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1 The number of perfect matchings

We determine asymptotically the number of perfect matchings of Qn. Let us recall that
in a balanced bipartite graph G on 2m vertices the number of perfect matchings pm(G) is
the permanent per(MG) of its biadjacency m×m matrix MG = (mij); that is,

pm(G) = per(MG) =
∑
π∈Sm

m∏
i=1

mi,π(i).

A real matrix is doubly stochastic if all its elements are nonnegative and every row and
every column sums to 1. The following result says that the minimal permanent over all
doubly stochastic matrices is attained by the uniform matrix; that is, the matrix with 1/m
in each position. It was posed as a conjecture by van der Waerden1 [24] and it took half
a century till it was proved, independently, by Egoryčev [5] and Falikman [6].

Theorem 1 (van der Waerden’s conjecture [5, 6]) For every doubly stochastic m×m
matrix M ,

per(M) ≥ m!

mm
.

There is also an upper bound on permanent of binary matrices based on row sums that
was conjectured by Minc [16].

Theorem 2 (Brègman [3]) For every binary m × m matrix M with sum ri in the i-th
row for 1 ≤ i ≤ m,

per(M) ≤
m∏
i=1

(ri!)
1/ri .

Corollary 3 For every n-regular balanced bipartite graph G on 2m vertices,

nm
m!

mm
≤ pm(G) ≤ (n!)

m
n .

Using a standard approximation of m! we get

pm(G) ≥
( n
m

)m (m
e

)m
=
(n
e

)m
. (1)

1There is another result named after him, the van der Waerden’s theorem on arithmetic progressions.
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In fact, for the hypercube it can be computed [4] that

pm(Qn) =
[n
e

(1 + o(1))
]2n−1

.

The exact value of pm(Qn) is known for n ≤ 7 [20].

2 Maximal forcing number

Recall from the previous lecture that the forcing number f(M) of a perfect matching M of
a graph G is the minimal size of a subset S ⊆M that is not in other perfect matching of G.
The maximal forcing number fmax(G) of G is the maximal f(M) over all perfect matchings
M of G.

Perhaps surprisingly, compared to the results on minimal forcing number, the following
proposition shows that fmax(Qn) grows above any constant fraction of a perfect matching.

Proposition 4 (Alon, see [18]) For any constant 0 < c < 1 there exists a perfect match-
ing M in Qn for sufficiently large n with f(M) > c2n−1.

Proof We proceed by contradiction. If fmax(Qn) ≤ c2n−1 then there are at least pm(Qn)
forcing sets of size at most c2n−1. The number of such matchings is at most 22

n−1
nc2

n−1

(the number of subsets of one bipartite class multiplied by the number of ways to choose
directions for edges from the selected vertices). Thus, applying (1), we have(n

e

)2n−1

< pm(Qn) < 22
n−1

nc2
n−1

.

This gives us the inequality
n

e
< 2nc

which is false if n is large.

3 Fink’s theorem

Kreweras [14] conjectured that every perfect matching in Qn for n ≥ 2 extends to a Hamil-
tonian cycle. Fink [7] confirmed this assertion by proving a more general result2. Let K(Qn)
denote the complete graph on V (Qn) = Zn2 .

Theorem 5 (Fink [7]) For every perfect matching P of K(Qn) where n ≥ 2 there is
a perfect matching R of Qn such that P ∪R forms a Hamiltonian cycle in K(Qn).

Proof We proceed by induction on n. For n = 2 there are three cases as shown on
Figure 1. Assuming the statement holds for n − 1, we prove it for n. We divide Qn into
Qi,0n−1 and Qi,1n−1 along some direction i that is crossed by some edge of P . Let P ′ denote
the set of edges from P crossing the direction i, and let P0 and P1 denote the rest of edges
from P in Qi,0n−1 or Qi,1n−1, respectively. Note that |P ′| is even.

2His proof is a textbook example that considering a stronger statement often helps in induction.

