Propositional and Predicate Logic - VII

Petr Gregor

KTIML MFF UK

WS 2024/2025

Value of terms

Let t be a term of $L = \langle \mathcal{R}, \mathcal{F} \rangle$ and $\mathcal{A} = \langle A, \mathcal{R}^A, \mathcal{F}^A \rangle$ be an L-structure.

- A *variable assignment* over the domain A is a function $e: Var \rightarrow A$.
- The value $t^A[e]$ of the term t in the structure A with respect to the assignment e is defined by

$$\begin{split} x^A[e] &= e(x) \quad \text{for every } x \in \text{Var}, \\ (f(t_1, \dots, t_n))^A[e] &= f^A(t_1^A[e], \dots, t_n^A[e]) \quad \text{for every } f \in \mathcal{F}. \end{split}$$

- In particular, for a constant symbol c we have $c^A[e] = c^A$.
- If t is a ground term, its value in A is independent on the assignment e.
- The value of t in A depends only on the assignment of variables in t.

For example, the value of the term x+1 in the structure $\mathcal{N}=\langle \mathbb{N},+,1\rangle$ with respect to the assignment e with e(x) = 2 is $(x+1)^N[e] = 3$.

Values of atomic formulas

Let φ be an atomic formula of $L = \langle \mathcal{R}, \mathcal{F} \rangle$ in the form $R(t_1, \dots, t_n)$, $A = \langle A, \mathcal{R}^A, \mathcal{F}^A \rangle$ be an *L*-structure, and *e* be a variable assignment over *A*.

• The value $H_{at}^A(\varphi)[e]$ of the formula φ in the structure \mathcal{A} with respect to e is

$$H_{at}^A(R(t_1,\ldots,t_n))[e] = \left\{ egin{array}{ll} 1 & & ext{if } (t_1^A[e],\ldots,t_n^A[e]) \in R^A, \ 0 & ext{otherwise}. \end{array}
ight.$$

where $=^A$ is Id_A ; that is, $H_{at}^A(t_1 = t_2)[e] = 1$ if $t_1^A[e] = t_2^A[e]$, and $H_{at}^A(t_1=t_2)[e]=0$ otherwise.

- If φ is a sentence; that is, all its terms are ground, then its value in \mathcal{A} is independent on the assignment e.
- The value of φ in \mathcal{A} depends only on the assignment of variables in φ .

For example, the value of φ in form x+1 < 1 in $\mathcal{N} = \langle \mathbb{N}, +, 1, < \rangle$ with respect to the assignment e is $H_{at}^N(\varphi)[e] = 1$ if and only if e(x) = 0.

Values of formulas

The *value* $H^A(\varphi)[e]$ of the formula φ in the structure A with respect to e is

$$\begin{split} H^A(\varphi)[e] &= H^A_{at}(\varphi)[e] \quad \text{if } \varphi \text{ is atomic,} \\ H^A(\neg\varphi)[e] &= -_1(H^A(\varphi)[e]) \\ H^A(\varphi \wedge \psi)[e] &= \wedge_1(H^A(\varphi)[e], H^A(\psi)[e]) \\ H^A(\varphi \vee \psi)[e] &= \vee_1(H^A(\varphi)[e], H^A(\psi)[e]) \\ H^A(\varphi \to \psi)[e] &= \to_1(H^A(\varphi)[e], H^A(\psi)[e]) \\ H^A(\varphi \leftrightarrow \psi)[e] &= \leftrightarrow_1(H^A(\varphi)[e], H^A(\psi)[e]) \\ H^A((\forall x)\varphi)[e] &= \min_{a \in A}(H^A(\varphi)[e(x/a)]) \\ H^A((\exists x)\varphi)[e] &= \max_{a \in A}(H^A(\varphi)[e(x/a)]) \end{split}$$

where -1, $\wedge 1$, $\vee 1$, $\rightarrow 1$, $\leftrightarrow 1$ are the Boolean functions given by the tables and e(x/a) for $a \in A$ denotes the assignment obtained from e by setting e(x) = a.

Observation $H^A(\varphi)[e]$ depends only on the assignment of free variables in φ .

