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Semantic notions

A proposition ¢ over P is

@ is true in (satisfied by) an assignment v: P — {0,1}, if U(¢) = 1.
Then v is a satisfying assignment for ¢, denoted by v = .

@ valid (a tautology), if v(¢) = 1 for every v: P — {0, 1},
i.e. v is satisfied by every assignment, denoted by = .
@ unsatisfiable (a contradiction), if v(¢) = 0 for every v: P — {0, 1}, i.e.
- is valid.
@ independent (a contingency), if 71(¢) = 0 and () = 1 for some
u,1r: P — {0,1}, i.e. ¢ is neither a tautology nor a contradiction.
@ satisfiable, if v(p) = 1 for some v: P — {0, 1}, i.e. ¢ is not a contradiction.

Propositions ¢ and 1 are (logically) equivalent, denoted by ¢ ~ 1, if
V() = V() for every v: P — {0, 1}, i.e. the proposition ¢ «+ 1 is valid.
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Propositional Logic Basic semantics

We reformulate these semantic notions in the terminology of models.

A model of a language P is a truth assignment of P. The class of all models of
P is denoted by M(PP). A proposition ¢ over P is

@ frue in a model v e M(P), if v(¢) = 1. Then v is a model of ¢, denoted by
v pand M¥(¢) = {ve M(P) | v = »} is the class of all models of .

@ valid (a tautology) if it is true in every model of the language,
denoted by |~ .

@ unsatisfiable (a contradiction) if it does not have a model.
@ independent (a contingency) if it is true in some model and false in other.
@ satisfiable if it has a model.

Propositions ¢ and 1 are (logically) equivalent, denoted by ¢ ~ 1, if they
have same models.
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Propositional Logic Theory - semantics

Informally, a theory is a description of “world” to which we restrict ourselves.

@ A propositional theory over the language P is any set T of propositions
from PFp. We say that propositions of T are axioms of the theory T.

@ A model of theory T over P is an assignment v € M(PP) (i.e. a model of
the language) in which all axioms of T are true, denoted by v = T.

@ A class of models of T is M¥(T) = {v € M(P) | v = ¢ for every ¢ € T}.
For example, for ' = {p, -pV ~q, q — r} over P = {p, q, r} we have

M"(T) = {(1,0,0),(1,0,1)}
@ If a theory is finite, it can be replaced by a conjunction of its axioms.

@ We write M (T, ) as a shortcut for M(T U {¢}).
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Semantics with respect to a theory

Semantic notions can be defined with respect to a theory, more precisely, with
respect to its models. Let T be a theory over P. A proposition ¢ over P is
@ valid in T (true in T) if it is true in every model of T, denoted by T |= ¢,
We also say that ¢ is a (semantic) consequence of T.
@ unsatisfiable (contradictory) in T (inconsistent with T) if it is false in
every model of T,
@ independent (or contingency) in T if it is true in some model of T and
false in some other,
@ satisfiable in T (consistent with T) if it is true in some model of T.
Propositions ¢ and ¢ are equivalent in T (T-equivalent), denoted by ¢ ~1 1),
if for every model v of T, v |= ¢ if and only if v = 4.

Note If all axioms of a theory T are valid (tautologies), e.g. for T = (, then
all notions with respect to T correspond to the same notions in (pure) logic.
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Universality

The language of propositional logic has basic connectives =, A, V, =, <.
In general, we can introduce n-ary connective for any Boolean function, e.g.

plq ‘neitherp norq”  (NOR, Peirce arrow)
pTq “notboth p and q” (NAND, Sheffer stroke)

A set of connectives is universal if every Boolean function can be expressed
as a proposition formed from these connectives.

Proposition {— A ,V} is universal.
Proof A function f: {0,1}" — {0,1} is expressed by \/ -1y i, pl?
v(i

where p, ) denotes the proposition p; if v(i) = 1; and —p; if v(i) = 0.
For f=1[1] = 0 we take the proposition L. [J

Proposition {—,—1} is universal.
Proof (pAq) ~—(p— —q), (pVaq) ~(-p—q). O
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CNF and DNF

@ A literal is a propositional letter or its negation. Let p' be the literal p and
let p° be the literal —p. Let I denote the complementary literal to a literal 1.
@ A clause is a disjunction of literals, by the empty clause we mean L.

@ A proposition is in conjunctive normal form (CNF) if it is a conjunction of
clauses. By the empty proposition in CNF we mean T.

@ An elementary conjunction is a conjunction of literals, by the empty
conjunction we mean T.

@ A proposition is in disjunctive normal form (DNF) if it is a disjunction of
elementary conjunctions. By the empty proposition in DNF we mean L.

Note A clause or an elementary conjunction is both in CNF and DNF.

Observation A proposition in CNF is valid if and only if each of its clauses
contains a pair of complementary literals. A proposition in DNF is satisfiable
if and only if at least one of its elementary conjunctions does not contain

a pair of complementary literals.
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Transformations by tables
Proposition Let K C {0,1}F where P is finite and K = {0,1}% \ K. Then

M (\/ \p?)=k=m"( N\ P
veK peP veK PEP
Proof The first equality follows from w(A ., p**)) = 1 if and only if w = v.

