Propositional and Predicate Logic - II

Petr Gregor

KTIML MFF UK

WS 2024/2025

Petr Gregor (KTIML MFF UK)

Propositional and Predicate Logic - II

WS 2024/2025

・ロト ・ 日 ・ ・ ヨ ・ ・

Basic semantics

Semantic notions

A proposition φ over \mathbb{P} is

- is true in (satisfied by) an assignment v: P → {0,1}, if v(φ) = 1.
 Then v is a satisfying assignment for φ, denoted by v ⊨ φ.
- valid (a tautology), if v
 (φ) = 1 for every ν: ℙ → {0,1},
 i.e. φ is satisfied by every assignment, denoted by ⊨ φ.
- *unsatisfiable* (*a contradiction*), if $\overline{\nu}(\varphi) = 0$ for every $\nu \colon \mathbb{P} \to \{0, 1\}$, i.e. $\neg \varphi$ is valid.
- *independent* (*a contingency*), if $\overline{v_1}(\varphi) = 0$ and $\overline{v_2}(\varphi) = 1$ for some $v_1, v_2 \colon \mathbb{P} \to \{0, 1\}$, i.e. φ is neither a tautology nor a contradiction.
- *satisfiable*, if $\overline{v}(\varphi) = 1$ for some $v \colon \mathbb{P} \to \{0, 1\}$, i.e. φ is not a contradiction.

Propositions φ and ψ are (logically) *equivalent*, denoted by $\varphi \sim \psi$, if $\overline{\nu}(\varphi) = \overline{\nu}(\psi)$ for every $\nu \colon \mathbb{P} \to \{0, 1\}$, i.e. the proposition $\varphi \leftrightarrow \psi$ is valid.

イロン イボン イヨン 一日

Models

We reformulate these semantic notions in the terminology of models.

A *model of a language* \mathbb{P} is a truth assignment of \mathbb{P} . The class of all models of \mathbb{P} is denoted by $M(\mathbb{P})$. A proposition φ over \mathbb{P} is

- true in a model v ∈ M(P), if v(φ) = 1. Then v is a model of φ, denoted by v ⊨ φ and M^P(φ) = {v ∈ M(P) | v ⊨ φ} is the class of all models of φ.
- valid (a tautology) if it is true in every model of the language, denoted by ⊨ φ.
- *unsatisfiable* (*a contradiction*) if it does not have a model.
- *independent* (*a contingency*) if it is true in some model and false in other.
- satisfiable if it has a model.

Propositions φ and ψ are (logically) *equivalent*, denoted by $\varphi \sim \psi$, if they have same models.

・ロト ・回ト ・ヨト ・ヨト - ヨ

Theory

Informally, a theory is a description of "world" to which we restrict ourselves.

- A propositional *theory* over the language \mathbb{P} is any set *T* of propositions from $PF_{\mathbb{P}}$. We say that propositions of *T* are *axioms* of the theory *T*.
- A model of theory T over P is an assignment v ∈ M(P) (i.e. a model of the language) in which all axioms of T are true, denoted by v ⊨ T.
- A *class of models* of *T* is $M^{\mathbb{P}}(T) = \{v \in M(\mathbb{P}) \mid v \models \varphi \text{ for every } \varphi \in T\}$. For example, for $T = \{p, \neg p \lor \neg q, q \to r\}$ over $\mathbb{P} = \{p, q, r\}$ we have

$$M^{\mathbb{P}}(T) = \{(1,0,0), (1,0,1)\}$$

- If a theory is finite, it can be replaced by a *conjunction* of its axioms.
- We write $M(T, \varphi)$ as a shortcut for $M(T \cup \{\varphi\})$.

イロン イヨン イヨン

Semantics with respect to a theory

Semantic notions can be defined with respect to a theory, more precisely, with respect to its models. Let *T* be a theory over \mathbb{P} . A proposition φ over \mathbb{P} is

- *valid in T* (*true in T*) if it is true in every model of *T*, denoted by $T \models \varphi$, We also say that φ is a (semantic) *consequence* of *T*.
- *unsatisfiable* (*contradictory*) *in T* (*inconsistent with T*) if it is false in every model of *T*,
- *independent (or contingency) in T* if it is true in some model of *T* and false in some other,
- *satisfiable in T* (*consistent with T*) if it is true in some model of *T*.

