Propositional and Predicate Logic - VI

Petr Gregor

KTIML MFF UK

WS 2024/2025

Petr Gregor (KTIML MFF UK)

Propositional and Predicate Logic - VI

WS 2024/2025

・ロト ・ 日 ・ ・ ヨ ・ ・

Hilbert's calculus

- basic connectives: \neg , \rightarrow (others can be defined from them)
- logical axioms (schemes of axioms):

$$\begin{array}{ll} (i) & \varphi \to (\psi \to \varphi) \\ (ii) & (\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi)) \\ (iii) & (\neg \varphi \to \neg \psi) \to (\psi \to \varphi) \end{array}$$

where φ , ψ , χ are any propositions (of a given language).

• a rule of inference:

 $\frac{\varphi, \ \varphi \to \psi}{\psi} \qquad \text{(modus ponens)}$

A *proof* (in *Hilbert-style*) of a formula φ from a theory T is a finite sequence

 $\varphi_0, \ldots, \varphi_n = \varphi$ of formulas such that for every $i \leq n$

- φ_i is a logical axiom or $\varphi_i \in T$ (an axiom of the theory), or
- φ_i can be inferred from the previous formulas applying a rule of inference.

Remark Choice of axioms and inference rules differs in various Hilbert-style proof systems.

Petr Gregor (KTIML MFF UK)

Example and soundness

A formula φ is *provable* from *T* if it has a proof from *T*, denoted by $T \vdash_H \varphi$. If $T = \emptyset$, we write $\vdash_H \varphi$. E.g. for $T = \{\neg \varphi\}$ we have $T \vdash_H \varphi \rightarrow \psi$ for every ψ .

- $\begin{array}{ll} 1) & \neg\varphi \\ 2) & \neg\varphi \rightarrow (\neg\psi \rightarrow \neg\varphi) \end{array}$
- $3) \qquad \neg\psi \to \neg\varphi$

4)
$$(\neg \psi \to \neg \varphi) \to (\varphi \to \psi)$$

5) $\varphi \to \psi$

an axiom of *T* a logical axiom (*i*) by modus ponens from 1), 2) a logical axiom (*iii*) by modus ponens from 3), 4)

Theorem For every theory *T* and formula φ , $T \vdash_H \varphi \Rightarrow T \models \varphi$. *Proof*

- If φ is an axiom (logical or from *T*), then $T \models \varphi$ (l. axioms are tautologies),
- if $T \models \varphi$ and $T \models \varphi \rightarrow \psi$, then $T \models \psi$, i.e. modus ponens is sound,
- thus every formula in a proof from T is valid in T.

Remark The completeness holds as well, i.e. $T \models \varphi \Rightarrow T \vdash_H \varphi$.

イロン イボン イヨン 一日

Predicate logic

Deals with statements about objects, their properties and relations.

"She is intelligent and her father knows the rector."

- x is a variable, representing an object,
- r is a constant symbol, representing a particular object,
- *f* is a function symbol, representing a function,
- *I*, *K* are relation (predicate) symbols, representing relations (the property of *"being intelligent"* and the relation *"to know"*).

"Everybody has a father."

- $(\forall x)$ is the universal quantifier (for every x),
- $(\exists y)$ is the existential quantifier (*there exists y*),
- = is a (binary) relation symbol, representing the identity relation.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

 $(\forall x)(\exists y)(y = f(x))$

 $I(x) \wedge K(f(x), r)$

Language

A first-order language consists of

- variables $x, y, z, \ldots, x_0, x_1, \ldots$ (countable many), the set of all variables is denoted by Var,
- function symbols f, g, h, \ldots , including constant symbols c, d, \ldots , which are nullary function symbols,
- relation (predicate) symbols P, Q, R, \ldots , eventually the symbol = (equality) as a special relation symbol,
- quantifiers $(\forall x)$, $(\exists x)$ for every variable $x \in Var$,
- logical connectives $\neg, \land, \lor, \rightarrow, \leftrightarrow$
- parentheses (,)

Every function and relation symbol *S* has an associated *arity* $ar(S) \in \mathbb{N}$.

Remark Compared to propositional logic we have no (explicit) propositional variables, but they can be introduced as nullary relation symbols.

