R_1$.

In case that P is a perfect matching of Q_n, Fink’s theorem can be strengthened to allow forbidden edges. For other related results, see his thesis [9].

Theorem 6 (Fon-der-Flaass [10]) Let $F \subseteq E(Q_n)$ for $n \geq 4$ be a set such that every subcube of dimension 4 contains at most one edge of F. Then every perfect matching of $Q_n - F$ extends to a Hamiltonian cycle in $Q_n - F$.

For $n \geq 2$ let M_n denote the graph whose vertices are all perfect matchings of Q_n and edges join two perfect matchings that form a Hamiltonian cycle of Q_n. Fink proved also the second Kreweras conjecture [14].
Theorem 7 (Fink [8]) For every $n \geq 4$ the graph M_n is bipartite and connected.

In case of general (non-perfect) matchings the question remains open.

Problem 1 (Ruskey, Savage [19]) Does every matching of Q_n for $n \geq 2$ extend to a Hamiltonian cycle?

4 Extending to f-factors

An f-factor of a graph G for a function $f : V(G) \to \mathbb{N}$ is a spanning subgraph H of G such that $\deg_H(v) = f(v)$ for every $v \in V(G)$. For a set $S \subseteq V(G)$ let $f(S) = \sum_{v \in S} f(v)$. The following theorem is a useful extension of Hall’s matching theorem.

Theorem 8 (Ore-Ryser [17]) A bipartite graph $G = (A \cup B, E)$ has an f-factor if and only if $f(A) = f(B)$ and for every $S \subseteq A$,

$$f(S) \leq \sum_{b \in N(S)} \min(f(b), |N_S(b)|).$$

Applying this theorem it was shown [23] that every matching in Q_5 extends to a 2-factor (that is, a cover of Q_5 by vertex-disjoint cycles). This is also true for $n = 2, 3, 4$. Problem 1 can be relaxed as follows.

Problem 2 (Vandenbussche, West [23]) Does every matching of Q_n for $n \geq 2$ extend to a 2-factor?

5 Hamiltonian decomposition

A Hamiltonian decomposition of an $2n$-regular graph G is a partition of $E(G)$ into n Hamiltonian cycles of G.

For example, Q_4 has a Hamiltonian decomposition shown on Figure 3 with the red and blue Hamiltonian cycles. Observe that the red cycle is obtained from the blue one by shifting it two steps down and flipping it horizontally.

We will see that Q_{2n} has a Hamiltonian decomposition for every $n \geq 1$. First, we introduce an auxiliary definition and we state a key lemma. A matching M is orthogonal to a Hamiltonian decomposition C_1, \ldots, C_n if $|M \cap C_i| = 1$ for every $i \in [n]$.

Lemma 9 (Stong [21]) Let $G = (V, E)$ be a bipartite graph with a matching M orthogonal to a Hamiltonian decomposition C_1, \ldots, C_n of G. Then $G \Box C_4$ has a Hamiltonian decomposition as well.

Proof Let $m = |V|$ and assume that $C_i = (c_i^1, \ldots, c_i^m)$ with $c_i^1c_i^1 \in M$ for all $i \in [n]$. For $1 \leq j \leq n - 1$ we create a new Hamiltonian cycle C'_j of $G \Box C_4$ by joining four copies of C_j in alternating order; that is,

$$C'_j = ((C_j, 1), (C_j^R, 2), (C_j, 3), (C_j^R, 4))$$
Figure 3: A partition of Q_4 into two Hamiltonian cycles (drawn on a torus).

Figure 4: The cycle C'_j from four copies of C_j for $1 \leq j \leq n - 1$.

as is shown in Figure 4. Since $c^m_j c^1_j$ and $c^m_j c^2_j$ are disjoint and C_{j_1}, C_{j_2} are edge-disjoint in G, it follows that every two cycles C'_{j_1} and C'_{j_2} are edge-disjoint for distinct $1 \leq j_1, j_2 \leq n-1$.

It remains to decompose $(G \Box C_4) - \bigcup_{j=1}^{n-1} C'_j$ into two Hamiltonian cycles C'_n and C'_{n+1}. For this purpose we will use the copies of the cycle C_n in G. We start with the Hamiltonian cycles $\overline{C}_n, \overline{C}_{n+1}$ that decompose $C_n \Box C_4$ as shown on Figure 5.

Figure 5: The cycles \overline{C}_n and \overline{C}_{n+1}.

However, we are not finished yet. For every $j = 1, \ldots, n - 1$ we have to correct the cycles $\overline{C}_n, \overline{C}_{n+1}$ as on Figure 4 and we obtain the desired cycles C'_n, C'_{n+1}. Instead of the edges $(c^m_j, 1)(c^m_j, 2), (c^1_j, 2)(c^1_j, 3), (c^m_j, 3)(c^m_j, 4), (c^1_j, 4)(c^1_j, 1)$ that are used already by C'_j, we use the edges $(c^1_j, k)(c^m_j, k)$ for $k = 1, \ldots, 4$. ■
The above lemma can be directly extended for C_{2k} instead of C_4, non-bipartite graphs, or (less directly) for C_{2k+1} instead of C_{2k} [21].

Corollary 10 Q_{2n} has a Hamiltonian decomposition for every $n \geq 1$.

Proof We have $Q_{2n} \simeq C_4^n$ (the nth Cartesian power). The statement follows by Lemma 9 by induction with the trivial base for Q_2. Since $4(n-1) < 2^{2n}$ for every $n \geq 1$, an orthogonal matching exist in each induction step. Apply Lemma 9 by induction.

Note that for $n = 2$ we obtain the decomposition of Q_4 on Figure 3.