Propositions φ and ψ are *equivalent in T* (*T*-*equivalent*), denoted by $\varphi \sim_T \psi$, if for every model v of T, $v \models \varphi$ if and only if $v \models \psi$.

Note If all axioms of a theory *T* are valid (tautologies), e.g. for $T = \emptyset$, then all notions with respect to *T* correspond to the same notions in (pure) logic.

イロト イヨト イヨト イヨト

Universality

The language of propositional logic has *basic* connectives \neg , \land , \lor , \rightarrow , \leftrightarrow . In general, we can introduce *n*-ary connective for any Boolean function, e.g.

> $p \downarrow q$ "neither p nor q" (NOR, Peirce arrow) $p \uparrow q$ "not both p and q" (NAND, Sheffer stroke)

A set of connectives is *universal* if every Boolean function can be expressed as a proposition formed from these connectives.

Proposition $\{\neg, \land, \lor\}$ is universal.

Proof A function $f: \{0,1\}^n \to \{0,1\}$ is expressed by $\bigvee_{v \in f^{-1}[1]} \bigwedge_{i=1}^n p_i^{v(i)}$ where $p_i^{\nu(i)}$ denotes the proposition p_i if $\nu(i) = 1$; and $\neg p_i$ if $\nu(i) = 0$. For $f^{-1}[1] = \emptyset$ we take the proposition \bot .

Proposition $\{\neg, \rightarrow\}$ is universal. **Proof** $(p \land q) \sim \neg (p \rightarrow \neg q), (p \lor q) \sim (\neg p \rightarrow q).$

CNF and DNF

- A *literal* is a propositional letter or its negation. Let p¹ be the literal p and let p⁰ be the literal ¬p. Let *l* denote the *complementary* literal to a literal l.
- A *clause* is a disjunction of literals, by the empty clause we mean \perp .
- A proposition is in *conjunctive normal form* (*CNF*) if it is a conjunction of clauses. By the empty proposition in CNF we mean ⊤.
- An *elementary conjunction* is a conjunction of literals, by the empty conjunction we mean ⊤.
- A proposition is in *disjunctive normal form* (*DNF*) if it is a disjunction of elementary conjunctions. By the empty proposition in DNF we mean ⊥.

Note A clause or an elementary conjunction is both in CNF and DNF.

Observation A proposition in CNF is valid if and only if each of its clauses contains a pair of complementary literals. A proposition in DNF is satisfiable if and only if at least one of its elementary conjunctions does not contain a pair of complementary literals.

Transformations by tables

Proposition Let $K \subseteq \{0,1\}^{\mathbb{P}}$ where \mathbb{P} is finite and $\overline{K} = \{0,1\}^{\mathbb{P}} \setminus K$. Then $M^{\mathbb{P}}\Big(\bigvee_{v \in K} \bigwedge_{p \in \mathbb{P}} p^{v(p)}\Big) = K = M^{\mathbb{P}}\Big(\bigwedge_{v \in \overline{K}} \bigvee_{p \in \mathbb{P}} \overline{p^{v(p)}}\Big)$

Proof The first equality follows from $w(\bigwedge_{p\in\mathbb{P}} p^{v(p)}) = 1$ if and only if w = v. Similarly, the second one follows from $w(\bigvee_{p\in\mathbb{P}} \overline{p^{v(p)}}) = 1$ if and only if $w \neq v$.

For example, $K = \{(1, 0, 0), (1, 1, 0), (0, 1, 0), (1, 1, 1)\}$ can be modeled by $(p \land \neg q \land \neg r) \lor (p \land q \land \neg r) \lor (\neg p \land q \land \neg r) \lor (p \land q \land r) \sim (p \lor q \lor r) \land (p \lor q \lor \neg r) \land (p \lor q \lor \neg r) \land (\neg p \lor q \lor \neg r)$

Corollary Every proposition has CNF and DNF equivalents.

