
Propositional and Predicate Logic - III

Petr Gregor

KTIML MFF UK

WS 2024/2025

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - III WS 2024/2025 1 / 20

Semantics Properties of theories

Algebra of propositions
Let T be a consistent theory over P. On the quotient set PFP/∼T we define
operations ¬, ∧, ∨, ⊥, ⊤ (correctly) by use of representatives, e.g.

[φ]∼T ∧ [ψ]∼T = [φ ∧ ψ]∼T

Then AV P(T) = ⟨PFP/∼T ,¬,∧,∨,⊥,⊤⟩ is algebra of propositions for T .

Since φ ∼T ψ ⇔ M(T , φ) = M(T , ψ), it follows that h([φ]∼T) = M(T , φ) is
a (well-defined) injective function h : PFP/∼T → P(M(T)) and

h(¬[φ]∼T) = M(T) \ M(T , φ)

h([φ]∼T ∧ [ψ]∼T) = M(T , φ) ∩ M(T , ψ)

h([φ]∼T ∨ [ψ]∼T) = M(T , φ) ∪ M(T , ψ)

h([⊥]∼T) = ∅, h([⊤]∼T) = M(T)

Moreover, h is surjective if M(T) is finite.

Corollary If T is a consistent theory over a finite P, then AV P(T) is a Boolean
algebra isomorphic via h to the (finite) algebra of sets P(M(T)).

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - III WS 2024/2025 2 / 20

Semantics Properties of theories

Analysis of theories over finite languages

Let T be a consistent theory over P where |P| = n ∈ N+ and m = |MP(T)|.
Then the number of (mutually) nonequivalent

propositions (or theories) over P is 22n
,

propositions over P that are valid (contradictory) in T is 22n−m,
propositions over P that are independent in T is 22n − 2.22n−m,
simple extensions of T is 2m, out of which 1 is inconsistent,
complete simple extensions of T is m.

And the number of (mutually) T -nonequivalent
propositions over P is 2m,
propositions over P that are valid (contradictory) (in T) is 1,
propositions over P that are independent (in T) is 2m − 2.

Proof By the bijection of PFP/∼ resp. PFP/∼T with P(M(P)) resp. P(MP(T))

it suffices to determine the number of appropriate subsets of models.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - III WS 2024/2025 3 / 20

Satisfiability SAT problem

SAT problem and solvers

Problem SAT: Is φ in CNF satisfiable?

Example Is it possible to perfectly cover the chessboard without two
diagonally removed corners using the domino tiles?

We can easily form a propositional formula that is satisfiable, if and only if
the answer is yes. Then we can test its satisfiability by a SAT solver.

Best SAT solvers: www.satcompetition.org.

SAT solver in the demo: Glucose, CNF format: DIMACS.

Can all the mathematics be translated into logical formulas?
AI, theorem proving, Peano: Formulario (1895-1908), Mizar, LEAN

How can we solve it more elegantly? What is our approach based on?

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - III WS 2024/2025 4 / 20

http://www.satcompetition.org
http://www.labri.fr/perso/lsimon/glucose/
http://people.sc.fsu.edu/~jburkardt/data/cnf/cnf.html

Satisfiability 2-SAT

2-SAT

A proposition in CNF is in k-CNF if every its clause has at most k literals.

k-SAT is the problem of satisfiability of a given proposition in k-CNF.

Although for k = 3 it is an NP-complete problem, we show that 2-SAT can
be solved in linear time (with respect to the length of φ).

We neglect implementation details (computational model, representation
in memory) and we use the following fact, see [ADS I].

Proposition A partition of a directed graph (V ,E) to strongly connected
components can be found in time O(|V |+ |E |).

A directed graph G is strongly connected if for every two vertices u and v

there are directed paths in G both from u to v and from v to u.

