
Hypercube problems

Lecture 19
January 3, 2019

Lecturer: Petr Gregor Scribe by: Viktor Němeček Updated: October 2, 2019

1 Unique sink orientations

In this lecture we will have a look at some aspects of unique sink orientations and some
time bounds for algorithms for finding the sink.

Definition 1 A orientation of edges of Qn is a unique sink orientation (USO), if every
subcube has a unique sink (a vertex of outdegree 0). If it moreover contains no directed
cycle, it is an acyclic unique sink orientation (AUSO).

u u

Figure 1: An AUSO (left) and a USO (right) with a 6-cycle in Q3. In both cases, there is
a global sink in the vertex denoted by u.

1.1 Motivation

• Linear programming on a slanted geometric cube (a polytope with the combinatorial
structure of a cube), linear objective function (in general position) defines an AUSO.
AUSOs for general convex polytopes are also known as abstract objective functions,
or completely unimodal numberings. Example: Klee-Minty cube.

• Certain linear complementarity problems (defined by so-called P-matrices) define a USO.

• Certain quadratic optimization problems define a USO. One such example is finding
the smallest enclosing ball of n affinely independent points in Rn−1. Here, the vertices

19-1

of cube correspond to subsets of points and an edge is oriented from the set A ∪ {x}
to the set A if and only if x ∈ β(A) where β(A) is the smallest ball enclosing A.

• Every linear program with n variables and m constraints can be translated into an
USO in Q2(n+m) via certain convex program.

1.2 Properties

For an orientation ϕ of Qn and A ⊆ [n] let ϕ(A) be the orientation obtained from ϕ by
flipping all edges of directions in A.

Lemma 2 If ϕ is a USO in Qn and A ⊆ [n], then ϕ(A) is a USO as well.

Proof Let us suppose |A| = 1 (if it is larger, we can continue recursively). Let s be the
sink of ϕ and let s′ be the sink of the other subcube on directions A. Then the edge from
s′ in the direction from A must be outgoing (or both s and s′ would be sinks). Thus ϕ(A)

has sink s′. Furthermore, if s′ was not a unique sink, then at least one of the subcubes on
directions A had at least two sinks. We can prove that each subcube has unique sink with
respect to ϕ(A) in the same way.

This lemma does not hold for AUSOs already for Q3. For an orientation ϕ of Qn the
outmap Sϕ : V (Qn)→ V (Qn) of ϕ is defined by

Sϕ(v) = {i ∈ [n] | the edge of direction i from v is outgoing in ϕ}.

Lemma 3 If ϕ is a USO in Qn, then Sϕ is a bijection.

Proof Suppose u 6= v, but sϕ(u) = sϕ(v) = A for some u, v ∈ V (Qn). Then both u and v
are sinks with respect to ϕ(A), contrary to Lemma 2. Thus sϕ is injective, and consequently
bijective.

Corollary 4 For a mapping S : V (Qn)→ V (Qn) the following is equivalent:

1. S is the outmap of some USO.

2. S ∩B is bijective on any subcube on any directions B ⊆ [n].

3. (S(u)⊕ S(v)) ∩ (u⊕ v)1 is nonempty for any two u, v ∈ V (Qn).

For an orientation ϕ of Qn such that every subcube on directions A ⊆ [n] has a unique
sink we define the A-inherited outmap Sϕ/A : V (QA)→ V (QA) of ϕ by

Sϕ/A(v) = Sϕ(u) ∩A

where u is the sink in the QA-fiber of v.

Corollary 5 If ϕ is a USO in Qn and A ⊆ [n], then Sϕ/A is the outmap of some USO of
QA.

1In this notation, u⊕ v denotes the set of directions in which u and v differ.

19-2

01

00 11

10

ϕ

00

01

11

10

ϕ/A

Figure 2: A USO ϕ in Q4. If we denote A to be the directions within the little diamonds,
then edges outgoing from the local sinks in each of those diamonds (bold in the picture)
induce a USO corresponding to the A-inherited outmap Sϕ/A.

1.3 Algorithms for finding the sink of a USO

We assume that a USO ϕ of Qn is given by an oracle that reveals Sϕ(v) for a query
v ∈ V (Qn). For an algorithm Alg let eval(Alg, ϕ) be the number of queries needed by Alg
to find the sink of USO ϕ (including the mandatory query at the sink). We consider

t(n) = min
det. Alg

max
USO ϕ of Qn

eval(Alg, ϕ)

and similarly defined tacyc(n) for AUSOs. Exact values of t(n) are known for n ≤ 4:

n 0 1 2 3 4

t(n) 1 2 3 5 7

A trivial upper bound for t(n) is 2n−1 + 1. This bound is given by an algorithm, which
queries each vertex in one bipartite class of Qn, thus revealing the entire USO, and then
queries the sink in case it already had not.