Proof The value of a proposition φ depends only on the assignment of $var(\varphi)$ which is finite. Hence we can apply the above proposition for $K = M^{\mathbb{P}}(\varphi)$ and $\mathbb{P} = var(\varphi)$. \Box

Transformations by rules

Proposition Let φ' be the proposition obtained from φ by replacing some occurrences of a subformula ψ with ψ' . If $\psi \sim \psi'$, then $\varphi \sim \varphi'$.

Proof By induction on the structure of the formula.

- (1) $(\varphi \to \psi) \sim (\neg \varphi \lor \psi), \quad (\varphi \leftrightarrow \psi) \sim ((\neg \varphi \lor \psi) \land (\neg \psi \lor \varphi))$
- (2) $\neg \neg \varphi \sim \varphi$, $\neg (\varphi \land \psi) \sim (\neg \varphi \lor \neg \psi)$, $\neg (\varphi \lor \psi) \sim (\neg \varphi \land \neg \psi)$
- (3) $(\varphi \lor (\psi \land \chi)) \sim ((\psi \land \chi) \lor \varphi) \sim ((\varphi \lor \psi) \land (\varphi \lor \chi))$
- (3)' $(\varphi \land (\psi \lor \chi)) \sim ((\psi \lor \chi) \land \varphi) \sim ((\varphi \land \psi) \lor (\varphi \land \chi))$

Proposition Every proposition can be transformed into CNF / DNF applying the transformation rules (1), (2), (3)/(3)'.

Proof By induction on the structure of the formula. \Box

Proposition Assume that φ contains only \neg , \land , \lor and φ^* is obtained from φ by interchanging \land and \lor , and by complementing all literals. Then $\neg \varphi \sim \varphi^*$.

Proof By induction on the structure of the formula.

Consequence of a theory

The *consequence* of a theory *T* over \mathbb{P} is the set $\theta^{\mathbb{P}}(T)$ of all propositions that are valid in *T*, i.e. $\theta^{\mathbb{P}}(T) = \{\varphi \in PF_{\mathbb{P}} \mid T \models \varphi\}.$

Proposition For every theories $T \subseteq T'$ and propositions $\varphi, \varphi_1, \ldots, \varphi_n$ over \mathbb{P} ,

(1)
$$T \subseteq \theta^{\mathbb{P}}(T) = \theta^{\mathbb{P}}(\theta^{\mathbb{P}}(T)),$$

(2)
$$T \subseteq T' \Rightarrow \theta^{\mathbb{P}}(T) \subseteq \theta^{\mathbb{P}}(T'),$$

(3) $\varphi \in \theta^{\mathbb{P}}(\{\varphi_1, \ldots, \varphi_n\}) \Leftrightarrow \models (\varphi_1 \land \ldots \land \varphi_n) \to \varphi.$

Proof Easily from definitions, since $T \models \varphi \Leftrightarrow M(T) \subseteq M(\varphi)$ and

(1)
$$M(\theta(T)) = M(T)$$
,

(2)
$$T \subseteq T' \Rightarrow M(T') \subseteq M(T),$$

(3)
$$\models \psi \rightarrow \varphi \Leftrightarrow M(\psi) \subseteq M(\varphi), \ M(\varphi_1 \land \ldots \land \varphi_n) = M(\varphi_1, \ldots, \varphi_n).$$

Properties of theories

A propositional theory T over \mathbb{P} is *(semantically)*

- *inconsistent* (*unsatisfiable*) if $T \models \bot$, otherwise is *consistent* (*satisfiable*),
- *complete* if it is consistent, and $T \models \varphi$ or $T \models \neg \varphi$ for every $\varphi \in PF_{\mathbb{P}}$, i.e. no proposition over \mathbb{P} is independent in T,
- an *extension* of a theory T' over \mathbb{P}' if $\mathbb{P}' \subseteq \mathbb{P}$ and $\theta^{\mathbb{P}'}(T') \subseteq \theta^{\mathbb{P}}(T)$; we say that an extension T of a theory T' is *simple* if $\mathbb{P} = \mathbb{P}'$; and *conservative* if $\theta^{\mathbb{P}'}(T') = \theta^{\mathbb{P}}(T) \cap VF_{\mathbb{P}'}$,
- *equivalent* with a theory T' if T is an extension of T' and vice-versa,