Satisfiability with respect to assignments

The structure \mathcal{A} satisfies the formula φ with assignment e if $H^A(\varphi)[e] = 1$. Then we write $\mathcal{A} \models \varphi[e]$, and $\mathcal{A} \not\models \varphi[e]$ otherwise. It holds that

$$\begin{array}{llll} \mathcal{A} \models \neg \varphi[e] & \Leftrightarrow & \mathcal{A} \not\models \varphi[e] \\ \mathcal{A} \models (\varphi \land \psi)[e] & \Leftrightarrow & \mathcal{A} \models \varphi[e] \text{ and } \mathcal{A} \models \psi[e] \\ \mathcal{A} \models (\varphi \lor \psi)[e] & \Leftrightarrow & \mathcal{A} \models \varphi[e] \text{ or } \mathcal{A} \models \psi[e] \\ \mathcal{A} \models (\varphi \to \psi)[e] & \Leftrightarrow & \mathcal{A} \models \varphi[e] \text{ implies } \mathcal{A} \models \psi[e] \\ \mathcal{A} \models (\varphi \leftrightarrow \psi)[e] & \Leftrightarrow & \mathcal{A} \models \varphi[e] \text{ if and only if } \mathcal{A} \models \psi[e] \\ \mathcal{A} \models (\forall x) \varphi[e] & \Leftrightarrow & \mathcal{A} \models \varphi[e(x/a)] \text{ for every } a \in A \\ \mathcal{A} \models (\exists x) \varphi[e] & \Leftrightarrow & \mathcal{A} \models \varphi[e(x/a)] \text{ for some } a \in A \end{array}$$

Observation Let term t be substitutable for x in φ and ψ be a variant of φ . Then for every structure A and assignment e

- 1) $A \models \varphi(x/t)[e]$ if and only if $A \models \varphi[e(x/a)]$ where $a = t^A[e]$,
- 2) $A \models \varphi[e]$ if and only if $A \models \psi[e]$.

Validity in a structure

Let φ be a formula of a language L and \mathcal{A} be an L-structure.

- φ is *valid* (*true*) *in the structure* \mathcal{A} , denoted by $\mathcal{A} \models \varphi$, if $\mathcal{A} \models \varphi[e]$ for every $e \colon \text{Var} \to A$. We say that \mathcal{A} *satisfies* φ . Otherwise, we write $\mathcal{A} \not\models \varphi$.
- φ is *contradictory in* A if $A \models \neg \varphi$; that is, $A \not\models \varphi[e]$ for every $e \colon \text{Var} \to A$.
- For every formulas φ , ψ , variable x, and structure \mathcal{A}
 - $(1) \qquad \mathcal{A} \models \varphi \qquad \Rightarrow \quad \mathcal{A} \not\models \neg \varphi$
 - $(2) \qquad \mathcal{A} \models \varphi \wedge \psi \quad \Leftrightarrow \quad \mathcal{A} \models \varphi \ \ \text{and} \ \ \mathcal{A} \models \psi$
 - $(3) \qquad \mathcal{A} \models \varphi \lor \psi \quad \Leftarrow \quad \mathcal{A} \models \varphi \text{ or } \mathcal{A} \models \psi$
 - (4) $\mathcal{A} \models \varphi \qquad \Leftrightarrow \mathcal{A} \models (\forall x)\varphi$
- If φ is a sentence, it is valid or contradictory in \mathcal{A} , and thus (1) holds also in \Leftarrow . If moreover ψ is a sentence, also (3) holds in \Rightarrow .
- By (4), $\mathcal{A} \models \varphi$ if and only if $\mathcal{A} \models \psi$ where ψ is a *universal closure* of φ , i.e. a formula $(\forall x_1) \cdots (\forall x_n) \varphi$ where x_1, \ldots, x_n are all free variables in φ .

