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Formal proof systems Hilbert’s calculus

Hilbert’s calculus
basic connectives: ¬, → (others can be defined from them)
logical axioms (schemes of axioms):

(i) φ→ (ψ → φ)

(ii) (φ→ (ψ → χ)) → ((φ→ ψ) → (φ→ χ))

(iii) (¬φ→ ¬ψ) → (ψ → φ)

where φ, ψ, χ are any propositions (of a given language).
a rule of inference:

φ, φ→ ψ

ψ
(modus ponens)

A proof (in Hilbert-style) of a formula φ from a theory T is a finite sequence
φ0, . . . , φn = φ of formulas such that for every i ≤ n

φi is a logical axiom or φi ∈ T (an axiom of the theory), or
φi can be inferred from the previous formulas applying a rule of inference.

Remark Choice of axioms and inference rules differs in various Hilbert-style
proof systems.
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Formal proof systems Hilbert’s calculus

Example and soundness
A formula φ is provable from T if it has a proof from T , denoted by T ⊢H φ.
If T = ∅, we write ⊢H φ. E.g. for T = {¬φ} we have T ⊢H φ→ ψ for every ψ.

1) ¬φ an axiom of T

2) ¬φ→ (¬ψ → ¬φ) a logical axiom (i)

3) ¬ψ → ¬φ by modus ponens from 1), 2)
4) (¬ψ → ¬φ) → (φ→ ψ) a logical axiom (iii)

5) φ→ ψ by modus ponens from 3), 4)

Theorem For every theory T and formula φ, T ⊢H φ ⇒ T |= φ.
Proof

If φ is an axiom (logical or from T ), then T |= φ (l. axioms are tautologies),
if T |= φ and T |= φ→ ψ, then T |= ψ, i.e. modus ponens is sound,
thus every formula in a proof from T is valid in T .

Remark The completeness holds as well, i.e. T |= φ⇒ T ⊢H φ.
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Predicate Logic Introduction

Predicate logic

Deals with statements about objects, their properties and relations.

“She is intelligent and her father knows the rector.” I (x) ∧ K (f (x), r)

x is a variable, representing an object,
r is a constant symbol, representing a particular object,
f is a function symbol, representing a function,
I , K are relation (predicate) symbols, representing relations
(the property of “being intelligent” and the relation “to know”).

“Everybody has a father.” (∀x)(∃y)(y = f (x))

(∀x) is the universal quantifier (for every x),
(∃y) is the existential quantifier (there exists y),
= is a (binary) relation symbol, representing the identity relation.
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Basic syntax of predicate logic Language

Language
A first-order language consists of

variables x, y, z, . . . , x0, x1, . . . (countable many),
the set of all variables is denoted by Var,
function symbols f , g ,h, . . . , including constant symbols c,d, . . . ,
which are nullary function symbols,
relation (predicate) symbols P,Q,R, . . . , eventually the symbol =
(equality) as a special relation symbol,
quantifiers (∀x), (∃x) for every variable x ∈ Var,
logical connectives ¬, ∧, ∨, →, ↔
parentheses ( , )

Every function and relation symbol S has an associated arity ar(S) ∈ N.

Remark Compared to propositional logic we have no (explicit) propositional
variables, but they can be introduced as nullary relation symbols.
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Basic syntax of predicate logic Language

Signatures

Symbols of logic are variables, quantifiers, connectives and parentheses.

Non-logical symbols are function and relation symbols except the
equality symbol. The equality is (usually) considered separately.

A signature is a pair ⟨R,F⟩ of disjoint sets of relation and function
symbols with associated arities, whereas none of them is the equality
symbol. A signature lists all non-logical symbols.

A language is determined by a signature L = ⟨R,F⟩ and by specifying
whether it is a language with equality or not. A language must contain at
least one relation symbol (non-logical or the equality).

Remark The meaning of symbols in a language is not assigned, e.g. the
symbol + does not have to represent the standard addition.
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Basic syntax of predicate logic Language

Examples of languages
We describe a language by a list of all non-logical symbols with eventual
clarification of arity and whether they are relation or function symbols.

The following examples of languages are all with equality.

