Hypercube problems

Lecture 18 December 14, 2017

Lecturer: Petr Gregor

Scribe by: Martin Dvorak

Updated: August 16, 2018

1 Definition of binary counters

Motivation How to efficiently represent integers in memory if we need only increment and decrement?

Definition 1 By a space-optimal (non-redundant) representation of integers $\{0, \ldots, 2^n - 1\}$ we mean any bijection $r : \{0, \ldots, 2^n - 1\} \to \{0, 1\}^n$.

Example SBC(a) = $w_n \dots w_1$ such that $a = \sum_{i=1}^n w_i 2^{i-1}$ (a standard binary code) **Example** SRGC(a) = a-th vertex in the standard reflected Gray code Γ_n

$$\Gamma_1 = (0, 1)$$
$$\Gamma_{n+1} = (0\Gamma_n, 1\Gamma_n^R)$$

Definition 2 Bitprobe model - how many bit reads/writes in the data structure are needed in the worst/average case for each operation? The overhead of operations to determine which bits to read/write is omitted.

		space	read	write	average read	average write
Example	SBC	n	n	n	$2 - 2^{1-n}$	$2 - 2^{1-n}$
	SRGC	n	n	1	n	1

Definition 3 (non-redundant counters): An (n, r, w)-counter is a data structure that uses n bits to represent integers $\{0, \ldots, 2^n - 1\}$ with increment and decrement operations (modulo 2^n) with r bits read and w bits written for each operation in the worst case (in the bitprobe model).

Definition 4 A decision assignment tree (DAT) is a binary tree to represent increment/decrement operations. Inner vertices are labeled by bits that are read, left/right subtrees represent the cases when the read bit is 0/1, leaves l are labeled by sets W_l of assignments of type $x_i := b, b \in \{0, 1\}.$

Figure 1: DAT for SBC.

Example DAT for increment in SBC is on Figure 1. DAT determines read/write complexity as follows:

(worst case) write = $max_{l:leaf}|W_l|$

(worst case) read = depth of DAT (

average read = weighted average depth (expected depth)

Example Increment in SRGC is easily transformed to DAT.

 $inc(x_n, \dots, x_1) = \begin{cases} x \oplus e_1 & \text{if } x_n \oplus \dots \oplus x_1 = 0\\ x \oplus e_{\min\{i+1,n\}} & \text{else where } i = \text{the smallest such that } x_i = 1 \end{cases}$

Definition 5 (redundant counters): An (n, e, r, w)-counter with efficiency $e = \frac{L}{2^n}$ is a data structure to represent integer $\{0, \ldots, L-1\}$ for increment/decrement (modulo L) with worst case read/write complexity r/w (in the bitprobe model).

2 Basic properties of binary counters

Question How many bit reads are needed?

Observation 6 In any space optimal counter, all written bits (in leaves) have been read.

Proposition 7 ([6]) Any (n, r, w)-counter requires at least $r \ge \log_2 n + 1$ reads for increment (or decrement).

Proof Suppose there is an (n, r, w)-counter with $r \leq \log_2 n$. Consider corresponding DAT T for increment (or decrement). T has at most $2^r - 1 \leq n - 1$ internal vertices. Thus some bit is never read \implies never written (by Observation) \implies contradiction with space equality.

Figure 2: A quasi-Gray code for Q_4 : bold red lines are increment/decrement edges, pale yellow lines denote same direction of increment, pale blue lines denote the same direction of decrement and dashed gray lines are ordinary edges of the hypercube.

Proposition 8 ([3]) Any $(n, \frac{L}{2^n}, r, 1)$ -counter requires at least $r \ge \log_2 \log_2 L + 1$ reads for increment (or decrement).

Proof To represent L integers, at least $\log_2 L$ bits need to be modified, at least once set to 0, once to 1. The corresponding DAT has at least $2 \log_2 L$ leaves. Since its depth is r, it has at most 2^r leaves, so $2^r \ge 2 \log_2 L$.

3 Binary counters with small worst-case reads

Question Does every (n, r, 1)-counter require r = n reads? No!

Proposition 9 ([2]) There is a (4,3,2)-counter for both increment/decrement.

Proof Consider the following quasi-Gray code (with distance ≤ 2 of consecutive strings) on Figure 2. Vertices can be recursively cut into Q_2 's (pairs of adjacent vertices) so that they have the same incoming and outgoing directions. This gives DATs for increment and decrement, see Figures 3 and 4.

Question Can we improve it from w = 2 to w = 1?

Figure 3: DAT for increment in the (4, 3, 2)-counter.

Figure 4: DAT for decrement in the (4, 3, 2)-counter.

Figure 5: Induction step in Q_n for (n, n - 1, 1)-counter.

Theorem 10 ([4]) There is a (5, 4, 1)-counter for both increment and decrement.

Proof Modify the previous quasi-Gray code in Q_4 onto Gray code in Q_5 by replacing the distance 2 steps with path-partition through the other copy of Q_4 . The recursive cutting into adjacent with the same outgoing / incoming edges can be still found.

Corollary 11 ([4]) There is an (n, n-1, 1)-counter for both increment and decrement for every $n \ge 5$.

Proof By induction on n, see Figure 5. In the counter C_{n-1} for Q_{n-1} , delete one pair of parallel edges and interleave the circle by two parallel paths in two Q_{n-2} on the other Q_{n-1} . Note that the resulting Gray code supports both increment and decrement in n-1 reads.

Problem ([4]) Does an (n, n - 2, c)-counter exist (for some constant c and sufficiently large n)? For example (6, 4, c) is the first open case.

Note 12 There exists an $(n, \frac{1}{2}, \log_2 n + 2, 3)$ -counter for increment (no decrement) [2].