Signatures

- *Symbols of logic* are variables, quantifiers, connectives and parentheses.
- *Non-logical symbols* are function and relation symbols except the equality symbol. The equality is (usually) considered separately.
- A signature is a pair (R, F) of disjoint sets of relation and function symbols with associated arities, whereas none of them is the equality symbol. A signature lists all non-logical symbols.
- A *language* is determined by a signature L = (R, F) and by specifying whether it is a language with equality or not. A language must contain at least one relation symbol (non-logical or the equality).

Remark The meaning of symbols in a language is not assigned, e.g. the symbol + does not have to represent the standard addition.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Language

Examples of languages

We describe a language by a list of all non-logical symbols with eventual clarification of arity and whether they are relation or function symbols.

The following examples of languages are all with equality.

- $L = \langle \rangle$ is the language of pure equality,
- $L = \langle c_i \rangle_{i \in \mathbb{N}}$ is the language of countable many constants,
- $L = \langle < \rangle$ is the language of orderings,
- $L = \langle E \rangle$ is the language of the graph theory,
- $L = \langle +, -, 0 \rangle$ is the language of the group theory,
- $L = \langle +, -, \cdot, 0, 1 \rangle$ is the language of the field theory,
- $L = \langle -, \wedge, \vee, 0, 1 \rangle$ is the language of Boolean algebras,
- $L = \langle S, +, \cdot, 0, \leq \rangle$ is the language of arithmetic,

where c_i , 0, 1 are constant symbols, S_i – are unary function symbols,

 $+, \cdot, \wedge, \vee$ are binary function symbols, E, \leq are binary relation symbols.

Terms

Terms

Are expressions representing values of (composed) functions. *Terms* of a language *L* are defined inductively by

- (*i*) every variable or constant symbol in L is a term,
- (*ii*) if f is a function symbol in L of arity n > 0 and t_1, \ldots, t_n are terms, then also the expression $f(t_1, \ldots, t_n)$ is a term,
- (*iii*) every term is formed by a finite number of steps (*i*), (*ii*).
 - A ground term is a term with no variables.
 - The set of all terms of a language L is denoted by Term_L.
 - A term that is a part of another term t is called a subterm of t.
 - The structure of terms can be represented by their formation trees.
 - For binary function symbols we often use infix notation, e.g. we write (x + y) instead of +(x, y).

・ロ・・ (日・・ 日・・

Examples of terms

- *a*) The formation tree of the term $(S(0) + x) \cdot y$ of the language of arithmetic.
- b) Propositional formulas only with connectives ¬, ∧, ∨, eventually with constants ⊤, ⊥ can be viewed as terms of the language of Boolean algebras.

Formula

Atomic formulas

Are the simplest formulas.

- An *atomic formula* of a language L is an expression $R(t_1, \ldots, t_n)$ where *R* is an *n*-ary relation symbol in *L* and t_1, \ldots, t_n are terms of *L*.
- The set of all atomic formulas of a language L is denoted by AFm_L.
- The structure of an atomic formula can be represented by a formation tree from the formation subtrees of its terms.
- For binary relation symbols we often use infix notation, e.g.
 - $t_1 = t_2$ instead of $= (t_1, t_2)$ or $t_1 \leq t_2$ instead of $\leq (t_1, t_2)$.
- Examples of atomic formulas

 $K(f(x), r), \quad x \cdot y < (S(0) + x) \cdot y, \quad \neg(x \wedge y) \lor \bot = \bot.$

Formula

Formula

Formulas of a language L are defined inductively by

- (*i*) every atomic formula is a formula,
- (*ii*) if φ , ψ are formulas, then also the following expressions are formulas $(\neg \varphi), (\varphi \land \psi), (\varphi \lor \psi), (\varphi \rightarrow \psi), (\varphi \leftrightarrow \psi),$
- (*iii*) if φ is a formula and x is a variable, then also the expressions $((\forall x)\varphi)$ and $((\exists x)\varphi)$ are formulas.
- (iv) every formula is formed by a finite number of steps (i), (ii), (iii).
 - The set of all formulas of a language L is denoted by Fm_L.
 - A formula that is a part of another formula φ is called a *subformula* of φ . 0
 - The structure of formulas can be represented by their formation trees.