L = ⟨ ⟩ is the language of pure equality,
L = ⟨ci⟩i∈N is the language of countable many constants,
L = ⟨≤⟩ is the language of orderings,
L = ⟨E⟩ is the language of the graph theory,
L = ⟨+,−, 0⟩ is the language of the group theory,
L = ⟨+,−, ·, 0, 1⟩ is the language of the field theory,
L = ⟨−,∧,∨, 0, 1⟩ is the language of Boolean algebras,
L = ⟨S,+, ·, 0,≤⟩ is the language of arithmetic,

where ci, 0, 1 are constant symbols, S, − are unary function symbols,
+, · , ∧, ∨ are binary function symbols, E , ≤ are binary relation symbols.
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Basic syntax of predicate logic Terms

Terms

Are expressions representing values of (composed) functions.

Terms of a language L are defined inductively by

(i) every variable or constant symbol in L is a term,

(ii) if f is a function symbol in L of arity n > 0 and t1, . . . , tn are terms,
then also the expression f (t1, . . . , tn) is a term,

(iii) every term is formed by a finite number of steps (i), (ii).

A ground term is a term with no variables.
The set of all terms of a language L is denoted by TermL.
A term that is a part of another term t is called a subterm of t .
The structure of terms can be represented by their formation trees.
For binary function symbols we often use infix notation, e.g.
we write (x + y) instead of +(x, y).
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Basic syntax of predicate logic Terms

Examples of terms

x

S(0) + x

S(0)

0

y

(S(0) + x) · y

a) b) y

¬(x ∧ y)

x

x ∧ y

⊥

¬(x ∧ y) ∨ ⊥

a) The formation tree of the term (S(0) + x) · y of the language of arithmetic.

b) Propositional formulas only with connectives ¬, ∧, ∨, eventually with
constants ⊤, ⊥ can be viewed as terms of the language of Boolean
algebras.
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Basic syntax of predicate logic Formula

Atomic formulas

Are the simplest formulas.

An atomic formula of a language L is an expression R(t1, . . . , tn) where
R is an n-ary relation symbol in L and t1, . . . , tn are terms of L.

The set of all atomic formulas of a language L is denoted by AFmL.

The structure of an atomic formula can be represented by a formation
tree from the formation subtrees of its terms.

For binary relation symbols we often use infix notation, e.g.
t1 = t2 instead of =(t1, t2) or t1 ≤ t2 instead of ≤(t1, t2).

Examples of atomic formulas

K (f (x), r), x · y ≤ (S(0) + x) · y, ¬(x ∧ y) ∨ ⊥ = ⊥.
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Basic syntax of predicate logic Formula

Formula

Formulas of a language L are defined inductively by

(i) every atomic formula is a formula,

(ii) if φ, ψ are formulas, then also the following expressions are formulas

(¬φ) , (φ ∧ ψ) , (φ ∨ ψ) , (φ→ ψ) , (φ↔ ψ),

(iii) if φ is a formula and x is a variable, then also the expressions ((∀x)φ)

and ((∃x)φ) are formulas.

(iv) every formula is formed by a finite number of steps (i), (ii), (iii).

The set of all formulas of a language L is denoted by FmL.

A formula that is a part of another formula φ is called a subformula of φ.

The structure of formulas can be represented by their formation trees.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - VI WS 2024/2025 11 / 26



Basic syntax of predicate logic Formula

Conventions

After introducing priorities for binary function symbols e.g. + , · we are
in infix notation allowed to omit parentheses that are around a subterm
formed by a symbol of higher priority, e.g. x · y + z instead of (x · y) + z.

After introducing priorities for connectives and quantifiers we are allowed
to omit parentheses that are around subformulas formed by connectives
of higher priority.

(1) ¬, (∀x), (∃x) (2) ∧, ∨ (3) →, ↔

They can be always omitted around subformulas formed by ¬, (∀x), (∃x).

We may also omit parentheses in (∀x) and (∃x) for every x ∈ Var.

The outer parentheses may be omitted as well.
(((¬((∀x)R(x))) ∧ ((∃y)P(y))) → (¬(((∀x)R(x)) ∨ (¬((∃y)P(y))))))

¬(∀x)R(x) ∧ (∃y)P(y) → ¬((∀x)R(x) ∨ ¬(∃y)P(y))
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Basic syntax of predicate logic Formula

An example of a formula

x

S(0) + x

S(0)

0

y

(S(0) + x) · y

x y

x · y

x · y ≤ (S(0) + x) · y

(∀x)(x · y ≤ (S(0) + x) · y)

The formation tree of the formula (∀x)(x · y ≤ (S(0) + x) · y).
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Basic syntax of predicate logic Open formulas and sentences

Occurrences of variables

Let φ be a formula and x be a variable.

