Propositional and Predicate Logic - V

Petr Gregor

KTIML MFF UK

WS 2016/2017
Hilbert’s calculus

- **basic connectives**: \(\neg, \to \) (others can be defined from them)
- **logical axioms** (schemes of axioms):

 \[
 \begin{align*}
 (i) & \quad \varphi \to (\psi \to \varphi) \\
 (ii) & \quad (\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi)) \\
 (iii) & \quad (\neg \varphi \to \neg \psi) \to (\psi \to \varphi)
 \end{align*}
 \]

 where \(\varphi, \psi, \chi \) are any propositions (of a given language).

- **a rule of inference**:

 \[
 \varphi, \varphi \to \psi \quad \frac{}{\psi} \quad \text{(modus ponens)}
 \]

A **proof** (in Hilbert-style) of a formula \(\varphi \) from a theory \(T \) is a finite sequence \(\varphi_0, \ldots, \varphi_n = \varphi \) of formulas such that for every \(i \leq n \)

- \(\varphi_i \) is a logical axiom or \(\varphi_i \in T \) (an axiom of the theory), or
- \(\varphi_i \) can be inferred from the previous formulas applying a rule of inference.

Remark Choice of axioms and inference rules differs in various Hilbert-style proof systems.
Example and soundness

A formula ϕ is **provable** from T if it has a proof from T, denoted by $T \vdash_H \phi$. If $T = \emptyset$, we write $\vdash_H \phi$. E.g. for $T = \{\neg \phi\}$ we have $T \vdash_H \phi \rightarrow \psi$ for every ψ.

1) $\neg \phi$ \hspace{1cm} an axiom of T
2) $\neg \phi \rightarrow (\neg \psi \rightarrow \neg \phi)$ \hspace{1cm} a logical axiom (i)
3) $\neg \psi \rightarrow \neg \phi$ \hspace{1cm} by modus ponens from 1), 2)
4) $(\neg \psi \rightarrow \neg \phi) \rightarrow (\phi \rightarrow \psi)$ \hspace{1cm} a logical axiom (iii)
5) $\phi \rightarrow \psi$ \hspace{1cm} by modus ponens from 3), 4)

Theorem \textit{For every theory T and formula ϕ, $T \vdash_H \phi \Rightarrow T \models \phi$.}

Proof

- If ϕ is an axiom (logical or from T), then $T \models \phi$ (l. axioms are tautologies),
- if $T \models \phi$ and $T \models \phi \rightarrow \psi$, then $T \models \psi$, i.e. modus ponens is **sound**,
- thus every formula in a proof from T is valid in T. \hfill \square

Remark \textit{The completeness holds as well, i.e. $T \models \phi \Rightarrow T \vdash_H \phi$.}
Resolution method - introduction

Main features of the resolution method (informally)

- is the underlying method of many systems, e.g. Prolog interpreters, SAT solvers, automated deduction / verification systems, ...
- assumes input formulas in CNF (in general, “expensive” transformation),
- works under set representation (clausal form) of formulas,
- has a single rule, so called a resolution rule,
- has no explicit axioms (or atomic tableaux), but certain axioms are incorporated “inside” via various formatting rules,
- is a refutation procedure, similarly as the tableau method; that is, it tries to show that a given formula (or theory) is unsatisfiable,
- has several refinements e.g. with specific conditions on when the resolution rule may be applied.
Set representation (clausal from) of CNF formulas

- A *literal* \(l \) is a prop. letter or its negation. \(\neg l \) is its *complementary* literal.
- A *clause* \(C \) is a finite set of literals (“*forming disjunction*”). The empty clause, denoted by \(\square \), is never satisfied (has no satisfied literal).
- A *formula* \(S \) is a (possibly infinite) set of clauses (“*forming conjunction*”). An empty formula \(\emptyset \) is always satisfied (has no unsatisfied clause). Infinite formulas represent infinite theories (as conjunction of axioms).
- A *(partial) assignment* \(\mathcal{V} \) is a consistent set of literals, i.e. not containing any pair of complementary literals. An assignment \(\mathcal{V} \) is *total* if it contains a positive or negative literal for each propositional letter.
- \(\mathcal{V} \) satisfies \(S \), denoted by \(\mathcal{V} \models S \), if \(C \cap \mathcal{V} \neq \emptyset \) for every \(C \in S \).