・ロト ・回ト ・ヨト ・ヨト - ヨ

Conventions

- After introducing priorities for binary function symbols e.g. + , · we are in infix notation allowed to omit parentheses that are around a subterm formed by a symbol of higher priority, e.g. $x \cdot y + z$ instead of $(x \cdot y) + z$.
- After introducing priorities for connectives and quantifiers we are allowed to omit parentheses that are around subformulas formed by connectives of higher priority.

(1) \neg , $(\forall x)$, $(\exists x)$ (2) \land , \lor (3) \rightarrow , \leftrightarrow

- They can be always omitted around subformulas formed by \neg , $(\forall x)$, $(\exists x)$.
- We may also omit parentheses in $(\forall x)$ and $(\exists x)$ for every $x \in Var$.
- The outer parentheses may be omitted as well. $(((\neg((\forall x)R(x))) \land ((\exists y)P(y))) \rightarrow (\neg(((\forall x)R(x)) \lor (\neg((\exists y)P(y))))))$ $\neg(\forall x)R(x) \land (\exists y)P(y) \rightarrow \neg((\forall x)R(x) \lor \neg(\exists y)P(y))$

An example of a formula

The formation tree of the formula $(\forall x)(x \cdot y \leq (S(0) + x) \cdot y)$.

4 E. M.

< 17 ▶

→

Occurrences of variables

Let φ be a formula and x be a variable.

- An *occurrence* of *x* in φ is a leaf labeled by *x* in the formation tree of φ .
- An occurrence of x in φ is *bound* if it is in some subformula ψ that starts with (∀x) or (∃x). An occurrence of x in φ is *free* if it is not bound.
- A variable x is *free* in φ if it has at least one free occurrence in φ.
 It is *bound* in φ if it has at least one bound occurrence in φ.
- A variable x can be both free and bound in φ . For example in

$(\forall x)(\exists y)(x \leq y) \lor x \leq z.$

 We write φ(x₁,..., x_n) to denote that x₁,..., x_n are all free variables in the formula φ. (φ states something about these variables.)

Remark We will see that the truth value of a formula (in a given interpretation of symbols) depends only on the assignment of free variables.

э.

・ロ・・ (日・・ 日・・

Open and closed formulas

- A formula is *open* if it is without quantifiers. For the set OFm_L of all open formulas in a language *L* it holds that $AFm_L \subsetneq OFm_L \subsetneq Fm_L$.
- A formula is *closed* (a *sentence*) if it has no free variable; that is, all occurrences of variables are bound.
- A formula can be both open and closed. In this case, all its terms are ground terms.

 $\begin{array}{ll} x+y \leq 0 & \text{open}, \varphi(x,y) \\ (\forall x)(\forall y)(x+y \leq 0) & \text{a sentence}, \\ (\forall x)(x+y \leq 0) & \text{neither open nor a sentence}, \varphi(y) \\ 1+0 \leq 0 & \text{open sentence} \end{array}$

Remark We will see that in a fixed interpretation of symbols a sentence has a fixed truth value; that is, it does not depend on the assignment of variables.

イロト イポト イヨト イヨト

Instances

After substituting a term t for a free variable x in a formula φ , we would expect that the new formula (newly) says about t "the same" as φ did about x.

 $\begin{aligned} \varphi(x) & (\exists y)(x+y=1) & \text{``there is an element } 1-x" \\ \text{for } t = 1 \text{ we can } \varphi(x/t) & (\exists y)(1+y=1) & \text{``there is an element } 1-1" \\ \text{for } t = y \text{ we cannot} & (\exists y)(y+y=1) & \text{``1 is divisible by } 2" \end{aligned}$

- A term *t* is *substitutable* for a variable *x* in a formula φ if substituting *t* for all free occurrences of *x* in φ does not introduce a new bound occurrence of a variable from *t*.
- Then we denote the obtained formula φ(x/t) and we call it an *instance* of the formula φ after a *substitution* of a term t for a variable x.
- *t* is not substitutable for *x* in φ if and only if *x* has a free occurrence in some subformula that starts with (∀y) or (∃y) for some variable y in t.
- Ground terms are always substitutable.