A strongly connected component of a graph G is a maximal strongly
connected subgraph of G.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - III WS 2024/2025 5 / 20

http://ktiml.mff.cuni.cz/~cepek/ADS1.ppt

Satisfiability 2-SAT

Implication graphs
An implication graph of a proposition φ in 2-CNF is a directed graph Gφ s.t.

vertices are all the propositional letters in φ and their negations,
a clause l1 ∨ l2 in φ is represented by a pair of edges l1 → l2, l2 → l1,
a clause l1 in φ is represented by an edge l1 → l1.

p¬p

¬r¬q

qr

t

¬t

s ¬s
¬x

¬y

y

x

c ¬c
p ∧ (¬p ∨ q) ∧ (¬q ∨ ¬r) ∧ (p ∨ r) ∧ (r ∨ ¬s) ∧ (¬p ∨ t) ∧ (q ∨ t) ∧ ¬s ∧ (x ∨ y)

Proposition φ is satisfiable if and only if no strongly connected component
of Gφ contains a pair of complementary literals.

Proof Every satisfying assignment assigns the same value to all the literals
in a same component. Thus the implication from left to right holds (necessity).

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - III WS 2024/2025 6 / 20

Satisfiability 2-SAT

Satisfying assignment
For the implication from right to left (sufficiency), let G∗

φ be the graph obtained
from Gφ by contracting strongly connected components to single vertices.

Observation G∗
φ is acyclic, and therefore has a topological ordering <.

A directed graph is acyclic if it is has no directed cycles.
A linear ordering < of vertices of a directed graph is topological
if p < q for every edge from p to q.

Now for every unassigned component in an increasing order by <, assign 0

to all its literals and 1 to all literals in the complementary component.

It remains to show that such assignment v satisfies φ. If not, then G∗
φ contains

edges p → q and q → p with v(p) = 1 and v(q) = 0. But this contradicts
the order of assigning values to components since p < q and q < p.

Corollary 2-SAT can be solved in a linear time.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - III WS 2024/2025 7 / 20

Satisfiability Horn-SAT

Horn-SAT

A unit clause is a clause containing a single literal,

a Horn clause is a clause containing at most one positive literal,

¬p1 ∨ · · · ∨ ¬pn ∨ q ∼ (p1 ∧ · · · ∧ pn) → q

a Horn formula is a conjunction of Horn clauses,

Horn-SAT is the problem of satisfiability of a given Horn formula.

Algorithm

(1) if φ contains a pair of unit clauses l and l, then it is not satisfiable,

(2) if φ contains a unit clause l, then assign 1 to l, remove all clauses
containing l, remove l from all clauses, and repeat from the start,

(3) if φ does not contain a unit clause, then it is satisfied by assigning 0

to all remaining propositional variables.

Step (2) is called unit propagation.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - III WS 2024/2025 8 / 20

Satisfiability Horn-SAT

Unit propagation

(¬p ∨ q) ∧ (¬p ∨ ¬q ∨ r) ∧ (¬r ∨ ¬s) ∧ (¬t ∨ s) ∧ s v(s) = 1

(¬p ∨ q) ∧ (¬p ∨ ¬q ∨ r) ∧ ¬r v(¬r) = 1

(¬p ∨ q) ∧ (¬p ∨ ¬q) v(p) = v(q) = v(t) = 0

Observation Let φl be the proposition obtained from φ by unit propagation.
Then φl is satisfiable if and only if φ is satisfiable.

Corollary The algorithm is correct (it solves Horn-SAT).

Proof The correctness in Step (1) is obvious, in Step (2) it follows from
the observation, in Step (3) it follows from the Horn form since every
remaining clause contains at least one negative literal.

Note A direct implementation requires quadratic time, but with an appropriate
representation in memory, one can achieve linear time (w.r.t. the length of φ).

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - III WS 2024/2025 9 / 20

Satisfiability DPLL algorithm

DPLL algorithm

A literal l is pure in a CNF formula φ if l occurs in φ and l does not occur in φ.

