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1 Coin weighing

We are given n coins, some of them are genuine and the rest are counterfeit. We know
genuine coins have weight a and counterfeit coins have different weight b. We have a spring
scale at our disposal, which we can use to determine the total weight of any subset of coins.
The question is how many weighings are needed to identify all counterfeit coins?

To formalize the problem denote X ⊆ [n] the set of counterfeit coins. Each weighing
can be viewed as selecting a subset Y ⊆ [n] and determining |Y ∩X|. Then the results
of k weighings is a sequence (|X ∩ Y1| , . . . , |X ∩ Yk|). Let f(n) be the minimal number k
of sets Y1, . . . , Yk ⊆ [n] such that the sequence |X ∩ Yi| for i = 1, . . . , k determines X
for any subset of counterfeit coins X ⊆ [n]. We emphasize that sets Y1, . . . , Yk are fixed for
all possible inputs.

Example 1 Given four coins any subset of counterfeit coins can be distinguished using three sub-
sets Y1 = {1, 2, 3}, Y2 = {1, 3, 4}, Y3 = {1, 2, 4}. As an example |X ∩ Y1| = |X ∩ Y2| =
|X ∩ Y3| = 1 =⇒ X = {1} or |X ∩ Y1| = |X ∩ Y3| = 2 ∧ |X ∩ Y2| = 1 =⇒ X = {1, 2}.

We can also view the coin weighing problem in the language of matrices. Note that arith-
metics in the following definition are done over real numbers.

Definition 2 A binary k × n matrix M is a detecting matrix if Mu 6= Mv for every dis-
tinct u, v ∈ Zn

2 .

Rows of the detecting matrix correspond to characteristic vectors Yi and determin-
ing |Yi ∩X| is achieved by the multiplication Mi: · x where x is the characteristic vector
of X. Then we can define f(n) as the minimum number of rows of a detecting matrix.

This concept has numerous application, such as in detection problems, distinguishing
family problems, network discovery and verification, robot navigation and many more.

1.1 A simple lower bound

Let M be a k × n detecting matrix with minimum k. For any vector u ∈ Zn
2 it holds

that (Mu)i ∈ {0, 1, . . . , n} for every i ∈ [k]. Since we need to distinguish 2n distinct
vectors, we have (n+ 1)k ≥ 2n and therefore

f(n) ≥ n

log2(n+ 1)
. (1)
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So far we have always announced the sequence Yi in advance, what if we can adapt Yi de-
pending on the result of previous weighings |X ∩ Y1| , . . . , |X ∩ Yi−1|? Surprisingly the same
lower bound holds. For X ⊆ [n] let r(X) = (a1, . . . , ar), where ai ∈ {0, 1, . . . , n}, be the se-
quence of weighing results in an optimal adaptive scheme with k steps, where r ∈ {1, . . . , k}
is the step when X was determined. Thus {r(X) |X ⊆ [n]} must be a prefix-free code
and by Kraft–McMillan inequality we have 2n ≤ (n + 1)k which implies the same lower
bound.

2 Metric dimension

In the following section, the set [n] in context of hypercubes means the vertex 11 . . . 1.

Definition 3 A subset S of vertices resolves a graph G if every vertex is uniquely deter-
mined by its vector of distances to vertices of S. The metric dimension of G is the minimum
cardinality m(G) of a resolving set of G.

Example 4 • An example of a resolving set for Q5 is S = {00000, 00011, 00101, 01001}.

• The metric dimension of a graph G on n vertices is n− 1 if and only if G is a clique
on n vertices.

• The metric dimension of a graph G is 1 if and only if G is a path.

• The metric dimensions of some hypercubes of small dimensions are known, see Table 1.

n 2 3 4 5 6 7 8 10 15

m(Qn) 2 3 4 4 5 6 6 ≤ 7 ≤ 10

Table 1: Some known metric dimensions of hypercubes.

How are coin weighing problems and metric dimension of hypercubes related?