Variants

Quantified variables can be (under certain conditions) renamed so that we obtain an equivalent formula.

Let $(Qx)\psi$ be a subformula of φ where Q means \forall or \exists and y is a variable such that the following conditions hold.

- 1) y is substitutable for x in ψ , and
- 2) *y* does not have a free occurrence in ψ .

Then by replacing the subformula $(Qx)\psi$ with $(Qy)\psi(x/y)$ we obtain a *variant* of φ *in subformula* $(Qx)\psi$. After variation of one or more subformulas in φ we obtain a *variant* of φ . *For example,*

 $\begin{aligned} (\exists x)(\forall y)(x \leq y) \\ (\exists u)(\forall v)(u \leq v) \\ (\exists y)(\forall y)(y \leq y) \\ (\exists x)(\forall x)(x \leq x) \end{aligned}$

is a formula φ , is a variant of φ , is not a variant of φ , 1) does not hold, is not a variant of φ , 2) does not hold.

イロト イヨト イヨト イヨト

Structures

- $S = \langle S, \leq \rangle$ is an ordered set where \leq is reflexive, antisymmetric, transitive binary relation on S,
- $G = \langle V, E \rangle$ is an undirected graph without loops where V is the set of *vertices* and *E* is irreflexive, symmetric binary relation on *V* (*adjacency*),
- $\underline{\mathbb{Z}}_{p} = \langle \mathbb{Z}_{p}, +, -, 0 \rangle$ is the additive group of integers modulo p,
- $\mathbb{Q} = \langle \mathbb{Q}, +, -, \cdot, 0, 1 \rangle$ is the field of rational numbers,
- $\mathcal{P}(X) = \langle \mathcal{P}(X), -, \cap, \cup, \emptyset, X \rangle$ is the set algebra over X,
- $\underline{\mathbb{N}} = \langle \mathbb{N}, S, +, \cdot, 0, \leq \rangle$ is the standard model of arithmetic,
- finite automata and other models of computation.
- relational databases,

Structures

A structure for a language

- Let $L = \langle \mathcal{R}, \mathcal{F} \rangle$ be a signature of a language and A be a nonempty set.
 - A realization (interpretation) of a relation symbol $R \in \mathcal{R}$ on A is any relation $R^A \subset A^{\operatorname{ar}(R)}$. A realization of = on A is the relation Id_A (identity).
 - A realization (interpretation) of a function symbol $f \in \mathcal{F}$ on A is any function $f^A: A^{\operatorname{ar}(f)} \to A$. Thus a realization of a constant symbol is some element of A.
- A *structure* for the language L (*L-structure*) is a triple $\mathcal{A} = \langle A, \mathcal{R}^A, \mathcal{F}^A \rangle$, where
 - A is nonempty set, called the *domain* of the structure \mathcal{A} ,
 - $\mathcal{R}^A = \langle R^A | R \in \mathcal{R} \rangle$ is a collection of realizations of relation symbols,
 - $\mathcal{F}^A = \langle f^A \mid f \in \mathcal{F} \rangle$ is a collection of realizations of function symbols.

A structure for the language L is also called a *model of the language L*. The class of all models of L is denoted by M(L). Examples for $L = \langle \leq \rangle$ are $\langle \mathbb{N}, < \rangle, \langle \mathbb{Q}, > \rangle, \langle X, E \rangle, \langle \mathcal{P}(X), \subset \rangle.$

イロン イボン イヨン 一日

Value of terms

Let *t* be a term of $L = \langle \mathcal{R}, \mathcal{F} \rangle$ and $\mathcal{A} = \langle A, \mathcal{R}^A, \mathcal{F}^A \rangle$ be an *L*-structure.

- A *variable assignment* over the domain *A* is a function $e: Var \rightarrow A$.
- The *value* $t^{A}[e]$ of the term *t* in the structure A with respect to the assignment *e* is defined by

 $x^{A}[e] = e(x)$ for every $x \in \text{Var}$,

 $(f(t_1,\ldots,t_n))^A[e] = f^A(t_1^A[e],\ldots,t_n^A[e]) \quad \text{for every } f \in \mathcal{F}.$

- In particular, for a constant symbol c we have $c^{A}[e] = c^{A}$.
- If *t* is a ground term, its value in *A* is independent on the assignment *e*.
- The value of t in A depends only on the assignment of variables in t.