An occurrence of x in φ is a leaf labeled by x in the formation tree of φ.

An occurrence of x in φ is bound if it is in some subformula ψ that starts
with (∀x) or (∃x). An occurrence of x in φ is free if it is not bound.

A variable x is free in φ if it has at least one free occurrence in φ.
It is bound in φ if it has at least one bound occurrence in φ.

A variable x can be both free and bound in φ. For example in

(∀x)(∃y)(x ≤ y) ∨ x ≤ z.

We write φ(x1, . . . , xn) to denote that x1, . . . , xn are all free variables
in the formula φ. (φ states something about these variables.)

Remark We will see that the truth value of a formula (in a given interpretation
of symbols) depends only on the assignment of free variables.
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Basic syntax of predicate logic Open formulas and sentences

Open and closed formulas

A formula is open if it is without quantifiers. For the set OFmL of all open
formulas in a language L it holds that AFmL ⊊ OFmL ⊊ FmL.

A formula is closed (a sentence) if it has no free variable; that is, all
occurrences of variables are bound.

A formula can be both open and closed. In this case, all its terms
are ground terms.

x + y ≤ 0 open, φ(x, y)

(∀x)(∀y)(x + y ≤ 0) a sentence,
(∀x)(x + y ≤ 0) neither open nor a sentence, φ(y)

1 + 0 ≤ 0 open sentence

Remark We will see that in a fixed interpretation of symbols a sentence has
a fixed truth value; that is, it does not depend on the assignment of variables.
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Basic syntax of predicate logic Instances and variants

Instances
After substituting a term t for a free variable x in a formula φ, we would expect
that the new formula (newly) says about t “the same” as φ did about x.

φ(x) (∃y)(x + y = 1) “there is an element 1 − x”
for t = 1 we can φ(x/t) (∃y)(1 + y = 1) “there is an element 1 − 1”
for t = y we cannot (∃y)(y + y = 1) “1 is divisible by 2”

A term t is substitutable for a variable x in a formula φ if substituting t for
all free occurrences of x in φ does not introduce a new bound occurrence
of a variable from t .

Then we denote the obtained formula φ(x/t) and we call it an instance of
the formula φ after a substitution of a term t for a variable x.

t is not substitutable for x in φ if and only if x has a free occurrence in
some subformula that starts with (∀y) or (∃y) for some variable y in t .

Ground terms are always substitutable.
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Basic syntax of predicate logic Instances and variants

Variants

Quantified variables can be (under certain conditions) renamed so that we
obtain an equivalent formula.

Let (Qx)ψ be a subformula of φ where Q means ∀ or ∃ and y is a variable
such that the following conditions hold.

1) y is substitutable for x in ψ, and
2) y does not have a free occurrence in ψ.

Then by replacing the subformula (Qx)ψ with (Qy)ψ(x/y) we obtain a variant
of φ in subformula (Qx)ψ. After variation of one or more subformulas in φ
we obtain a variant of φ. For example,

(∃x)(∀y)(x ≤ y) is a formula φ,
(∃u)(∀v)(u ≤ v) is a variant of φ,
(∃y)(∀y)(y ≤ y) is not a variant of φ, 1) does not hold,
(∃x)(∀x)(x ≤ x) is not a variant of φ, 2) does not hold.
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Basic semantics of predicate logic Structures

Structures

S = ⟨S,≤⟩ is an ordered set where ≤ is reflexive, antisymmetric,
transitive binary relation on S,

G = ⟨V ,E⟩ is an undirected graph without loops where V is the set of
vertices and E is irreflexive, symmetric binary relation on V (adjacency),

Zp = ⟨Zp,+,−, 0⟩ is the additive group of integers modulo p,

Q = ⟨Q,+,−, ·, 0, 1⟩ is the field of rational numbers,

P(X ) = ⟨P(X ),−,∩,∪, ∅,X ⟩ is the set algebra over X ,

N = ⟨N, S,+, ·, 0,≤⟩ is the standard model of arithmetic,

finite automata and other models of computation,

relational databases, . . .
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Basic semantics of predicate logic Structures

A structure for a language
Let L = ⟨R,F⟩ be a signature of a language and A be a nonempty set.