Proposition 5 |m(Qn)− f(n)| ≤ 1 for every n ≥ 1. Furthermore f(n) ≤ m(Qn) ≤
f(n) + 1 since w.l.o.g. [n] is in a resolving set.

Proof Let X,X ′ be two distinct subsets of counterfeit coins. If |X| 6= |X ′|, then we
can detect/resolve them using the set [n]. Assume |X| = |X ′|, observe that |X| + |Yi| =
|X4Yi| + 2 |X ∩ Yi| implies |X4Yi| = |X ′4Yi| ⇐⇒ |X ∩ Yi| = |X ′ ∩ Yi|. Combining
these two observations we can conclude that if {Y1, . . . , Yk} is resolving, then {Y1, . . . , Yk}∪
{[n]} is detecting, and if {Y1, . . . , Yk} is detecting, then {Y1, . . . , Yk} ∪ {[n]} is resolving.

In terms of metric dimension, the previous lower bound (1) can be significantly improved
as follows.

Theorem 6

m(Qn) ≥ 2n

log2(n) +O(1)
for any n ≥ 1.
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Proof Let u ∈ Zn
2 be a vertex of Qn, k be the minimum size of a resolving set S =

{s1, . . . , sk} of Qn. If we view u as a uniformly distributed random variable from the set
of vertices to the set of binary vectors of length n, then the entropy of u is H(u) = n.
Let Xi = dH(u, si) be the Hamming distance between u and si. The entropy of Xi

is H(Xi) = 1
2 log(n) + O(1) as Xi ∼ B(n, 12). Let X = (X1, . . . , Xk). Since S resolves u,

the mutual information between u and X is I(u : X) = H(u). Intuitively, once we know X
we can determine u and there is no “surprise”. On the other hand,

I(u : X) ≤ H(X) ≤
k∑

i=1

H(Xi)

holds. Therefore n ≤ k(12 log2(n) +O(1)), which implies

k ≥ 2n

log2(n) +O(1)
.

2.1 Explicit construction

We will inductively construct a detecting binary (2m−1)×2m−1 matrix for any m ≥ 1. We
strengthen the notion of detecting matrices and require that they also distinguish vectors
of length n whose first k coordinates are integers and the rest are binary.

Definition 7 A matrix A ∈ Zk×n where k ≤ n is strongly detecting if Ax 6= Ay for any dis-
tinct x, y ∈ Zk × Zn−k

2 .

Let f ′(n) be the minimum number of rows of a binary strongly detecting matrix with n
columns. Observe that f(n) ≤ f ′(n) ≤ n, where the second inequality follows from the fact
that the identity matrix is strongly detecting.

First we construct a strongly detecting {−1, 0, 1}-matrix, which we will later use to con-
struct a strongly detecting binary matrix.

Lemma 8 For every m ≥ 0 there exists a strongly detecting matrix Bm ∈ {−1, 0, 1}k×n
where k = 2m, n = 2m−1(m+ 2) such that its last row is binary.

Proof It is simple to verify that B0 = (1) satisfies all requirements. For the inductive
step consider the matrix

B′m+1 =

(
Bm −Bm I
Bm Bm 0

)
.

Clearly B′m+1 is a 2m+1 × 2m(m+ 3) matrix with {−1, 0, 1} entries and the bottom row is

binary. Let x, y ∈ Zk × Zn−k
2 , z ∈ Zk

2 and

B′m+1

(
x, y, z

)T
=
(
λ′1, · · · , λ′k, λ′′1, · · · , λ′′k

)T
.
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Let (bij) = B′m+1. For i = 1, . . . , k we have

λ′i =
n∑

j=1

bijxj −
n∑

j=1

bijyj + zi

λ′′i =

n∑
j=1

bijxj +

n∑
j=1

bijyj

,

so λ′i + λ′′i ≡ zi (mod 2), which means that λ′i and λ′′i uniquely determine zi. Since Bm is
strongly detecting and λ′i + λ′′i = 2