For example, the value of the term x + 1 in the structure $\mathcal{N} = \langle \mathbb{N}, +, 1 \rangle$ with respect to the assignment *e* with e(x) = 2 is $(x + 1)^N[e] = 3$.

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Truth values

Values of atomic formulas

Let φ be an atomic formula of $L = \langle \mathcal{R}, \mathcal{F} \rangle$ in the form $R(t_1, \ldots, t_n)$,

 $\mathcal{A} = \langle A, \mathcal{R}^A, \mathcal{F}^A \rangle$ be an *L*-structure, and *e* be a variable assignment over *A*.

• The value $H^A_{at}(\varphi)[e]$ of the formula φ in the structure \mathcal{A} with respect to e is

$$H_{at}^{A}(R(t_{1},\ldots,t_{n}))[e] = \begin{cases} 1 & \text{if } (t_{1}^{A}[e],\ldots,t_{n}^{A}[e]) \in R^{A}, \\ 0 & \text{otherwise.} \end{cases}$$

where $=^{A}$ is Id_A; that is, $H_{at}^{A}(t_{1} = t_{2})[e] = 1$ if $t_{1}^{A}[e] = t_{2}^{A}[e]$, and $H_{at}^{A}(t_{1}=t_{2})[e]=0$ otherwise.

- If φ is a sentence; that is, all its terms are ground, then its value in \mathcal{A} is independent on the assignment e.
- The value of φ in \mathcal{A} depends only on the assignment of variables in φ .

For example, the value of φ in form x + 1 < 1 in $\mathcal{N} = \langle \mathbb{N}, +, 1, < \rangle$ with respect to the assignment *e* is $H_{at}^{N}(\varphi)[e] = 1$ if and only if e(x) = 0.

Values of formulas

The value $H^{A}(\varphi)[e]$ of the formula φ in the structure \mathcal{A} with respect to e is

$$\begin{split} H^{A}(\varphi)[e] &= H^{A}_{at}(\varphi)[e] \quad \text{if } \varphi \text{ is atomic,} \\ H^{A}(\neg \varphi)[e] &= -_{1}(H^{A}(\varphi)[e]) \\ H^{A}(\varphi \land \psi)[e] &= \land_{1}(H^{A}(\varphi)[e], H^{A}(\psi)[e]) \\ H^{A}(\varphi \lor \psi)[e] &= \lor_{1}(H^{A}(\varphi)[e], H^{A}(\psi)[e]) \\ H^{A}(\varphi \rightarrow \psi)[e] &= \rightarrow_{1}(H^{A}(\varphi)[e], H^{A}(\psi)[e]) \\ H^{A}(\varphi \leftrightarrow \psi)[e] &= \leftrightarrow_{1}(H^{A}(\varphi)[e], H^{A}(\psi)[e]) \\ H^{A}((\forall x)\varphi)[e] &= \min_{a \in A}(H^{A}(\varphi)[e(x/a)]) \\ H^{A}((\exists x)\varphi)[e] &= \max_{a \in A}(H^{A}(\varphi)[e(x/a)]) \end{split}$$

where $-_1$, \wedge_1 , \vee_1 , \rightarrow_1 , \leftrightarrow_1 are the Boolean functions given by the tables and e(x/a) for $a \in A$ denotes the assignment obtained from e by setting e(x) = a. *Observation* $H^A(\varphi)[e]$ depends only on the assignment of free variables in φ .

Satisfiability with respect to assignments

The structure \mathcal{A} satisfies the formula φ with assignment e if $H^A(\varphi)[e] = 1$. Then we write $\mathcal{A} \models \varphi[e]$, and $\mathcal{A} \not\models \varphi[e]$ otherwise. It holds that

Observation Let term t be substitutable for x in φ and ψ be a variant of φ . Then for every structure A and assignment e

1)
$$\mathcal{A} \models \varphi(x/t)[e]$$
 if and only if $\mathcal{A} \models \varphi[e(x/a)]$ where $a = t^{A}[e]$,

2)
$$\mathcal{A} \models \varphi[e]$$
 if and only if $\mathcal{A} \models \psi[e]$.