9-2



R

P

R

P

P

R

Figure 1: Three cases for n = 2.
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Figure 2: (a) Hamiltonian cycle in Qi,0n−1, (b) Hamiltonian cycle in Qi,1n−1.

First, we focus on Qi,0n−1, see Figure 2(a). Choose an arbitrary perfect matching S0

(blue) on the endvertices of P ′ in Qi,0n−1. Then by the induction hypothesis for P0 ∪ S0 we

obtain a perfect matching R0 of Qi,0n−1 (green) such that P0 ∪ S0 ∪R0 forms a Hamiltonian

cycle in K(Qi,0n−1).

Then, we “delete” the edges S0 and focus on Qi,1n−1, see Figure 2(b). Let S1 (blue)

be the perfect matching on the endvertices of P ′ in Qi,1n−1 such that every edge from S1
represents the path between the same vertices formed by P ′ ∪P0 ∪R0. Applying induction
for P1 ∪ S1 we obtain a perfect matching R1 of Qi,1n−1 (green) such that P1 ∪ S1 ∪R1 forms

a Hamiltonian cycle in K(Qi,1n−1). By “deleting” the edges S1 we have a desired matching
R = R0 ∪R1.

In case that P is a perfect matching of Qn, Fink’s theorem can be strengthened to allow
forbidden edges. For other related results, see his thesis [9].

Theorem 6 (Fon-der-Flaass [10]) Let F ⊆ E(Qn) for n ≥ 4 be a set such that every
subcube of dimension 4 contains at most one edge of F . Then every perfect matching
of Qn − F extends to a Hamiltonian cycle in Qn − F .

For n ≥ 2 let Mn denote the graph whose vertices are all perfect matchings of Qn and
edges join two perfect matchings that form a Hamiltonian cycle of Qn. Fink proved also
the second Kreweras conjecture [14].
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Theorem 7 (Fink [8]) For every n ≥ 4 the graph Mn is bipartite and connected.

In case of general (non-perfect) matchings the question remains open.

Problem 1 (Ruskey, Savage [19]) Does every matching of Qn for n ≥ 2 extend to a Hamil-
tonian cycle?

4 Extending to f-factors

An f -factor of a graph G for a function f : V (G)→ N is a spanning subgraph H of G such
that degH(v) = f(v) for every v ∈ V (G). For a set S ⊆ V (G) let f(S) =

∑
v∈S f(v). The

following theorem is a useful extension of Hall’s matching theorem.

Theorem 8 (Ore-Ryser [17]) A bipartite graph G = (A ∪ B,E) has an f -factor if and
only if f(A) = f(B) and for every S ⊆ A,

f(S) ≤
∑

b∈N(S)

min(f(b), |NS(b)|).

Applying this theorem it was shown [23] that every matching in Q5 extends to a 2-factor
(that is, a cover of Q5 by vertex-disjoint cycles). This is also true for n = 2, 3, 4. Problem 1
can be relaxed as follows.

Problem 2 (Vandenbussche, West [23]) Does every matching of Qn for n ≥ 2 extend
to a 2-factor?

5 Hamiltonian decomposition

A Hamiltonian decomposition of an 2n-regular graph G is a partition of E(G) into n Hamil-
tonian cycles of G.

For example, Q4 has a Hamiltonian decomposition shown on Figure 3 with the red
and blue Hamiltonian cycles. Observe that the red cycle is obtained from the blue one by
shifting it two steps down and flipping it horizontally.

We will see that Q2n has a Hamiltonian decomposition for every n ≥ 1. First, we
introduce an auxiliary definition and we state a key lemma. A matching M is orthogonal
to a Hamiltonian decomposition C1, . . . , Cn if |M ∩ Ci| = 1 for every i ∈ [n].

Lemma 9 (Stong [21]) Let G = (V,E) be a bipartite graph with a matching M ortho-
gonal to a Hamiltonian decomposition C1, . . . , Cn of G. Then G � C4 has a Hamiltonian
decomposition as well.