A realization (interpretation) of a relation symbol R ∈ R on A is any
relation RA ⊆ Aar(R). A realization of = on A is the relation IdA (identity).

A realization (interpretation) of a function symbol f ∈ F on A is any
function f A : Aar(f ) → A. Thus a realization of a constant symbol is
some element of A.

A structure for the language L (L-structure) is a triple A = ⟨A,RA,FA⟩, where
A is nonempty set, called the domain of the structure A,
RA = ⟨RA | R ∈ R⟩ is a collection of realizations of relation symbols,
FA = ⟨f A | f ∈ F⟩ is a collection of realizations of function symbols.

A structure for the language L is also called a model of the language L. The
class of all models of L is denoted by M(L). Examples for L = ⟨≤⟩ are

⟨N,≤⟩, ⟨Q, >⟩, ⟨X ,E⟩, ⟨P(X ),⊆⟩.
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Basic semantics of predicate logic Truth values

Value of terms

Let t be a term of L = ⟨R,F⟩ and A = ⟨A,RA,FA⟩ be an L-structure.

A variable assignment over the domain A is a function e : Var → A.

The value t A[e] of the term t in the structure A with respect to the
assignment e is defined by

xA[e] = e(x) for every x ∈ Var,

(f (t1, . . . , tn))
A[e] = f A(t A

1 [e], . . . , t A
n [e]) for every f ∈ F .

In particular, for a constant symbol c we have cA[e] = cA.

If t is a ground term, its value in A is independent on the assignment e.

The value of t in A depends only on the assignment of variables in t .

For example, the value of the term x + 1 in the structure N = ⟨N,+, 1⟩ with
respect to the assignment e with e(x) = 2 is (x + 1)N [e] = 3.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - VI WS 2024/2025 20 / 26



Basic semantics of predicate logic Truth values

Values of atomic formulas

Let φ be an atomic formula of L = ⟨R,F⟩ in the form R(t1, . . . , tn),
A = ⟨A,RA,FA⟩ be an L-structure, and e be a variable assignment over A.

The value H A
at (φ)[e] of the formula φ in the structure A with respect to e is

H A
at (R(t1, . . . , tn))[e] =

{
1 if (t A

1 [e], . . . , t A
n [e]) ∈ RA,

0 otherwise.

where =A is IdA; that is, H A
at (t1 = t2)[e] = 1 if t A

1 [e] = t A
2 [e], and

H A
at (t1 = t2)[e] = 0 otherwise.

If φ is a sentence; that is, all its terms are ground, then its value in A
is independent on the assignment e.

The value of φ in A depends only on the assignment of variables in φ.

For example, the value of φ in form x + 1 ≤ 1 in N = ⟨N,+, 1,≤⟩ with
respect to the assignment e is H N

at (φ)[e] = 1 if and only if e(x) = 0.
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Basic semantics of predicate logic Truth values

Values of formulas
The value H A(φ)[e] of the formula φ in the structure A with respect to e is

H A(φ)[e] = H A
at (φ)[e] if φ is atomic,

H A(¬φ)[e] = −1(H A(φ)[e])

H A(φ ∧ ψ)[e] = ∧1(H A(φ)[e],H A(ψ)[e])

H A(φ ∨ ψ)[e] = ∨1(H A(φ)[e],H A(ψ)[e])

H A(φ→ ψ)[e] = →1 (H A(φ)[e],H A(ψ)[e])

H A(φ↔ ψ)[e] = ↔1 (H A(φ)[e],H A(ψ)[e])

H A((∀x)φ)[e] = min
a∈A

(H A(φ)[e(x/a)])

H A((∃x)φ)[e] = max
a∈A

(H A(φ)[e(x/a)])

where −1, ∧1, ∨1, →1, ↔1 are the Boolean functions given by the tables and
e(x/a) for a ∈ A denotes the assignment obtained from e by setting e(x) = a.

