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Propositional Logic Basic semantics

Semantic notions

A proposition φ over P is

is true in (satisfied by) an assignment v : P → {0, 1}, if v(φ) = 1.
Then v is a satisfying assignment for φ, denoted by v |= φ.

valid (a tautology), if v(φ) = 1 for every v : P → {0, 1},
i.e. φ is satisfied by every assignment, denoted by |= φ.

unsatisfiable (a contradiction), if v(φ) = 0 for every v : P → {0, 1}, i.e.
¬φ is valid.

independent (a contingency), if v1(φ) = 0 and v2(φ) = 1 for some
v1, v2 : P → {0, 1}, i.e. φ is neither a tautology nor a contradiction.

satisfiable, if v(φ) = 1 for some v : P → {0, 1}, i.e. φ is not a contradiction.

Propositions φ and ψ are (logically) equivalent, denoted by φ ∼ ψ, if
v(φ) = v(ψ) for every v : P → {0, 1}, i.e. the proposition φ↔ ψ is valid.
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Propositional Logic Basic semantics

Models

We reformulate these semantic notions in the terminology of models.

A model of a language P is a truth assignment of P. The class of all models of
P is denoted by M(P). A proposition φ over P is

true in a model v ∈ M(P), if v(φ) = 1. Then v is a model of φ, denoted by
v |= φ and MP(φ) = {v ∈ M(P) | v |= φ} is the class of all models of φ.

valid (a tautology) if it is true in every model of the language,
denoted by |= φ.

unsatisfiable (a contradiction) if it does not have a model.

independent (a contingency) if it is true in some model and false in other.

satisfiable if it has a model.

Propositions φ and ψ are (logically) equivalent, denoted by φ ∼ ψ, if they
have same models.
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Propositional Logic Theory - semantics

Theory

Informally, a theory is a description of “world” to which we restrict ourselves.

A propositional theory over the language P is any set T of propositions
from PFP. We say that propositions of T are axioms of the theory T .

A model of theory T over P is an assignment v ∈ M(P) (i.e. a model of
the language) in which all axioms of T are true, denoted by v |= T .

A class of models of T is MP(T ) = {v ∈ M(P) | v |= φ for every φ ∈ T}.

For example, for T = {p, ¬p ∨ ¬q, q → r} over P = {p,q, r} we have

MP(T ) = {(1, 0, 0), (1, 0, 1)}

If a theory is finite, it can be replaced by a conjunction of its axioms.

We write M(T , φ) as a shortcut for M(T ∪ {φ}).
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Propositional Logic Theory - semantics

Semantics with respect to a theory
Semantic notions can be defined with respect to a theory, more precisely, with
respect to its models. Let T be a theory over P. A proposition φ over P is

valid in T (true in T ) if it is true in every model of T , denoted by T |= φ,
We also say that φ is a (semantic) consequence of T .

unsatisfiable (contradictory) in T (inconsistent with T ) if it is false in
every model of T ,

independent (or contingency) in T if it is true in some model of T and
false in some other,

satisfiable in T (consistent with T ) if it is true in some model of T .

Propositions φ and ψ are equivalent in T (T -equivalent), denoted by φ ∼T ψ,
if for every model v of T , v |= φ if and only if v |= ψ.

Note If all axioms of a theory T are valid (tautologies), e.g. for T = ∅, then
all notions with respect to T correspond to the same notions in (pure) logic.
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Propositional Logic Normal forms

Universality
The language of propositional logic has basic connectives ¬ , ∧ , ∨ , → , ↔ .
In general, we can introduce n-ary connective for any Boolean function, e.g.

p ↓ q “neither p nor q” (NOR, Peirce arrow)
p ↑ q “not both p and q” (NAND, Sheffer stroke)

A set of connectives is universal if every Boolean function can be expressed
as a proposition formed from these connectives.

Proposition {¬ ,∧ ,∨} is universal.

Proof A function f : {0, 1}n → {0, 1} is expressed by
∨

v∈f −1[1]

∧n
i=1 pv(i)

i

where pv(i)
i denotes the proposition pi if v(i) = 1; and ¬pi if v(i) = 0.