Proof Let m = |V | and assume that Ci = (c1i , . . . , c
m
i ) with cmi c

1
i ∈M for all i ∈ [n]. For

1 ≤ j ≤ n− 1 we create a new Hamiltonian cycle C ′j of G�C4 by joining four copies of Cj
in alternating order; that is,

C ′j = ((Cj , 1), (CRj , 2), (Cj , 3), (CRj , 4))
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Figure 3: A partition of Q4 into two Hamiltonian cycles (drawn on a torus).
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Figure 4: The cycle C ′j from four copies of Cj for 1 ≤ j ≤ n− 1.

as is shown in Figure 4. Since cmj1c
1
j1

and cmj2c
1
j2

are disjoint and Cj1 , Cj2 are edge-disjoint in
G, it follows that every two cycles C ′j1 and C ′j2 are edge-disjoint for distinct 1 ≤ j1, j2 ≤ n−1.

It remains to decompose (G�C4)−
⋃n−1
j=1 C

′
j into two Hamiltonian cycles C ′n and C ′n+1.

For this purpose we will use the copies of the cycle Cn in G. We start with the Hamiltonian
cycles Cn, Cn+1 that decompose Cn � C4 as shown on Figure 5.

C1
n, 1

C1
n, 4

Cm
n , 1

Cm
n , 4

s

c1j cmj

e1

e2 c1j c1j
C1

n, 1

C1
n, 4

Cm
n , 1

Cm
n , 4

s

e′1

e′2

Figure 5: The cycles Cn and Cn+1.

However, we are not finished yet. For every j = 1, . . . , n−1 we have to correct the cycles
Cn, Cn+1 as on Figure 6 and we obtain the desired cycles C ′n, C ′n+1. Instead of the edges
(cmj , 1)(cmj , 2), (c1j , 2)(c1j , 3), (cmj , 3)(cmj , 4), (c1j , 4)(c1j , 1) that are used already by C ′j , we use

the edges (c1j , k)(cmj , k) for k = 1, . . . , 4.
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Figure 6: The cycles C ′n and C ′n+1.

The above lemma can be directly extended for C2k instead of C4, non-bipartite graphs,
or (less directly) for C2k+1 instead of C2k [21].

Corollary 10 Q2n has a Hamiltonian decomposition for every n ≥ 1.

Proof We have Q2n ' Cn4 (the nth Cartesian power). The statement follows by Lemma 9
by induction with the trivial base for Q2. Since 4(n−1) < 22n for every n ≥ 1, an orthogonal
matching exist in each induction step. Apply Lemma 9 by induction.

Note that for n = 2 we obtain the decomposition of Q4 on Figure 3.
Obviously, Qn nas no Hamiltonian decomposition when n is odd. However, we can find

some when we switch to directed cubes. Let
↔
Qn be the directed graph obtained from Qn

by replacing each edge with two directed edges of opposite directions.

Theorem 11 (Stong [22])
↔
Qn for any n 6= 3 has a decomposition into n directed Hamil-

tonian cycles.

The proof is similar to the proof of Lemma 9.

6 Semi-perfect 1-factorization

A 1-factorization of a (regular) graph G = (V,E) is a partition of E into 1-factors (perfect
matchings). A 1-factorization F1, . . . , Fn is perfect if Fi ∪ Fj induces a Hamiltonian cycle
for every distinct 1 ≤ i, j ≤ n. A long-standing conjecture on perfect 1-factorization of
complete graphs is as follows.

Conjecture 12 (Kotzig [12]) K2n has a perfect 1-factorization for every n ≥ 2.

Let us now state an interesting corollary of Theorem 11.

Corollary 13 For n 6= 3 there are two 1-factorizations A = A1, . . . , An and B = B1, . . . , Bn
of Qn such that Ai ∪Bi is a Hamiltonian cycle of Qn for every 1 ≤ i ≤ n.

