
Hypercube problems

Lecture 18
December 14, 2017

Lecturer: Petr Gregor Scribe by: Martin Dvorak Updated: August 16, 2018

1 Definition of binary counters

Motivation How to efficiently represent integers in memory if we need only increment
and decrement?

Definition 1 By a space-optimal (non-redundant) representation of integers {0, . . . , 2n−1}
we mean any bijection r : {0, . . . , 2n − 1} → {0, 1}n.

Example SBC(a) = wn . . . w1 such that a =
∑n

i=1wi2
i−1 (a standard binary code)

Example SRGC(a) = a-th vertex in the standard reflected Gray code Γn

Γ1 = (0, 1)

Γn+1 = (0Γn, 1ΓR
n)

Definition 2 Bitprobe model - how many bit reads/writes in the data structure are needed
in the worst/average case for each operation? The overhead of operations to determine
which bits to read/write is omitted.

Example
space read write average read average write

SBC n n n 2− 21−n 2− 21−n

SRGC n n 1 n 1

Definition 3 (non-redundant counters): An (n, r, w)-counter is a data structure that uses
n bits to represent integers {0, . . . , 2n−1} with increment and decrement operations (modulo
2n) with r bits read and w bits written for each operation in the worst case (in the bitprobe
model).

Definition 4 A decision assignment tree (DAT) is a binary tree to represent increment/decrement
operations. Inner vertices are labeled by bits that are read, left/right subtrees represent
the cases when the read bit is 0/1, leaves l are labeled by sets Wl of assignments of type
xi := b, b ∈ {0, 1}.

18-1

x1 := 1

x1

x2

x1 := 0
x2 := 1

xn

x1 := x2 := ... := xn := 0x1 := x2 := ...xn−1 := 0
xn := 1

= 0 = 1

Figure 1: DAT for SBC.

Example DAT for increment in SBC is on Figure 1. DAT determines read/write com-
plexity as follows:

(worst case) write = maxl:leaf |Wl|
(worst case) read = depth of DAT
average read = weighted average depth (expected depth)

Example Increment in SRGC is easily transformed to DAT.

inc(xn, . . . , x1) =

{
x⊕ e1 if xn ⊕ · · · ⊕ x1 = 0

x⊕ emin{i+1,n} else where i = the smallest such that xi = 1

Definition 5 (redundant counters): An (n, e, r, w)-counter with efficiency e = L
2n is a data

structure to represent integer {0, . . . , L−1} for increment/decrement (modulo L) with worst
case read/write complexity r/w (in the bitprobe model).

2 Basic properties of binary counters

Question How many bit reads are needed?

Observation 6 In any space optimal counter, all written bits (in leaves) have been read.

Proposition 7 ([6]) Any (n, r, w)-counter requires at least r ≥ log2 n + 1 reads for incre-
ment (or decrement).

Proof Suppose there is an (n, r, w)-counter with r ≤ log2 n. Consider corresponding
DAT T for increment (or decrement). T has at most 2r − 1 ≤ n− 1 internal vertices. Thus
some bit is never read =⇒ never written (by Observation) =⇒ contradiction with space
equality.

18-2

0000

00100001 0100

0101
01100011

0111

1000

1010 11001001

1011
1101 1110

1111

Figure 2: A quasi-Gray code for Q4: bold red lines are increment/decrement edges, pale
yellow lines denote same direction of increment, pale blue lines denote the same direction
of decrement and dashed gray lines are ordinary edges of the hypercube.

Proposition 8 ([3]) Any (n, L
2n , r, 1)-counter requires at least r ≥ log2 log2 L+ 1 reads for

increment (or decrement).

Proof To represent L integers, at least log2 L bits need to be modified, at least once set
to 0, once to 1. The corresponding DAT has at least 2 log2 L leaves. Since its depth is r, it
has at most 2r leaves, so 2r ≥ 2 log2 L.

3 Binary counters with small worst-case reads

Question Does every (n, r, 1)-counter require r = n reads? No!

Proposition 9 ([2]) There is a (4, 3, 2)-counter for both increment/decrement.

Proof Consider the following quasi-Gray code (with distance ≤ 2 of consecutive strings)
on Figure 2. Vertices can be recursively cut into Q2’s (pairs of adjacent vertices) so that
they have the same incoming and outgoing directions. This gives DATs for increment and
decrement, see Figures 3 and 4.

Question Can we improve it from w = 2 to w = 1?

18-3

x1 := 1 x2 := 1 x1 := 1 x4 := 0 x1 := 0

x3 := 1

x1 := 0

x2 := 0

x4 := 1 x3 := 0

x4 x4 x2 x4

x2 x3

x1

= 0 = 1

Figure 3: DAT for increment in the (4, 3, 2)-counter.

x1 := 1 x1 := 1 x4 := 1 x2 := 0 x1 := 0

x2 := 1

x3 := 1

x3 := 0

x1 := 0 x4 := 0

x3 x4 x4 x4

x2 x3

x1

= 0 = 1

Figure 4: DAT for decrement in the (4, 3, 2)-counter.

18-4

Cn−1

parallel paths

(e.g. SRGC in Qn−2)

Figure 5: Induction step in Qn for (n, n− 1, 1)-counter.

Theorem 10 ([4]) There is a (5, 4, 1)-counter for both increment and decrement.

Proof Modify the previous quasi-Gray code in Q4 onto Gray code in Q5 by replacing the
distance 2 steps with path-partition through the other copy of Q4. The recursive cutting
into adjacent with the same outgoing / incoming edges can be still found.

Corollary 11 ([4]) There is an (n, n− 1, 1)-counter for both increment and decrement for
every n ≥ 5.