Observation Let *T* and *T'* be theories over \mathbb{P} . Then *T* is (semantically)

- (1) consistent if and only if it has a model,
- (2) complete if and only if it has a single model,
- (3) extension of T' if and only if $M^{\mathbb{P}}(T) \subseteq M^{\mathbb{P}}(T')$,
- (4) equivalent with T' if and only if $M^{\mathbb{P}}(T) = M^{\mathbb{P}}(T')$.

Algebra of propositions

Let T be a consistent theory over \mathbb{P} . On the quotient set $PF_{\mathbb{P}}/\sim_T$ we define operations $\neg, \land, \lor, \bot, \top$ (correctly) by use of representatives, e.g.

 $[\varphi]_{\sim r} \wedge [\psi]_{\sim r} = [\varphi \wedge \psi]_{\sim r}$

Then $AV^{\mathbb{P}}(T) = \langle PF_{\mathbb{P}}/\sim_T, \neg, \land, \lor, \bot, \top \rangle$ is algebra of propositions for *T*.

Since $\varphi \sim_T \psi \Leftrightarrow M(T, \varphi) = M(T, \psi)$, it follows that $h([\varphi]_{\sim_T}) = M(T, \varphi)$ is a (well-defined) injective function $h: \operatorname{PF}_{\mathbb{P}}/\sim_T \to \mathcal{P}(M(T))$ and

$$\begin{split} h(\neg[\varphi]_{\sim_T}) &= M(T) \setminus M(T,\varphi) \\ h([\varphi]_{\sim_T} \land [\psi]_{\sim_T}) &= M(T,\varphi) \cap M(T,\psi) \\ h([\varphi]_{\sim_T} \lor [\psi]_{\sim_T}) &= M(T,\varphi) \cup M(T,\psi) \\ h([\bot]_{\sim_T}) &= \emptyset, \quad h([\top]_{\sim_T}) = M(T) \end{split}$$

Moreover, *h* is *surjective* if M(T) is *finite*.

Corollary If T is a consistent theory over a finite \mathbb{P} , then $AV^{\mathbb{P}}(T)$ is a Boolean algebra *isomorphic* via h to the (finite) algebra of sets $\mathcal{P}(M(T))$.

Analysis of theories over finite languages

Let *T* be a consistent theory over \mathbb{P} where $|\mathbb{P}| = n \in \mathbb{N}^+$ and $m = |M^{\mathbb{P}}(T)|$. Then the number of (mutually) nonequivalent

- propositions (or theories) over \mathbb{P} is 2^{2^n} ,
- propositions over \mathbb{P} that are valid (contradictory) in *T* is 2^{2^n-m} ,
- propositions over \mathbb{P} that are independent in *T* is $2^{2^n} 2.2^{2^n-m}$,
- simple extensions of T is 2^m , out of which 1 is inconsistent,
- complete simple extensions of T is m.

And the number of (mutually) T-nonequivalent

- propositions over \mathbb{P} is 2^m ,
- propositions over \mathbb{P} that are valid (contradictory) (in *T*) is 1,
- propositions over \mathbb{P} that are independent (in *T*) is $2^m 2$.

Proof By the bijection of $PF_{\mathbb{P}}/\sim \text{resp. } PF_{\mathbb{P}}/\sim_T$ with $\mathcal{P}(M(\mathbb{P}))$ resp. $\mathcal{P}(M^{\mathbb{P}}(T))$ it suffices to determine the number of appropriate subsets of models. \Box

・ロン ・四 と ・ 回 と ・ 日 と

э.