\[
\left(\neg p \lor q \right) \land \left(\neg p \lor \neg q \lor r \right) \land \left(\neg r \lor \neg s \right) \land \left(\neg t \lor s \right) \land s
\]

is represented by

\[
S = \{ \{\neg p, q\}, \{\neg p, \neg q, r\}, \{\neg r, \neg s\}, \{\neg t, s\}, \{s\}\}
\]

and

\[
\mathcal{V} \models S \quad \text{for} \quad \mathcal{V} = \{s, \neg r, \neg p\}
\]
Resolution rule

Let C_1, C_2 be clauses with $l \in C_1, \overline{l} \in C_2$ for some literal l. Then from C_1 and C_2 infer through the literal l the clause C, called a resolvent, where

$$C = (C_1 \setminus \{l\}) \cup (C_2 \setminus \{\overline{l}\}).$$

Equivalently, if \sqcup means union of disjoint sets,

$$\frac{C_1' \sqcup \{l\}, C_2' \sqcup \{\overline{l}\}}{C_1' \cup C_2'}$$

For example, from $\{p, q, r\}$ and $\{\neg p, \neg q\}$ we can infer $\{q, \neg q, r\}$ or $\{p, \neg p, r\}$.

Observation The resolution rule is sound; that is, for every assignment \mathcal{V}

$$\mathcal{V} \models C_1 \text{ and } \mathcal{V} \models C_2 \implies \mathcal{V} \models C.$$

Remark The resolution rule is a special case of the (so called) cut rule

$$\frac{\varphi \lor \psi, \neg \varphi \lor \chi}{\psi \lor \chi}$$

where φ, ψ, χ are arbitrary formulas.
Resolution proof

- A *resolution proof* (deduction) of a clause C from a formula S is a finite sequence $C_0, \ldots, C_n = C$ such that for every $i \leq n$, we have $C_i \in S$ or C_i is a resolvent of some previous clauses,

- a clause C is (resolution) *provable* from S, denoted by $S \vdash_R C$, if it has a resolution proof from S,

- a (resolution) *refutation* of formula S is a resolution proof of \Box from S,

- S is (resolution) *refutable* if $S \vdash_R \Box$.

Theorem (soundness) If S is resolution refutable, then S is unsatisfiable.

Proof Let $S \vdash_R \Box$. If it was $\mathcal{V} \models S$ for some assignment \mathcal{V}, from the soundness of the resolution proof we would have $\mathcal{V} \models \Box$, which is impossible. ■
Resolution trees and closures

A *resolution tree* of a clause C from formula S is *finite* binary tree with nodes labeled by clauses so that

(i) the root is labeled C,

(ii) the leaves are labeled with clauses from S,

(iii) every inner node is labeled with a resolvent of the clauses in his sons.

Observation C has a resolution tree from S if and only if $S \vdash_R C$.

A *resolution closure* $\mathcal{R}(S)$ of a formula S is the smallest set satisfying

(i) $C \in \mathcal{R}(S)$ for every $C \in S$,

(ii) if $C_1, C_2 \in \mathcal{R}(S)$ and C is a resolvent of C_1, C_2, then $C \in \mathcal{R}(S)$.

Observation $C \in \mathcal{R}(S)$ if and only if $S \vdash_R C$.

Remark All notions on resolution proofs can therefore be equivalently introduced in terms of resolution trees or resolution closures.
Example

Formula \(((p \lor r) \land (q \lor \neg r) \land (\neg q) \land (\neg p \lor t) \land (\neg s) \land (s \lor \neg t))\) is unsatisfiable since for \(S = \{\{p, r\}, \{q, \neg r\}, \{\neg q\}, \{\neg p, t\}, \{\neg s\}, \{s, \neg t\}\}\) we have \(S \vdash_R \square\).

The resolution closure of \(S\) (the closure of \(S\) under resolution) is

\[
R(S) = \{\{p, r\}, \{q, \neg r\}, \{\neg q\}, \{\neg p, t\}, \{\neg s\}, \{s, \neg t\}, \{p, q\}, \{\neg r\}, \{r, t\}, \{q, t\}, \{\neg t\}, \{\neg p, s\}, \{r, s\}, \{t\}, \{q\}, \{q, s\}, \square, \{\neg p\}, \{p\}, \{r\}, \{s\}\}.
\]
Reduction by substitution

Let S be a formula and l be a literal. Let us define

$$S^l = \{ C \setminus \{\overline{l}\} \mid l \notin C \in S \}.$$

Observation

- S^l is equivalent to a formula obtained from S by substituting the constant \top (true, 1) for all literals l and the constant \bot (false, 0) for all literals \overline{l} in S,
- Neither l nor \overline{l} occurs in (the clauses of) S^l.
- if $\{\overline{l}\} \in S$, then $\square \in S^l$.