Note 13 There is a ternary $(n, O(\log n), 2)$ -counter (in general for every odd-sized alphabet) [5].

4 Binary counters with small average-case reads

Proposition 14 ([4]) Any (n,r,w)-counter needs at least $2 - 2^{1-n}$ bit reads on average (thus SBC is optimal in this respect).

Figure 6: Lower bound for average bit reads.

Figure 7: Halves of Recursive partition Gray code.

Proof DAT needs to have the structure of DAT of SBC (up to isomorphism), where every inner vertex has a leaf as one of its children. Otherwise let l denote the smallest level where a vertex does not have a leaf as one of its children. Average read count is then at least:

$$\sum_{i=1}^{l-1} (i \cdot 2^{-i}) + l \cdot 2^{1-l} = 2 - 2^{1-l} > 2 - 2^{1-n}$$

See Figure 6 for an illustration. \blacksquare

Theorem 15 ([1]) There is a an (n, n, 1)-counter with at most $4 \log n$ reads on average if $n = 2^k$ for some positive integer k.

Proof Consider the following recursive partition Gray code:

$$RPGC_1 = (0, 1)$$

For the step $RPGC_{2^{k-1}} \to RPGC_{2^k}$ see Figure 7. Let A, B be the first and second 2^{k-1} bits of the code word (A, B) in $RPGC_{2^k}$. Then increment and decrement is as follows.

$$inc(A,B) = \begin{cases} (A,dec(B)) & \text{if } A = B\\ (inc(A),B) & \text{else} \end{cases}$$

Figure 8: A construction of Recursive partition Gray code.

The increment operation is explained in Figure 8.

$$dec(A, B) = \begin{cases} (A, inc(B)) & \text{if } A = succ(B) \\ (dec(A), B) & \text{else} \end{cases}$$

What is the average read count? Take (A, B) at random. Let $r_{inc}(A, B)$ resp. $r_{dec}(A, B)$ denote the count of reads for increment resp. decrement operation on (A, B). Let c(A, B) denote the average count of reads to compare whether A = B. Now |A| = |B| = n.

We need to prove that $r_{inc}(A, B) \leq 4 \log n$ and also $r_{dec}(A, B) \leq 4 \log n$. We will prove both inequalities at the same time using mathematical induction.

If n = 2, then we perform r = 2 reads, which is less than $4 \log 2 = 4$.

Let's do the induction step from n to 2n now. If we calculate the probabilities of reading every bit during the compare operation, we get:

$$\mathbb{E}[c(A,B)] = 2 \cdot \sum_{i=0}^{n-1} (2^{-i}) = 2 \cdot (2 - 2 \cdot 2^{-n}) = 4 - 2^{2-n}$$

The average read count for increment is as follows. Decrement is analogous.

$$\mathbb{E}[r_{inc}(A, B)] =$$
$$= \mathbb{E}[c(A, B)] + \mathbb{E}[r_{dec}(B)|A = B] + \mathbb{E}[r_{inc}(A)|A \neq B] =$$

$$= 4 - 2^{2-n} + \mathbb{E}[r_{dec}(B)] \cdot 2^{-n} + \mathbb{E}[r_{inc}(A)] \cdot (1 - 2^{-n}) =$$

= 4 - 2^{2-n} + 4 log n \cdot 2^{-n} + 4 log n \cdot (1 - 2^{-n}) =
= 4 - 2^{2-n} + 4 log n \le
\le 4 log n + 4 = 4 log(2n)

Note 16 For general n, there is an (n, n, 1)-counter with at most $6 \log n$ reads on average [1].

Problem ([4]) For general n, is there any (n, n-1, 1)-counter with $O(\log n)$ average reads?

Notes

A short survey of binary counters with additional references can be found in [4]. This lecture does not cover most recent results in [5, 7].

References

- Prosenjit Bose, Paz Carmi, Dana Jansens, Anil Maheshwari, Pat Morin, and Michiel Smid, *Improved methods for generating quasi-gray codes*, In Proceedings of the 12th Scandinavian Conference on Algorithm Theory, SWAT '10, pages 224–235, Springer-Verlag, 2010.
- [2] Gerth Stølting Brodal, Mark Greve, Vineet Pandey, and Srinivasa Rao Satti, Integer representations towards effcient counting in the bit probe model, Journal of Discrete Algorithms, 26:34–44, 2014.
- [3] Michael L. Fredman, Observations on the complexity of generating quasi-gray codes, SIAM Journal on Computing, 7(2):134–146, 1978.
- [4] Zachary Frenette, Towards the efficient generation of Gray codes in the bitprobe model, Master's thesis, University of Waterloo, Waterloo, Ontario, Canada, 2016.
- [5] Diptarka Chakraborty, Debarati Das, Michal Koucký, and Nitin Saurabh, Optimal Quasi-Gray Codes: Does the Alphabet Matter?, In Proceedings of 26th Annual European Symposium on Algorithms (ESA 2018), Leibniz International Proceedings in Informatics (LIPIcs), vol. 112, pages 12:1–12:15, 2018.
- [6] Patrick K. Nicholson, Venkatesh Raman, and S. Srinivasa Rao, A survey of data structures in the bitprobe model, In Space-Efficient Data Structures, Streams, and Algorithms, volume 8066, pages 303–318, Springer Berlin Heidelberg, 2013.

[7] Mikhail Raskin, A linear Lower Bound for Incrementing a Space-Optimal Integer Representation in the Bit-Probe Model, In Proceedings of 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017), Leibniz International Proceedings in Informatics (LIPIcs), vol. 80, pages 88:1–88:12, 2017.