Observation H A(φ)[e] depends only on the assignment of free variables in φ.
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Basic semantics of predicate logic Satisfiability and validity

Satisfiability with respect to assignments
The structure A satisfies the formula φ with assignment e if H A(φ)[e] = 1.
Then we write A |= φ[e], and A ̸|= φ[e] otherwise. It holds that

A |= ¬φ[e] ⇔ A ̸|= φ[e]

A |= (φ ∧ ψ)[e] ⇔ A |= φ[e] and A |= ψ[e]

A |= (φ ∨ ψ)[e] ⇔ A |= φ[e] or A |= ψ[e]

A |= (φ→ ψ)[e] ⇔ A |= φ[e] implies A |= ψ[e]

A |= (φ↔ ψ)[e] ⇔ A |= φ[e] if and only if A |= ψ[e]

A |= (∀x)φ[e] ⇔ A |= φ[e(x/a)] for every a ∈ A

A |= (∃x)φ[e] ⇔ A |= φ[e(x/a)] for some a ∈ A

Observation Let term t be substitutable for x in φ and ψ be a variant of φ.
Then for every structure A and assignment e

1) A |= φ(x/t)[e] if and only if A |= φ[e(x/a)] where a = t A[e],

2) A |= φ[e] if and only if A |= ψ[e].

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - VI WS 2024/2025 23 / 26



Basic semantics of predicate logic Satisfiability and validity

Validity in a structure
Let φ be a formula of a language L and A be an L-structure.

φ is valid (true) in the structure A, denoted by A |= φ, if A |= φ[e] for
every e : Var → A. We say that A satisfies φ. Otherwise, we write A ̸|= φ.

φ is contradictory in A if A |= ¬φ; that is, A ̸|= φ[e] for every e : Var → A.

For every formulas φ, ψ, variable x, and structure A
(1) A |= φ ⇒ A ̸|= ¬φ
(2) A |= φ ∧ ψ ⇔ A |= φ and A |= ψ

(3) A |= φ ∨ ψ ⇐ A |= φ or A |= ψ

(4) A |= φ ⇔ A |= (∀x)φ

If φ is a sentence, it is valid or contradictory in A, and thus (1) holds also
in ⇐. If moreover ψ is a sentence, also (3) holds in ⇒.

By (4), A |= φ if and only if A |= ψ where ψ is a universal closure of φ, i.e.
a formula (∀x1) · · · (∀xn)φ where x1, . . . , xn are all free variables in φ.
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Basic semantics of predicate logic Theory - semantics

Validity in a theory

A theory of language L is any set T of formulas of L (so called axioms).

A model of a theory T is an L-structure A such that A |= φ for every
φ ∈ T . Then we write A |= T and we say that A satisfies T .

The class of models of a theory T is M(T ) = {A ∈ M(L) | A |= T}.

A formula φ is valid in T (true in T ), denoted by T |= φ, if A |= φ

for every model A of T . Otherwise, we write T ̸|= φ.

φ is contradictory in T if T |= ¬φ, i.e. φ is contradictory in all models of T .

φ is independent in T if it is neither valid nor contradictory in T .

If T = ∅, we have M(T ) = M(L) and we omit T , eventually we say
“in logic”. Then |= φ means that φ is (universally) valid (a tautology).

A consequence of T is the set θL(T ) of all sentences of L valid in T , i.e.

θL(T ) = {φ ∈ FmL | T |= φ and φ is a sentence}.
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Basic semantics of predicate logic Theory - semantics

Example of a theory

A theory of orderings T in language L = ⟨≤⟩ with equality has axioms

x ≤ x (reflexivity)
x ≤ y ∧ y ≤ x → x = y (antisymmetry)
x ≤ y ∧ y ≤ z → x ≤ z (transitivity)

Models of T are L-structures ⟨S,≤S⟩, so called ordered sets, that satisfy the
axioms of T , for example A = ⟨N,≤⟩ or B = ⟨P(X ),⊆⟩ for X = {0, 1, 2}.

A formula φ : x ≤ y ∨ y ≤ x is valid in A but not in B since B ̸|= φ[e]

for the assignment e(x) = {0}, e(y) = {1}, thus φ is independent in T .

A sentence ψ : (∃x)(∀y)(y ≤ x) is valid in B and contradictory in A, hence
it is independent in T as well. We write B |= ψ, A |= ¬ψ.

A formula χ : (x ≤ y ∧ y ≤ z ∧ z ≤ x) → (x = y ∧ y = z) is valid in T ,
denoted by T |= χ, the same holds for its universal closure.
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