Proof By induction on n, see Figure 5. In the counter Cn−1 for Qn−1, delete one pair
of parallel edges and interleave the circle by two parallel paths in two Qn−2 on the other
Qn−1. Note that the resulting Gray code supports both increment and decrement in n− 1
reads.

Problem ([4]) Does an (n, n − 2, c)-counter exist (for some constant c and sufficiently
large n)? For example (6, 4, c) is the first open case.

Note 12 There exists an (n, 12 , log2 n + 2, 3)-counter for increment (no decrement) [2].

Note 13 There is a ternary (n,O(log n), 2)-counter (in general for every odd-sized alpha-
bet) [5].

4 Binary counters with small average-case reads

Proposition 14 ([4]) Any (n,r,w)-counter needs at least 2 − 21−n bit reads on average
(thus SBC is optimal in this respect).

18-5

1/2

1/4

1/8

1/16 1/16

l < n

Figure 6: Lower bound for average bit reads.

A B

2k−1 2k−1

Figure 7: Halves of Recursive partition Gray code.

Proof DAT needs to have the structure of DAT of SBC (up to isomorphism), where every
inner vertex has a leaf as one of its children. Otherwise let l denote the smallest level where
a vertex does not have a leaf as one of its children. Average read count is then at least:

l−1∑
i=1

(i · 2−i) + l · 21−l = 2− 21−l > 2− 21−n

See Figure 6 for an illustration.

Theorem 15 ([1]) There is a an (n, n, 1)-counter with at most 4 log n reads on average if
n = 2k for some positive integer k.

Proof Consider the following recursive partition Gray code:

RPGC1 = (0, 1)

For the step RPGC2k−1 → RPGC2k see Figure 7. Let A,B be the first and second 2k−1

bits of the code word (A,B) in RPGC2k . Then increment and decrement is as follows.

inc(A,B) =

{
(A, dec(B)) if A = B

(inc(A), B) else

18-6

B

A

Figure 8: A construction of Recursive partition Gray code.

The increment operation is explained in Figure 8.

dec(A,B) =

{
(A, inc(B)) if A = succ(B)

(dec(A), B) else

What is the average read count? Take (A,B) at random. Let rinc(A,B) resp. rdec(A,B)
denote the count of reads for increment resp. decrement operation on (A,B). Let c(A,B)
denote the average count of reads to compare whether A = B. Now |A| = |B| = n.

We need to prove that rinc(A,B) ≤ 4 log n and also rdec(A,B) ≤ 4 log n. We will prove
both inequalities at the same time using mathematical induction.

If n = 2, then we perform r = 2 reads, which is less than 4 log 2 = 4.
Let’s do the induction step from n to 2n now. If we calculate the probabilities of reading

every bit during the compare operation, we get:

E[c(A,B)] = 2 ·
n−1∑
i=0

(2−i) = 2 · (2− 2 · 2−n) = 4− 22−n

The average read count for increment is as follows. Decrement is analogous.

E[rinc(A,B)] =

= E[c(A,B)] + E[rdec(B)|A = B] + E[rinc(A)|A 6= B] =

18-7

= 4− 22−n + E[rdec(B)] · 2−n + E[rinc(A)] · (1− 2−n) =

= 4− 22−n + 4 log n · 2−n + 4 log n · (1− 2−n) =

= 4− 22−n + 4 log n ≤

≤ 4 log n + 4 = 4 log(2n)

Note 16 For general n, there is an (n, n, 1)-counter with at most 6 log n reads on average
[1].

Problem ([4]) For general n, is there any (n, n−1, 1)-counter with O(log n) average reads?

Notes

A short survey of binary counters with additional references can be found in [4]. This lecture
does not cover most recent results in [5, 7].

References

[1] Prosenjit Bose, Paz Carmi, Dana Jansens, Anil Maheshwari, Pat Morin, and Michiel
Smid, Improved methods for generating quasi-gray codes, In Proceedings of the 12th
Scandinavian Conference on Algorithm Theory, SWAT ’10, pages 224–235, Springer-
Verlag, 2010.

[2] Gerth Stølting Brodal, Mark Greve, Vineet Pandey, and Srinivasa Rao Satti, Integer
representations towards effcient counting in the bit probe model, Journal of Discrete
Algorithms, 26:34–44, 2014.

[3] Michael L. Fredman, Observations on the complexity of generating quasi-gray codes,
SIAM Journal on Computing, 7(2):134–146, 1978.

[4] Zachary Frenette, Towards the efficient generation of Gray codes in the bitprobe model,
Master’s thesis, University of Waterloo, Waterloo, Ontario, Canada, 2016.

[5] Diptarka Chakraborty, Debarati Das, Michal Koucký, and Nitin Saurabh, Optimal
Quasi-Gray Codes: Does the Alphabet Matter?, In Proceedings of 26th Annual Eu-
ropean Symposium on Algorithms (ESA 2018), Leibniz International Proceedings in
Informatics (LIPIcs), vol. 112, pages 12:1–12:15, 2018.

[6] Patrick K. Nicholson, Venkatesh Raman, and S. Srinivasa Rao, A survey of data struc-
tures in the bitprobe model, In Space-Efficient Data Structures, Streams, and Algo-
rithms, volume 8066, pages 303–318, Springer Berlin Heidelberg, 2013.

18-8

[7] Mikhail Raskin, A linear Lower Bound for Incrementing a Space-Optimal Integer Rep-
resentation in the Bit-Probe Model, In Proceedings of 44th International Colloquium
on Automata, Languages, and Programming (ICALP 2017), Leibniz International Pro-
ceedings in Informatics (LIPIcs), vol. 80, pages 88:1–88:12, 2017.

18-9

	Definition of binary counters
	Basic properties of binary counters
	Binary counters with small worst-case reads
	Binary counters with small average-case reads