For f −1[1] = ∅ we take the proposition ⊥.

Proposition {¬ ,→} is universal.
Proof (p ∧ q) ∼ ¬(p → ¬q), (p ∨ q) ∼ (¬p → q).
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Propositional Logic Normal forms

CNF and DNF
A literal is a propositional letter or its negation. Let p1 be the literal p and
let p0 be the literal ¬p. Let l denote the complementary literal to a literal l.
A clause is a disjunction of literals, by the empty clause we mean ⊥.

A proposition is in conjunctive normal form (CNF) if it is a conjunction of
clauses. By the empty proposition in CNF we mean ⊤.

An elementary conjunction is a conjunction of literals, by the empty
conjunction we mean ⊤.

A proposition is in disjunctive normal form (DNF) if it is a disjunction of
elementary conjunctions. By the empty proposition in DNF we mean ⊥.

Note A clause or an elementary conjunction is both in CNF and DNF.

Observation A proposition in CNF is valid if and only if each of its clauses
contains a pair of complementary literals. A proposition in DNF is satisfiable
if and only if at least one of its elementary conjunctions does not contain
a pair of complementary literals.
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Propositional Logic Normal forms

Transformations by tables
Proposition Let K ⊆ {0, 1}P where P is finite and K = {0, 1}P \ K . Then

MP
( ∨

v∈K

∧
p∈P

pv(p)
)
= K = MP

( ∧
v∈K

∨
p∈P

pv(p)
)

Proof The first equality follows from w(
∧

p∈P pv(p)) = 1 if and only if w = v.

Similarly, the second one follows from w(
∨

p∈P pv(p)) = 1 if and only if w ̸= v.

For example, K = {(1, 0, 0), (1, 1, 0), (0, 1, 0), (1, 1, 1)} can be modeled by

(p ∧ ¬q ∧ ¬r) ∨ (p ∧ q ∧ ¬r) ∨ (¬p ∧ q ∧ ¬r) ∨ (p ∧ q ∧ r) ∼
(p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r) ∧ (p ∨ ¬q ∨ ¬r) ∧ (¬p ∨ q ∨ ¬r)

Corollary Every proposition has CNF and DNF equivalents.

Proof The value of a proposition φ depends only on the assignment of var(φ)

which is finite. Hence we can apply the above proposition for K = MP(φ) and
P = var(φ).
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Propositional Logic Normal forms

Transformations by rules
Proposition Let φ′ be the proposition obtained from φ by replacing some
occurrences of a subformula ψ with ψ′. If ψ ∼ ψ′, then φ ∼ φ′.

Proof By induction on the structure of the formula.

(1) (φ→ ψ) ∼ (¬φ ∨ ψ), (φ↔ ψ) ∼ ((¬φ ∨ ψ) ∧ (¬ψ ∨ φ))
(2) ¬¬φ ∼ φ, ¬(φ ∧ ψ) ∼ (¬φ ∨ ¬ψ), ¬(φ ∨ ψ) ∼ (¬φ ∧ ¬ψ)
(3) (φ ∨ (ψ ∧ χ)) ∼ ((ψ ∧ χ) ∨ φ) ∼ ((φ ∨ ψ) ∧ (φ ∨ χ))
(3)’ (φ ∧ (ψ ∨ χ)) ∼ ((ψ ∨ χ) ∧ φ) ∼ ((φ ∧ ψ) ∨ (φ ∧ χ))

Proposition Every proposition can be transformed into CNF / DNF applying
the transformation rules (1), (2), (3)/(3)′.

Proof By induction on the structure of the formula.

Proposition Assume that φ contains only ¬, ∧, ∨ and φ∗ is obtained from φ

by interchanging ∧ and ∨, and by complementing all literals. Then ¬φ ∼ φ∗.

Proof By induction on the structure of the formula.
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Propositional Logic Properties of theories

Consequence of a theory

The consequence of a theory T over P is the set θP(T ) of all propositions that
are valid in T , i.e.