Lemma 6 For every 0 ≤ k ≤ n, it holds t(n) ≤ t(k) · t(n− k).

Proof Choose an arbitrary A ⊆ [n] with |A| = n − k. Perform a search for the sink of
Sϕ/A in QA in at most t(k) queries. Each query to Sϕ/A needs to find (and query) a sink of
some QA-fiber in at most t(k − n) queries to Sϕ.

Since t(n) ≤ t(k)dn/ke for every 0 ≤ k ≤ n by Lemma 6 and t(4) = 7, we obtain the
following.

Corollary 7 t(n) = O(4
√

7
n
) = O(1.63n).

We will note here without proof that the best currently known upper bound is t(n) =
O(1.61n).

19-3

1.3.1 Constructions of (A)USO

A canonical AUSO of Qn is a AUSO with the outmap S(u) = u⊕A for some fixed A ⊆ [n].

Lemma 8 Let S be (the outmap of) a USO in QA, A ⊆ [n], and for u ∈ V (QA) let Su be
(the outmap of) a USO in QA where A = [n] \A. Then S′ : V (Qn)→ V (Qn) defined as

S′(v) = S(v ∩A) ∪ Sv∩A(v ∩A)

is (the outmap of) a USO in Qn. Furthermore, if S and all Su’s are acyclic, then so is S′.

Proof Any subcube on directions B ⊆ A or B ⊆ A has a unique sink since it is entirely
in a QA-fiber, in which S′ = S, respectively in a QA-fiber of some u, in which S′ = Su.
Otherwise, any subcube on directions B has a sink v such that S′(v) ∩ B = ∅, in other
words v∩ (A∩B) is a sink with respect to S and v∩ (A∩B) is a sink with respect to Sv∩A,
both determined uniquely.

Any cycle with respect to S′ projects into a closed walk in QA. If it is nontrivial, S′ has
to be cyclic. If the projection is a single vertex u, then it is entirely within one QA-fiber,
and Su in this fiber is thus cyclic.

Now let us point out two special cases. When |A| = 1, we have two different (n − 1)-
dimensional USOs with all edges in between in the same orientation. This gives us a class
of decomposable USOs (by recursive application). On the other hand, when |A| = 1 we
have two copies of the same (n − 1)-dimensional USO with the edges in between oriented
arbitrarily.

Corollary 9 For any vertices u 6= v there is an AUSO with the sink u and the source v.

Proof Take two canonical AUSOs in Qn−1, one of them with a sink in u and the other
with a source in v, with all the edges in between oriented from the latter to the former.

Lemma 10 Let S be a USO in Qn such that S(v) ∩ A = ∅ (e.g., v is the sink of some
subcube on directions A) for all vertices v in a subcube C on directions A ⊆ [n]. Then
replacing S on C with another USO SC of C gives a USO S′. Furthermore, if S and SC
are both acyclic, then so is S′.

Proof Only subcubes intersecting with C are affected. Since all edges to C are incoming,
the sink must be in the intersection where it is determined by SC . No cycle can leave C, so
S′ is acyclic if S and SC are.

Corollary 11 Let S be a USO in Qn such that S(v) ∩ A = S(u) ∩ A for all vertices u, v
in some subcube C on directions A ⊆ [n]. Then replacing S with another USO SC of C
produces a USO S′.

19-4

Proof This follows from Lemmas 10 and 2.

Let us note that this corollary does not hold for AUSOs, as Lemma 2 does not hold
for AUSOs. Once again, we will mention one notable special case, which is a matching
flipping. Let M be a (not necessarily perfect) matching in Qn and SM be obtained from
some canonical USO by flipping edges in M . Then SM is a USO. This also sets a lower
bound on the number of all possible (labeled) USOs as follows

nΩ(2n) =
(n
e

)2n

≤ p. m. in Qn ≤ #USOs (with multiplicity due to isomorphism) = nO(2n).

1.3.2 Algorithm for decomposable USOs

The following algorithm takes at most n+ 1 queries, and this is optimal.