Similarly, the second one follows from w(\/ ,p p*(*)) = 1 if and only if w # v.
O

For example, K = {(1,0,0),(1,1,0),(0,1,0),(1,1,1)} can be modeled by

(PA=GNA=T)V(PAGA=T)NV (=pAGA=T)V(PAGAT) ~
(pvVagVvr)N(pVqVv=r)A(pV =gV -r)A(=-pVqV-r)

Corollary Every proposition has CNF and DNF equivalents.

Proof The value of a proposition ¢ depends only on the assignment of var(y)
which is finite. Hence we can apply the above proposition for K = M*(y) and
P =var(y). O
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Propositional Logic Normal forms

Transformations by rules

Proposition Let ¢’ be the proposition obtained from ¢ by replacing some
occurrences of a subformula i with «)'. If ) ~ ', then o ~ ¢’.

Proof By induction on the structure of the formula. [

(1) (p=2Y)~(eVY), (o)~ (V) A (TP V)

(2) o~ (PAY)~ (e V), (V) ~ (e A)

B) (pV@AX)~(VAX)Ve)~ (V) A(p VX))

@) (AW VX))~ (D VX)AP)~((pAY)VI(pAX))

Proposition Every proposition can be transformed into CNF / DNF applying

the transformation rules (1), (2),(3)/(3)".

Proof By induction on the structure of the formula. [

Proposition Assume that ¢ contains only -, A, vV and ¢* is obtained from ¢
by interchanging A and Vv, and by complementing all literals. Then —¢ ~ ¢*.

Proof By induction on the structure of the formula. [
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Consequence of a theory

The consequence of a theory T over P is the set §(T) of all propositions that

arevalidin T, i.e.
0°(T) = {p € PFe | T |= ¢}

Proposition For every theories T C T’ and propositions ¢, ¢1, .
(1) T Co(T)=0"(6"(T)),
(2) TCT = 6°(T)CO(T),

B) web{p1,...,on}) & E(P1 A .. App) = .

..,ppoverP,

Proof Easily from definitions, since T = ¢ < M(T) C M(y) and

(1) M(6(T)) = M(T),

() TCT = M(T')CM(T),

B) Fv—=¢ e M) M), Mier A... Apn) = M(p1,...0n). 1
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Properties of theories

A propositional theory T over P is (semantically)

@ inconsistent (unsatisfiable) if T = L, otherwise is consistent (satisfiable),

@ completeifitis consistent,and T = ¢ or T |= —¢ for every ¢ € PFp,
i.e. no proposition over P is independent in T,

@ an extension of a theory T’ over P’ if P’ C P and 6% (T") C 6F(T);
we say that an extension T of a theory T’ is simple if P = P’; and
conservative if ¥ (T') = 6¥(T) N VFp,

@ equivalent with a theory T if T is an extension of T’ and vice-versa,

Observation Let T and T’ be theories over P. Then T is (semantically)
(1) consistent if and only if it has a model,

(2) complete if and only if it has a single model,

(3) extension of T' if and only if M*(T) C M¥(T'),

(4) equivalent with T' if and only if M (T) = M®(T").
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Algebra of propositions

Let T be a consistent theory over P. On the quotient set PFp/ ~¢ we define
operations —, A, Vv, L, T (correctly) by use of representatives, e.g.
[99]NT A [U)]NT - [Lp A 1/J]~T
Then AVE(T) = (PFp/~1,—,A,V, L, T) is algebra of propositions for T.
Since p ~r ¢ <& M(T,p) = M(T,v), it follows that h([¢].,) = M(T, ) is
a (well-defined) injective function h: PFp/~¢ — P(M(T)) and
h(=[p]~;) = M(T) \ M(T, )
[Pl A []nr) = M(T, ) N M(T,2))
[plnr V[¥]nr) = M(T, ) UM(T, 1))
h([Ll~;) =0, h([T]~,) = M(T)
Moreover, his surjective if M(T) is finite.

h

(
W

Corollary If T is a consistent theory over a finite P, then AVF(T) is a Boolean
algebra isomorphic via h to the (finite) algebra of sets P(M(T)).
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Analysis of theories over finite languages

Let T be a consistent theory over P where |P| = n € Nt and m = |M*(T)|.
Then the number of (mutually) nonequivalent

@ propositions (or theories) over P is 22",

@ propositions over P that are valid (contradictory) in T is 22"~ ",

@ propositions over PP that are independent in T is 22" — 2.22" -,

@ simple extensions of T is 2, out of which 1 is inconsistent,

@ complete simple extensions of T is m.

And the number of (mutually) T-nonequivalent
@ propositions over P is 2",
@ propositions over P that are valid (contradictory) (in T) is 1,
@ propositions over P that are independent (in T) is 2™ — 2.

Proof By the bijection of PFp/~ resp. PFp/ ~1 with P(M(P)) resp. P(M*(T))
it suffices to determine the number of appropriate subsets of models. [
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