Validity in a structure

Let φ be a formula of a language *L* and *A* be an *L*-structure.

- φ is *valid* (*true*) in the structure A, denoted by A ⊨ φ, if A ⊨ φ[e] for every e: Var → A. We say that A satisfies φ. Otherwise, we write A ⊭ φ.
- φ is *contradictory in* \mathcal{A} if $\mathcal{A} \models \neg \varphi$; that is, $\mathcal{A} \not\models \varphi[e]$ for every $e \colon \text{Var} \to A$.
- For every formulas φ , ψ , variable x, and structure \mathcal{A}

(1)	$\mathcal{A}\models\varphi$	\Rightarrow	$\mathcal{A} \not\models \neg \varphi$
(2)	$\mathcal{A}\models\varphi\wedge\psi$	\Leftrightarrow	$\mathcal{A}\models \varphi \text{ and } \mathcal{A}\models \psi$
(3)	$\mathcal{A}\models\varphi\lor\psi$	\Leftarrow	$\mathcal{A}\models arphi$ or $\mathcal{A}\models \psi$
(4)	$\mathcal{A}\models\varphi$	\Leftrightarrow	$\mathcal{A} \models (\forall x) \varphi$

- If φ is a sentence, it is valid or contradictory in A, and thus (1) holds also in ⇐. If moreover ψ is a sentence, also (3) holds in ⇒.
- By (4), $\mathcal{A} \models \varphi$ if and only if $\mathcal{A} \models \psi$ where ψ is a *universal closure* of φ , i.e. a formula $(\forall x_1) \cdots (\forall x_n) \varphi$ where x_1, \ldots, x_n are all free variables in φ .

24/26

Validity in a theory

- A *theory* of language *L* is any set *T* of formulas of *L* (so called *axioms*).
- A model of a theory *T* is an *L*-structure \mathcal{A} such that $\mathcal{A} \models \varphi$ for every $\varphi \in T$. Then we write $\mathcal{A} \models T$ and we say that \mathcal{A} satisfies *T*.
- The *class of models* of a theory T is $M(T) = \{A \in M(L) \mid A \models T\}.$
- A formula φ is *valid in T* (*true in T*), denoted by T ⊨ φ, if A ⊨ φ for every model A of T. Otherwise, we write T ⊭ φ.
- φ is *contradictory in T* if $T \models \neg \varphi$, i.e. φ is contradictory in all models of *T*.
- φ is *independent in T* if it is neither valid nor contradictory in T.
- If $T = \emptyset$, we have M(T) = M(L) and we omit *T*, eventually we say *"in logic"*. Then $\models \varphi$ means that φ is (*universally*) *valid* (a *tautology*).
- A *consequence* of *T* is the set $\theta^L(T)$ of all sentences of *L* valid in *T*, i.e. $\theta^L(T) = \{ \varphi \in \operatorname{Fm}_L \mid T \models \varphi \text{ and } \varphi \text{ is a sentence} \}.$

э.

・ロン ・回 と ・ ヨ と ・

Example of a theory

A *theory of orderings* T in language $L = \langle \leq \rangle$ with equality has axioms

Models of *T* are *L*-structures $\langle S, \leq_S \rangle$, so called ordered sets, that satisfy the axioms of *T*, for example $\mathcal{A} = \langle \mathbb{N}, \leq \rangle$ or $\mathcal{B} = \langle \mathcal{P}(X), \subseteq \rangle$ for $X = \{0, 1, 2\}$.

- A formula φ: x ≤ y ∨ y ≤ x is valid in A but not in B since B ⊭ φ[e] for the assignment e(x) = {0}, e(y) = {1}, thus φ is independent in T.
- A sentence ψ: (∃x)(∀y)(y ≤ x) is valid in B and contradictory in A, hence it is independent in T as well. We write B ⊨ ψ, A ⊨ ¬ψ.
- A formula χ: (x ≤ y ∧ y ≤ z ∧ z ≤ x) → (x = y ∧ y = z) is valid in T, denoted by T ⊨ χ, the same holds for its universal closure.