Lemma S is satisfiable if and only if S^l or $S^{\overline{l}}$ is satisfiable.

Proof (\Rightarrow) Let $\mathcal{V} \models S$ for some \mathcal{V} and assume (w.l.o.g.) that $\overline{l} \notin \mathcal{V}$.

- Then $\mathcal{V} \models S^l$ as for $l \notin C \in S$ we have $\mathcal{V} \setminus \{l, \overline{l}\} \models C$ and thus $\mathcal{V} \models C \setminus \{\overline{l}\}$.
- On the other hand (\Leftarrow), assume (w.l.o.g.) that $\mathcal{V} \models S^l$ for some \mathcal{V}.
- Since neither l nor \overline{l} occurs in S^l, we have $\mathcal{V}' \models S^l$ for $\mathcal{V}' = (\mathcal{V} \setminus \{\overline{l}\}) \cup \{l\}$.
- Then $\mathcal{V}' \models S$ since for $C \in S$ containing l we have $l \in \mathcal{V}'$ and for $C \in S$ not containing l we have $\mathcal{V}' \models (C \setminus \{\overline{l}\}) \in S^l$. \blacksquare
Tree of reductions

Step by step reductions of literals can be represented in a binary tree.

\[
S = \{\{p\}, \{-q\}, \{-p, -q\}\}
\]

\[
S^p = \{\{-q\}\} \quad S^\bar{p} = \{\Box, \{-q\}\}
\]

\[
S^{pq} = \{\Box\} \quad S^{\bar{p}q} = \emptyset
\]

Corollary \(S\) is unsatisfiable if and only if every branch contains \(\Box\).

Remarks Since \(S\) can be infinite over a countable language, this tree can be infinite. However, if \(S\) is unsatisfiable, by the compactness theorem there is a finite \(S' \subseteq S\) that is unsatisfiable. Thus after reduction of all literals occurring in \(S'\), there will be \(\Box\) in every branch after finitely many steps.
Completeness of resolution

Theorem If a finite S is unsatisfiable, it is resolution refutable, i.e. $S \vdash_R \Box$.

Proof By induction on the number of variables in S we show that $S \vdash_R \Box$.
- If unsatisfiable S has no variable, it is $S = \{\Box\}$ and thus $S \vdash_R \Box$.
- Let l be a literal occurring in S. By Lemma, S^l and $S^{\overline{l}}$ are unsatisfiable.
- Since S^l and $S^{\overline{l}}$ have less variables than S, by induction there exist resolution trees T^l and $T^{\overline{l}}$ for derivation of \Box from S^l resp. $S^{\overline{l}}$.
- If every leaf of T^l is in S, then T^l is a resolution tree of \Box from S, $S \vdash_R \Box$.
- Otherwise, by appending the literal \overline{l} to every leaf of T^l that is not in S, (and to all predecessors) we obtain a resolution tree of $\{\overline{l}\}$ from S.
- Similarly, we get a resolution tree $\{l\}$ from S by appending l in the tree $T^{\overline{l}}$.
- By resolution of roots $\{\overline{l}\}$ and $\{l\}$ we get a resolution tree of \Box from S. \blacksquare

Corollary If S is unsatisfiable, it is resolution refutable, i.e. $S \vdash_R \Box$.

Proof Follows from the previous theorem by applying compactness.
Linear resolution - introduction

The resolution method can be significantly refined.

- A *linear proof* of a clause \(C \) from a formula \(S \) is a finite sequence of pairs \((C_0, B_0), \ldots, (C_n, B_n)\) such that \(C_0 \in S \) and for every \(i \leq n \)

 \(i) \ \ B_i \in S \) or \(B_i = C_j \) for some \(j < i \), and

 \(ii) \ \ C_{i+1} \) is a resolvent of \(C_i \) and \(B_i \) where \(C_{n+1} = C \).

- \(C_0 \) is called a *starting* clause, \(C_i \) a *central* clause, \(B_i \) a *side* clause.