Choose arbitrary v0; i ← 0;

while S(vi)6= ∅
vi+1 ← vi ⊕ S(vi); i++

return vi

Claim 12 For every i, the sink u and vi are in the same (n− i)-subcube.

Proof We always cross the decomposing direction towards the sink (and a decomposing
direction is never crossed away from the sink).

Claim 13 For every deterministic algorithm, there is a decomposable USO that requires at
least n+ 1 queries.

Proof Strategy for an oracle: Answer S(u0) = [n] (e.g. v0 is the source) for the first
query u0. For the second query u1, pick a decomposing direction ` ∈ u0 ⊕ u1 and return
[n] \ {`}. Continue similarly.

1.3.3 Algorithm for matching flipped USOs

The following algorithm needs always at most 5 steps. We will note here without proof that
the algorithm is also optimal. In the algorithm, we will of course stop if we find the sink
before the end.

Choose an arbitrary v1

v2 ← v1 ⊕ S(v1)

v3 ← v2 ⊕ S(v2)

if |S(v2)|=1

v4 ← v3 ⊕ S(v3)

evaluate v4

else

v4 ← v3 ⊕ (S(v3) ∩ S(v2))

v5 ← v4 ⊕ S(v4)

evaluate v5

19-5

Claim 14 This strategy succeeds for any USO obtained from a canonical USO with a sink
u by flipping some matching.

Proof The vertex v2 has distance at most one from u, so |S(v2)| ≤ 2. If v2 was u (and
not the sink), v3 is the sink. Now v2 is not u. If |S(v2)| = 1, v3 is u, and v3 or v4 is the
sink. If |S(v2)| = 2, v3 is a neighbor of u, and either v3 is the sink, or v4 is u and v5 the
sink.

1.3.4 Lower bound

Now we propose a lower bound for deterministic algorithms that finds sinks in AUSOs
(stronger than a lower bound for USO).

Lemma 15 The following inequality holds for every n ≥ 2,

tacyc(n) ≥ n− dlog2 ne+ tacyc(n− dlog2 ne)

Proof We play as an oracle against a deterministic algorithm. Our strategy for the
first n − dlog2 ne queries: maintain A ⊆ [n] with |A| ≤ #queries so far and an AUSO S
on QA that can be used in Lemma 8 to produce AUSO S′ consistent with our answers.
Furthermore, we make sure that all queries so far project to distinct vertices in QA.

For a query u we return S′(u) = (u ∩ A) ∪ A (e.g. a source with respect to A). If a
query would project to a vertex, to which another query already projected, we increase A
by a separating direction and update S applying Lemma 8.

After n − dlog2 ne steps we can find a QA-fiber where we have a freedom to play the
same strategy (any AUSO can be taken here by Lemma 10; a sink lies here because for all
queries we responded with as many outgoing edges as possible).

Indeed, since |A| ≥ dlog2 ne, there is some QA-fiber of u with no query.
Why we have the freedom? Each QA-fiber contains at most 1 query, u can be sink in Sv

of QA-fiber at v by Corollary 9, S and Sv can be used to produce consistent S′ by Lemma 8,
and by Lemma 10 we can take any AUSO in the chosen QA-fiber.

Theorem 16

tacyc(n) = Ω

(
n2

log2 n

)
Proof We prove by induction for n ≥ 2 that

tacyc(n) ≥ n2

2dlog2 ne
− n

2
.

This holds for n = 2 and n = 3. For n ≥ 4, applying Lemma 15 and the induction
assumption,

tacyc(n) ≥ n− dlog2 ne+
(n− log2 n)2

2dlog2(n− dlog2 ne)e
− 1

2
(n− dlog2 ne) ≥

n2

2dlog2 ne
− n

2
.

19-6

References

[1] J. Matoušek, The number of unique-sink orientations of the hypercube, Combinatorica
26 (2006), 91–99.

[2] I. Schurr, T. Szabó, Finding the Sink Takes Some Time: An Almost Quadratic Lower
Bound for Finding the Sink of Unique Sink Oriented Cubes, Discrete Comput Geom
31 (2004), 627–642.

[3] T. Szabó, E. Welzl, Unique sink orientations of cubes, In Proceedings of the 42nd IEEE
Symposium on Foundations of Computer Science, 547–555, 2001.

19-7

	Unique sink orientations
	Motivation
	Properties
	Algorithms for finding the sink of a USO
	Constructions of (A)USO
	Algorithm for decomposable USOs
	Algorithm for matching flipped USOs
	Lower bound