Proof Let H1, . . . ,Hn be a HC-decomposition of
↔
Qn and let Ai, Bi be a decomposition

of Hi where Ai contains the edges from even to odd vertices and Bi contains the rest. Let
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us now drop the orientation of the edges in A and B. Every edge of Qi is now contained
exactly once in A and exactly once in B, so A and B are correct 1-factorizations of Qi.

A 1-factorization F1, . . . , Fn is k-semi-perfect if Fi ∪ Fj forms a Hamiltonian cycle for
every 1 ≤ i ≤ k < j ≤ n.

Theorem 14 (Behague [2]) For every k 6= 3 and l 6= 3 there is a k-semi-perfect factor-
ization of Qk+l.

Proof Let Qk+l = Qk � Ql and let A1, . . . , Ak and B1, . . . , Bk be 1-factorizations for
Qk and X1, . . . , Xl and Y1 . . . , Yl be 1-factorizations for Ql as in Corollary 13. Let Avi , B

v
i

denote the copies of Ai, Bi in the vth fiber of Qk (in the subcube ∗kv, where v ∈ {0, 1}l).
Similarly Xu

i , Y
u
i for u ∈ {0, 1}k. For 1 ≤ i ≤ k we define

Mi = A0l

i ∪
⋃

v∈V (Ql)

v 6=0l

Bv
i .

For 1 ≤ j ≤ l we define

Nj =
⋃

u∈V (Qk)
u odd

Xu
j ∪

⋃
u∈V (Qk)
u even

Y u
j .

Clearly, M1, . . . ,Mk, N1, . . . , Nl is a 1-factorization of Qk+l. It remains to prove that Mi∪Nj

forms a Hamiltonian cycle for every i ∈ {1, . . . , k}, j ∈ {1, . . . , l}. Let us show it with Figure
7.

Ai

Ai

Ai

Bi

Bi

XjXj XjXj XjYjYj Yj Yj

Figure 7: A Hamiltonian cycle Mi ∪Nj in Qk �Ql from Hamiltonian cycles Ai ∪Bi in Qk
and Xj ∪ Yj in Ql.

It is known that a k-semi-perfect 1-factorization of Qk+l exists also for k = 3 and l 6= 3.
A 3-semi-perfect 1-factorization of Q6 is still unknown.
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For a 1-factorization F = {F1, . . . , Fn} of a graph G let H(F) be the graph defined on
1-factors F1, . . . , Fn as vertices where Fi and Fj are connected by an edge if and only if
Fi ∪ Fj is a Hamiltonian cycle of G. Theorem 14 says that Qk+l for k 6= 3, l 6= 3 has a 1-
factorization F with H(F) being the complete bipartite graph Kk,l. The following theorem
shows it is the best possible.

Theorem 15 (Laufer [15]) Let G be a bipartite graph with both partities of size n where
n is even and let F be its 1-factorization. Then H(F) is bipartite.

Proof Let U, V be the partities of G. Each 1-factor Fi of G induces a bijection from U
to V . For Fi, Fj ∈ F let πji = F−1j Fi, so πji is a permutation on U . Clearly, πii = id,

πij = π−1ji and πijπjk = πik. If FiFj ∈ E(H(F )), then πji is a cycle of length n (Fi and Fj
form a Hamiltonian cycle), so it is an odd permutation (sgn(πij = −1) as n is even.

Suppose H(F) contains a cycle Fi1 . . . Fik of odd length. Then

1 = sgn(πi1i1) = sgn(πi1ikπikik−1
. . . πi2i1) = sgn(π1πk)

k∏
j=2

sgn(πijij−1) = (−1)k = −1 ,

which is a contradiction.

Notes

Lemma 9 is a particular case of a more general result from Stong [21]. The used method is
an adaptation of the method of Foregger [11], Aubert and Schneider [1].
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