- \(C \) is *linearly provable* from \(S \), \(S \vdash_L C \), if it has a linear proof from \(S \).

- A *linear refutation* of \(S \) is a linear proof of \(\Box \) from \(S \).

- \(S \) is *linearly refutable* if \(S \vdash_L \Box \).

Observation (soundness) *If \(S \) is linearly refutable, it is unsatisfiable.*

Proof Every linear proof can be transformed to a (general) resolution proof.

Remark *The completeness is preserved as well (proof omitted here).*
Example of linear resolution

\[
\begin{array}{ccccccc}
C_0 & B_0 & \{p, q\} & \{p, \neg q\} & \{p, q\} & \{p, \neg q\} \\
\mid & & \mid & & \mid & \\
C_1 & B_1 & \{p\} & \{\neg p, q\} & \{p\} & \{\neg p, q\} \\
\mid & & \mid & & \mid & \\
C_2 & & \{q\} & \{\neg p, \neg q\} & \{q\} & \{\neg p, \neg q\} \\
\vdots & & \{\neg p\} & \{p\} & \{\neg p\} & \{p\} \\
C_n & B_n & & & & & \\
\mid & & \mid & & \mid & \\
C_{n+1} & & \square & & \square & \\
\end{array}
\]

\[\text{a)}\] a general form of linear resolution,

\[\text{b)}\] for \(S = \{\{p, q\}, \{p, \neg q\}, \{\neg p, q\}, \{\neg p, \neg q\}\} \) we have \(S \vdash_L \square \),

\[\text{c)}\] a transformation of a linear proof to a (general) resolution proof.
LI-resolution

Linear resolution can be further refined for Horn formulas as follows.

- a **Horn clause** is a clause containing at most one positive literal,
- a **Horn formula** is a (possibly infinite) set of Horn clauses,
- a **fact** is a (Horn) clause \{p\} where p is a positive literal,
- a **rule** is a (Horn) clause with exactly one positive literal and at least one negative literal. Rules and facts are *program clauses*,
- a **goal** is a nonempty (Horn) clause with only negative literals.

Observation If a Horn formula \(S \) is unsatisfiable and \(\Box \notin S \), it contains some fact and some goal.

Proof If \(S \) does not contain any fact (goal), it is satisfied by the assignment of all propositional variables to 0 (resp. to 1).

A **linear input resolution** (LI-resolution) from a formula \(S \) is a linear resolution from \(S \) in which every side clause \(B_i \) is from the (input) formula \(S \). We write \(S \models_{LI} C \) to denote that \(C \) is provable by LI-resolution from \(S \).
Completeness of LI-resolution for Horn formulas

Theorem If T is satisfiable Horn formula but $T \cup \{G\}$ is unsatisfiable for some goal G, then \Box has a LI-resolution from $T \cup \{G\}$ with starting clause G.

Proof By the compactness theorem we may assume that T is finite.

- We proceed by induction on the number of variables in T.
- By Observation, T contains a fact $\{p\}$ for some variable p.
- By Lemma, $T' = (T \cup \{G\})^p = T^p \cup \{G^p\}$ is unsatisfiable where $G^p = G \setminus \{\overline{p}\}$.
- If $G^p = \Box$, we have $G = \{\overline{p}\}$ and thus \Box is a resolvent of G and $\{p\} \in T$.
- Otherwise, since T^p is satisfiable (by the assignment satisfying T) and has less variables than T, by induction assumption, there is an LI-resolution of \Box from T' starting with G^p.
- By appending the literal \overline{p} to all leaves that are not in $T \cup \{G\}$ (and nodes below) we obtain an LI-resolution of $\{\overline{p}\}$ from $T \cup \{G\}$ that starts with G.
- By an additional resolution step with the fact $\{p\} \in T$ we resolve \Box. ■
Example of LI-resolution

\[T = \{\{p, \neg r, \neg s\}, \{r, \neg q\}, \{q, \neg s\}, \{s\}\}, \quad G = \{\neg p, \neg q\} \]

\[T^s = \{\{p, \neg r\}, \{r, \neg q\}, \{q\}\} \]

\[T^{sq} = \{\{p, \neg r\}, \{r\}\} \]

\[T^{sqr} = \{\{p\}\}, \quad G^{sqr} = \{\neg p\} \]

\[G^{sq} = \{\neg p\} \]

\[G^{sqr} = \{\neg r\}\]

\[T^{sq}, G^{sqr} \vdash_{LI} \]

\[T^{sq}, G^{sq} \vdash_{LI} \]

\[T, G \vdash_{LI} \]
Program in Prolog

A (propositional) **program** (in Prolog) is a Horn formula containing only program clauses, i.e. facts or rules.