∑n
j=1 bijxj + zi for every i = 1, . . . , k, it follows that λ′i

and λ′′i determine xj uniquely. In a similar fashion since λ′′i − λ′i = 2
∑n

j=1 bijyj − zi for ev-
ery i = 1, . . . , k it follows that λ′i and λ′′i also uniquely determine yj . To obtain the strongly
detecting matrix Bm+1 we only need to permute columns of B′m+1 so that columns n +
1, . . . , n+ k of B′m+1 appear as columns k+ 1, . . . , 2k in Bm+1. The resulting matrix Bm+1

is in form

Bm+1 =
(
b:1 · · · b:k b:n+1 · · · b:n+k b:k+1 · · · b:n b:n+k+1 · · · b:2n+k

)
.

Theorem 9 For any m ≥ 1 there is a binary strongly detecting k×n matrix Am where k =
2m − 1 and n = 2m−1m. Consequently,

f ′(2m−1m) ≤ 2m − 1. (2)

Proof Again verify that A1 = (1) meets the requirements. Let A be the (k+1)×n matrix
obtained from Am by appending a bottom row of zeros, r = 2m and s = 2m−1(m + 2).
The matrix Bm from Lemma 8 can be written as Bm = V −W where V = (vij) and W =
(wij) are r × s binary matrices. Consider the 2r × (n+ s) matrix

A′m+1 =

(
A V
A W

)
.

Let x ∈ Zk × Zn−k
2 , y ∈ Zr × Zs−r

2 and

A′m+1 ·
(
x, y

)T
=
(
λ′1, · · · , λ′n, λ′′1, · · · , λ′′r

)T
.

Let (aij) = A′m+1. For all i = 1, . . . , r we have

λ′i =

n∑
j=1

aijxj +

s∑
j=1

vijyj ,

λ′′i =

n∑
j=1

aijxj +

s∑
j=1

wijyj .

Since Bm is strongly detecting, the differences λ′i − λ′′i determine yj uniquely for each j =
1, . . . , s. By induction hypothesis, λ′i and λ′′i ’s determine both xj and yj ’s. Moreover, since
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the last row of A′m+1 consists of all 0’s, it can be removed. By a similar permutation
as in the proof of Lemma 8 we obtain the desired binary strongly detecting matrix Am+1.

It is known that equality holds in (2) in Theorem 9. Using the inequality f ′(n+m) ≤
f ′(n) + f ′(m) for any n,m ≥ 0 (proof omitted) we obtain the following corollary.

Corollary 10

f(n) ≤ f ′(n) ≤ 2n

log n
+O

(
n log log n

log2 n

)
.

Combining the above lower and upper bounds we obtain the following corollary.

Corollary 11

m(Qn) = (2 + o(1))
n

log n
.

This result can be generalized for Hamming graphs, i.e. Kn
q for any q ≥ 2. An example

of an application is the Mastermind game with only “black pegs”. In such setting each guess
corresponds to a vector y ∈ Zn

q and the answer is the number of matches of a secret
vector x ∈ Zn

q .

Remark 12 It is known that

• m(Kn
q ) = (2 + o(1)) n

logq n
for all q ≥ 2 [5],

• m(K2
q ) = b23(2q − 1)c for all q ≥ 1 [2].

There are many results on metric dimension of other graphs and adaptive algorithms
for variants of coin weighing. In particular, there is a deterministic polynomial algorithm
to detect m counterfeit coins, which are heavier than genuine coins, among n coins us-
ing O(m logn

logm +m log logm) weighings.

Notes

The lower bound in Theorem 6 based on entropy is from [8]. Originally, it was proven with-
out tools from information theory [4], and can be also proven by the second moment method
[7]. The upper bound construction in Theorem 9 is from [3], an alternative construction is
known by the Möbius function [6], or by Fourier transform [1].
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