Obviously, Q_n has no Hamiltonian decomposition when n is odd. However, we can find some when we switch to directed cubes. Let $\leftrightarrow Q_n$ be the directed graph obtained from Q_n by replacing each edge with two directed edges of opposite directions.

Theorem 11 (Stong [22]) $\leftrightarrow Q_n$ for any $n \neq 3$ has a decomposition into n directed Hamiltonian cycles.

The proof is similar to the proof of Lemma 9.

6 Semi-perfect 1-factorization

A 1-factorization of a (regular) graph $G = (V,E)$ is a partition of E into 1-factors (perfect matchings). A 1-factorization F_1, \ldots, F_n is perfect if $F_i \cup F_j$ induces a Hamiltonian cycle for every distinct $1 \leq i, j \leq n$. A long-standing conjecture on perfect 1-factorization of complete graphs is as follows.

Conjecture 12 (Kotzig [12]) K_{2n} has a perfect 1-factorization for every $n \geq 2$.

Let us now state an interesting corollary of Theorem 11.

Corollary 13 For $n \neq 3$ there are two 1-factorizations $A = A_1, \ldots, A_n$ and $B = B_1, \ldots, B_n$ of Q_n such that $A_i \cup B_i$ is a Hamiltonian cycle of Q_n for every $1 \leq i \leq n$.

Proof Let H_1, \ldots, H_n be a HC-decomposition of $\leftrightarrow Q_n$ and let A_i, B_i be a decomposition of H_i where A_i contains the edges from even to odd vertices and B_i contains the rest. Let
us now drop the orientation of the edges in A and B. Every edge of Q_i is now contained exactly once in A and exactly once in B, so A and B are correct 1-factorizations of Q_i. ■

A 1-factorization F_1, \ldots, F_n is k-semi-perfect if $F_i \cup F_j$ forms a Hamiltonian cycle for every $1 \leq i \leq k < j \leq n$.

Theorem 14 (Behague [2]) For every $k \neq 3$ and $l \neq 3$ there is a k-semi-perfect factorization of Q_{k+l}.

Proof Let $Q_{k+l} = Q_k \Box Q_l$ and let A_1, \ldots, A_k and B_1, \ldots, B_k be 1-factorizations for Q_k and X_1, \ldots, X_l and Y_1, \ldots, Y_l be 1-factorizations for Q_l as in Corollary [13]. Let A_i^v, B_i^v denote the copies of A_i, B_i in the vth fiber of Q_k (in the subcube $*^kv$, where $v \in \{0,1\}^l$). Similarly X_i^u, Y_i^u for $u \in \{0,1\}^k$. For $1 \leq i \leq k$ we define

$$M_i = A_i^0 \cup \bigcup_{v \in V(Q_k)} B_i^v.$$

For $1 \leq j \leq l$ we define

$$N_j = \bigcup_{u \in V(Q_k)} X_j^u \cup \bigcup_{u \in V(Q_k)} Y_j^u.$$

Clearly, $M_1, \ldots, M_k, N_1, \ldots, N_l$ is a 1-factorization of Q_{k+l}. It remains to prove that $M_i \cup N_j$ forms a Hamiltonian cycle for every $i \in \{1, \ldots, k\}$, $j \in \{1, \ldots, l\}$. Let us show it with Figure 7.

![Figure 7](image_url)

Figure 7: A Hamiltonian cycle $M_i \cup N_j$ in $Q_k \Box Q_l$ from Hamiltonian cycles $A_i \cup B_i$ in Q_k and $X_j \cup Y_j$ in Q_l.

It is known that a k-semi-perfect 1-factorization of Q_{k+l} exists also for $k = 3$ and $l \neq 3$. A 3-semi-perfect 1-factorization of Q_6 is still unknown.
For a 1-factorization $\mathcal{F} = \{F_1, \ldots, F_n\}$ of a graph G let $H(\mathcal{F})$ be the graph defined on 1-factors F_1, \ldots, F_n as vertices where F_i and F_j are connected by an edge if and only if $F_i \cup F_j$ is a Hamiltonian cycle of G. Theorem 14 says that Q_k+l for $k \neq 3, l \neq 3$ has a 1-factorization \mathcal{F} with $H(\mathcal{F})$ being the complete bipartite graph $K_{k,l}$. The following theorem shows it is the best possible.

Theorem 15 (Laufer [15]) Let G be a bipartite graph with both partities of size n where n is even and let \mathcal{F} be its 1-factorization. Then $H(\mathcal{F})$ is bipartite.

Proof Let U, V be the partities of G. Each 1-factor F_i of G induces a bijection from U to V. For $F_i, F_j \in \mathcal{F}$ let $\pi_{ji} = F_j^{-1}F_i$, so π_{ji} is a permutation on U. Clearly, $\pi_{ii} = \text{id}$, $\pi_{ij} = \pi_{ji}^{-1}$ and $\pi_{ij}\pi_{jk} = \pi_{ik}$. If $F_iF_j \in E(H(\mathcal{F}))$, then π_{ji} is a cycle of length n (F_i and F_j form a Hamiltonian cycle), so it is an odd permutation ($\text{sgn}(\pi_{ij}) = -1$) as n is even.

Suppose $H(\mathcal{F})$ contains a cycle $F_{i_1}\ldots F_{i_k}$ of odd length. Then

$$1 = \text{sgn}(\pi_{i_1i_1}) = \text{sgn}(\pi_{i_1i_k}\pi_{ik_i-k-1}\ldots\pi_{i_{k-1}i_1}) = \text{sgn}(\pi_1\pi_k) \prod_{j=2}^{k} \text{sgn}(\pi_{i_{j-1}i_j}) = (-1)^k = -1,$$

which is a contradiction. ■

Notes

Lemma [9] is a particular case of a more general result from Stong [21]. The used method is an adaptation of the method of Foregger [11], Aubert and Schneider [1].

References