\[
\begin{align*}
\text{a rule} & : p :− q, r. & q \land r \rightarrow p & \{p, \neg q, \neg r\} \\
 & : p :− s. & s \rightarrow p & \{p, \neg s\} \\
 & : q :− s. & s \rightarrow q & \{q, \neg s\} \\
\text{a fact} & : r. & r & \{r\} \\
 & : s. & s & \{s\} \quad \text{a program} \\
\text{a query} & \neg p, q. & \neg p, \neg q & \text{a goal}
\end{align*}
\]

We would like to know whether a given query follows from a given program.

Corollary For every program \(P \) and query \((p_1 \land \ldots \land p_n)\) it is equivalent that

1. \(P \models p_1 \land \ldots \land p_n \),
2. \(P \cup \{\neg p_1, \ldots, \neg p_n\} \) is unsatisfiable,
3. \(\square \) has LI-resolution from \(P \cup \{G\} \) starting by goal \(G = \{\neg p_1, \ldots, \neg p_n\} \).
Resolution in Prolog

1) Interpreter stores clauses as sequences of literals (definite clauses).

An LD-resolution (linear definite) is an LI-resolution in which in each step the resolvent of the present goal \((\neg p_1, \ldots, \neg p_{i-1}, \neg p_i, \neg p_{i+1}, \ldots, \neg p_n)\) and the side clause \((p_i, \neg q_1, \ldots, \neg q_m)\) is \((\neg p_1, \ldots, \neg p_{i-1}, \neg q_1, \ldots, \neg q_m, \neg p_{i+1}, \ldots, \neg p_n)\).

Observation Every LI-proof can be transformed into an LD-proof of the same clause from the same formula with the same starting clause (goal).

2) The choice of literal from the present goal for resolution is determined by a given selection rule \(\mathcal{R}\). Typically, “choose the first literal”.

An SLD-resolution (selection) via \(\mathcal{R}\) is an LD-resolution in which each step \((C_i, B_i)\) we resolve through the literal \(\mathcal{R}(C_i)\).

Observation Every LD-proof can be transformed into an SLD-proof of the same clause from the same formula with the same starting clause (goal).

Corollary SLD-resolution is complete for queries over programs in Prolog.
SLD-tree

Which program clause will be used for resolution with the present goal?

An **SLD-tree** of a program \(P \) and a goal \(G \) via a selection rule \(\mathcal{R} \) is a tree with nodes labeled by goals so that the root has label \(G \) and if a node has label \(G' \), his sons correspond to all possibilities of resolving \(G' \) with program clauses of \(P \) through literal \(\mathcal{R}(G') \) and are labeled by the corresponding resolvents.

\[

case:
\begin{align*}
 p :&= q, r. \\
p :&= s. \\
q :&= s. \\
r :&= t. \\
s :&= t. \\
\text{?} :&= p.
\end{align*}
\]

Diagram:

```
(1) p :- q, r. 
(2) p :- s. 
(3) q. 
(4) q :- s. 
(5) r. 
(6) s :- t. 
(7) s. 

\[ (¬p) \] (1) (2)
\[ (¬q, ¬r) \] (3) (4)
\[ (¬s, ¬r) \] (5) (6)
\[ (¬t) \] (7)
\[ (¬r, ¬r) \] (5)
\[ (¬t, ¬r) \] (6)
\[ (¬r) \] (7)
```

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - V WS 2016/2017
Concluding remarks

- Prolog interpreters search the SLD-tree, the order is not specified.
- Implementations that are based on DFS may not preserve completeness.

\[
\begin{align*}
q & : - r. \quad (1) \\
r & : - q. \quad (2) \\
q & . \quad (3)
\end{align*}
\]

\[
\begin{array}{c}
q : - r. \\
r : - q. \\
q. \\
? - q. \\
\end{array}
\]

A certain control over the search is provided by \textit{!}, the \textit{cut} operation.

- If we allow \textit{negation}, we may have troubles with semantics of programs.