Algorithm DPLL(φ)

(1) while φ contains a unit clause l, assign 1 to l, remove all clauses
containing l, remove l from all clauses, and repeat, (unit propagation)

(2) while φ contains a pure literal l, assign 1 to l, remove all clauses
containing l and repeat, (pure literal elimination)

(3) if φ contains an empty clause, then it is not satisfiable,

(4) if φ does not contain any clause, then it is satisfiable,

(5) choose an unassigned propositional letter p and run DPLL(φ ∧ p) and
DPLL(φ ∧ ¬p). (branching)

Note The algoritm runs in exponentional time in the worst case. Its
correctness is easy to verify.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - III WS 2024/2025 10 / 20

Proof systems

Formal proof systems

We formalize precisely the notion of proof as a syntactical procedure.

In (standard) formal proof systems,

a proof is a finite object, it can be built from axioms of a given theory,

T ⊢ φ denotes that φ is provable from a theory T ,

if a formula has a proof, it can be found “algorithmically”,
(If T is “given algorithmically”.)

We usually require that a formal proof system is

sound, i.e. every formula provable from a theory T is also valid in T ,

complete, i.e. every formula valid in T is also provable from T .

Examples of formal proof systems (calculi): tableaux methods, resolution,
Hilbert systems, Gentzen systems, natural deduction systems.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - III WS 2024/2025 11 / 20

Tableau method Introduction

Tableau method - introduction

We assume that the language is fixed and countable, i.e. the set P of
propositional letters is countable. Then every theory over P is countable.

Main features of the tableau method (informally)

a tableau for a formula φ is a binary labeled tree representing systematic
search for counterexample to φ, i.e. a model of theory is which φ is false,

a formula is proved if every branch in tableau ‘fails’, i.e counterexample
was not found. In this case the (systematic) tableau will be finite,

if a counterexample exists, there will be a branch in a (finished) tableau
that provides us with this counterexample, but this branch can be infinite.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - III WS 2024/2025 12 / 20

Tableau method Introduction

Introductory examples

F ((¬q ∨ p)→ p)F (((p→ q)→ p)→ p)

T ((p→ q)→ p)

Fp

T ((p→ q)→ p)

F (p→ q) Tp

F (p→ q)

Tp

Fq

⊗

⊗

T (¬q ∨ p)

Fp

T (¬q ∨ p)

T (¬q)

Tp

Fq

⊗

T (¬q)

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - III WS 2024/2025 13 / 20

Tableau method Introduction

Explanation to examples

Nodes in tableaux are labeled by entries. An entry is a formula with a sign
T / F representing an assumption that the formula is true / false in some
model. If this assumption is correct, then it is correct also for all the entries
in some branch below that came from this entry.

In both examples we have finished (systematic) tableaux from no axioms.

On the left, there is a tableau proof for ((p → q) → p) → p. All branches
“failed”, denoted by ⊗, as each contains a pair Tφ, Fφ for some φ
(counterexample was not found). Thus the formula is provable, written by

⊢ ((p → q) → p) → p

On the right, there is a (finished) tableau for (¬q ∨ p) → p. The left
branch did not “fail” and is finished (all its entries were considered)
(it provides us with a counterexample v(p) = v(q) = 0).

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - III WS 2024/2025 14 / 20

Tableau method Tableaux

Atomic tableaux
An atomic tableau is one of the following trees (labeled by entries), where p is
any propositional letter and φ, ψ are any propositions.

Tp Fp

T (¬ϕ)

Fϕ

F (¬ϕ)

Tϕ

T (ϕ ∧ ψ)

Tϕ

Tψ

F (ϕ ∧ ψ)

Fϕ Fψ

T (ϕ ∨ ψ)

Tϕ Tψ

F (ϕ ∨ ψ)

Fϕ

Fψ

T (ϕ→ ψ)

Fϕ Tψ

F (ϕ→ ψ)

Tϕ

Fψ

T (ϕ↔ ψ)

Tϕ

Tψ

Fϕ

Fψ

F (ϕ↔ ψ)

Tϕ

Fψ

Fϕ

Tψ

All tableaux will be formally defined with atomic tableaux and rules how to
expand them.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - III WS 2024/2025 15 / 20

Tableau method Tableaux

Tableaux

A finite tableau is a binary tree labeled with entries described (inductively) by

(i) every atomic tableau is a finite tableau,

(ii) if P is an entry on a branch V in a finite tableau τ and τ ′ is obtained
from τ by adjoining the atomic tableaux for P at the end of branch V ,
then τ ′ is also a finite tableau,

(iii) every finite tableau is formed by a finite number of steps (i), (ii).