θP(T ) = {φ ∈ PFP | T |= φ}.

Proposition For every theories T ⊆ T ′ and propositions φ,φ1, . . . , φn over P,

(1) T ⊆ θP(T ) = θP(θP(T )),

(2) T ⊆ T ′ ⇒ θP(T ) ⊆ θP(T ′),

(3) φ ∈ θP({φ1, . . . , φn}) ⇔ |= (φ1 ∧ . . . ∧ φn) → φ.

Proof Easily from definitions, since T |= φ ⇔ M(T ) ⊆ M(φ) and

(1) M(θ(T )) = M(T ),

(2) T ⊆ T ′ ⇒ M(T ′) ⊆ M(T ),

(3) |= ψ → φ ⇔ M(ψ) ⊆ M(φ), M(φ1 ∧ . . . ∧ φn) = M(φ1, . . . , φn).
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Propositional Logic Properties of theories

Properties of theories
A propositional theory T over P is (semantically)

inconsistent (unsatisfiable) if T |= ⊥, otherwise is consistent (satisfiable),

complete if it is consistent, and T |= φ or T |= ¬φ for every φ ∈ PFP,
i.e. no proposition over P is independent in T ,

an extension of a theory T ′ over P′ if P′ ⊆ P and θP
′
(T ′) ⊆ θP(T );

we say that an extension T of a theory T ′ is simple if P = P′; and
conservative if θP

′
(T ′) = θP(T ) ∩ VFP′ ,

equivalent with a theory T ′ if T is an extension of T ′ and vice-versa,

Observation Let T and T ′ be theories over P. Then T is (semantically)
(1) consistent if and only if it has a model,
(2) complete if and only if it has a single model,
(3) extension of T ′ if and only if MP(T ) ⊆ MP(T ′),
(4) equivalent with T ′ if and only if MP(T ) = MP(T ′).
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Propositional Logic Properties of theories

Algebra of propositions
Let T be a consistent theory over P. On the quotient set PFP/∼T we define
operations ¬, ∧, ∨, ⊥, ⊤ (correctly) by use of representatives, e.g.

[φ]∼T ∧ [ψ]∼T = [φ ∧ ψ]∼T

Then AV P(T ) = ⟨PFP/∼T ,¬,∧,∨,⊥,⊤⟩ is algebra of propositions for T .

Since φ ∼T ψ ⇔ M(T , φ) = M(T , ψ), it follows that h([φ]∼T ) = M(T , φ) is
a (well-defined) injective function h : PFP/∼T → P(M(T )) and

h(¬[φ]∼T ) = M(T ) \ M(T , φ)

h([φ]∼T ∧ [ψ]∼T ) = M(T , φ) ∩ M(T , ψ)

h([φ]∼T ∨ [ψ]∼T ) = M(T , φ) ∪ M(T , ψ)

h([⊥]∼T ) = ∅, h([⊤]∼T ) = M(T )

Moreover, h is surjective if M(T ) is finite.

Corollary If T is a consistent theory over a finite P, then AV P(T ) is a Boolean
algebra isomorphic via h to the (finite) algebra of sets P(M(T )).
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Propositional Logic Properties of theories

Analysis of theories over finite languages

Let T be a consistent theory over P where |P| = n ∈ N+ and m = |MP(T )|.
Then the number of (mutually) nonequivalent

propositions (or theories) over P is 22n
,

propositions over P that are valid (contradictory) in T is 22n−m,
propositions over P that are independent in T is 22n − 2.22n−m,
simple extensions of T is 2m, out of which 1 is inconsistent,
complete simple extensions of T is m.

And the number of (mutually) T -nonequivalent
propositions over P is 2m,
propositions over P that are valid (contradictory) (in T ) is 1,
propositions over P that are independent (in T ) is 2m − 2.

Proof By the bijection of PFP/∼ resp. PFP/∼T with P(M(P)) resp. P(MP(T ))

it suffices to determine the number of appropriate subsets of models.
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