A tableau is a sequence τ0, τ1, . . . , τn, . . . (finite or infinite) of finite tableaux
such that τn+1 is formed from τn by an application of (ii), formally τ = ∪τn.

Remark It is not specified how to choose the entry P and the branch V for
expansion. This will be specified in systematic tableaux.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - III WS 2024/2025 16 / 20

Tableau method Tableaux

Construction of tableaux

F ((¬q ∨ p)→ p)F (((p→ q)→ p)→ p)

T ((p→ q)→ p)

Fp

T ((p→ q)→ p)

F (p→ q) Tp

F (p→ q)

Tp

Fq

⊗

⊗

T (¬q ∨ p)

Fp

T (¬q ∨ p)

T (¬q)

Tp

Fq

⊗

T (¬q)

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - III WS 2024/2025 17 / 20

Tableau method Tableaux

Convention

F ((¬q ∨ p)→ p)F (((p→ q)→ p)→ p)

T ((p→ q)→ p)

Fp

F (p→ q) Tp

Tp

Fq

⊗

⊗

T (¬q ∨ p)

Fp

Tp

Fq ⊗

T (¬q)

We will not write the entry that is expanded again on the branch.

Remark They will actually be needed later in predicate tableau method.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - III WS 2024/2025 18 / 20

Tableau method Proof

Tableau proofs

Let P be an entry on a branch V in a tableau τ . We say that

the entry P is reduced on V if it occurs on V as a root of an atomic
tableau, i.e. it was already expanded on V during the construction of τ ,

the branch V is contradictory if it contains entries Tφ and Fφ for some
proposition φ, otherwise V is noncontradictory. The branch V is finished
if it is contradictory or every entry on V is already reduced on V ,

the tableau τ is finished if every branch in τ is finished, and τ is
contradictory if every branch in τ is contradictory.

A tableau proof (proof by tableau) of φ is a contradictory tableau with the root
entry Fφ. φ is (tableau) provable, denoted by ⊢ φ, if it has a tableau proof.

Similarly, a refutation of φ by tableau is a contradictory tableau with the root
entry Tφ. φ is (tableau) refutable if it has a refutation by tableau, i.e. ⊢ ¬φ.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - III WS 2024/2025 19 / 20

Tableau method Proof

Examples
T ((p→ q)↔ (p ∧ ¬q))F (((¬p ∧ ¬q) ∨ p)→ (¬p ∧ ¬q))

T (¬p ∧ ¬q) Tp

⊗

T (p→ q)

T (p ∧ ¬q)

Tq

Tp

Fp

⊗

Tp

T (¬q) T (¬q)

Fq

⊗

F (p→ q)

F (p ∧ ¬q)

Tp

Fp

⊗ Tq

F (¬q)

Fq

⊗

T ((¬p ∧ ¬q) ∨ p)

F (¬p ∧ ¬q)

F (¬p) F (¬q)

Tp

V1 V2 V3

a) b)

a) F (¬p ∧ ¬q) not reduced on V1, V1 contradictory, V2 finished, V3

unfinished,
b) a (tableau) refutation of φ : (p → q) ↔ (p ∧ ¬q), i.e. ⊢ ¬φ.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - III WS 2024/2025 20 / 20

	Semantics
	Properties of theories

	Satisfiability
	SAT problem
	2-SAT
	Horn-SAT
	DPLL algorithm

	Proof systems
	Tableau method
	Introduction
	Tableaux
	Proof