WS 2024/2025

Validity in a theory

- A *theory* of a language L is any set T of formulas of L (so called *axioms*).
- A model of a theory T is an L-structure A such that $A \models \varphi$ for every $\varphi \in T$. Then we write $A \models T$ and we say that A satisfies T.
- The *class of models* of a theory T is $M(T) = \{A \in M(L) \mid A \models T\}$.
- A formula φ is *valid in T* (*true in T*), denoted by $T \models \varphi$, if $A \models \varphi$ for every model A of T. Otherwise, we write $T \not\models \varphi$.
- φ is *contradictory in T* if $T \models \neg \varphi$, i.e. φ is contradictory in all models of T.
- φ is *independent in T* if it is neither valid nor contradictory in T.
- If $T = \emptyset$, we have M(T) = M(L) and we omit T, eventually we say "in logic". Then $\models \varphi$ means that φ is (logically) valid (a tautology).
- A *consequence* of T is the set $\theta^L(T)$ of all sentences of L valid in T, i.e. $\theta^L(T) = \{ \varphi \in \operatorname{Fm}_L \mid T \models \varphi \text{ and } \varphi \text{ is a sentence} \}.$

Example of a theory

The *theory of orderings* T of the language $L = \langle \leq \rangle$ with equality has axioms

$$x \le x$$
 (reflexivity)
 $x \le y \land y \le x \rightarrow x = y$ (antisymmetry)
 $x \le y \land y \le z \rightarrow x \le z$ (transitivity)

Models of T are L-structures $\langle S, \leq_S \rangle$, so called <u>ordered sets</u>, that satisfy the axioms of T, for example $A = \langle \mathbb{N}, \leq \rangle$ or $\mathcal{B} = \langle \mathcal{P}(X), \subseteq \rangle$ for $X = \{0, 1, 2\}$.

- The formula $\varphi \colon x \leq y \lor y \leq x$ is valid in $\mathcal A$ but not in $\mathcal B$ since $\mathcal B \not\models \varphi[e]$ for the assignment $e(x) = \{0\}, e(y) = \{1\}$, thus φ is independent in T.
- The sentence $\psi \colon (\exists x)(\forall y)(y \le x)$ is valid in $\mathcal B$ and contradictory in $\mathcal A$, hence it is independent in T as well. We write $\mathcal B \models \psi$, $\mathcal A \models \neg \psi$.
- The formula $\chi \colon (x \leq y \land y \leq z \land z \leq x) \to (x = y \land y = z)$ is valid in T, denoted by $T \models \chi$, the same holds for its universal closure.

Unsatisfiability and validity

The problem of validity in a theory can be transformed to the problem of satisfiability of (another) theory.

Proposition For every theory T and sentence φ (of the same language)

$$T, \neg \varphi$$
 is unsatisfiable \Leftrightarrow $T \models \varphi$.

Proof By definitions, it is equivalent that

- (1) $T, \neg \varphi$ is unsatisfiable (i.e. it has no model),
- (2) $\neg \varphi$ is not valid in any model of T,
- (3) φ is valid in every model of T,
- (4) $T \models \varphi$. \square

Remark The assumption that φ is a sentence is necessary for $(2) \Rightarrow (3)$.

For example, the theory $\{P(c), \neg P(x)\}$ is unsatisfiable, but $P(c) \not\models P(x)$, where P is a unary relation symbol and c is a constant symbol.

Basic algebraic theories

ullet theory of groups in the language $L=\langle +,-,0
angle$ with equality has axioms

$$x+(y+z)=(x+y)+z$$
 (associativity of +)
 $0+x=x=x+0$ (0 is neutral to +)
 $x+(-x)=0=(-x)+x$ (-x is inverse of x)

- theory of *Abelian groups* has moreover ax. x + y = y + x (commutativity)
- theory of *rings* in $L = \langle +, -, \cdot, 0, 1 \rangle$ with equality has moreover axioms

```
1 \cdot x = x = x \cdot 1 (1 is neutral to ·) x \cdot (y \cdot z) = (x \cdot y) \cdot z (associativity of ·) x \cdot (y + z) = x \cdot y + x \cdot z, (x + y) \cdot z = x \cdot z + y \cdot z (distributivity)
```

- theory of *commutative rings* has moreover ax. $x \cdot y = y \cdot x$ (commutativity)
- theory of fields in the same language has additional axioms

$$x \neq 0 \rightarrow (\exists y)(x \cdot y = 1)$$
 (existence of inverses to ·) $0 \neq 1$ (nontriviality)

Properties of theories

A theory T of a language L is (semantically)

- *inconsistent* if $T \models \bot$, otherwise T is *consistent* (*satisfiable*),
- complete if it is consistent and every sentence of L is valid in T or contradictory in T,
- an *extension* of a theory T' of language L' if $L' \subseteq L$ and $\theta^{L'}(T') \subseteq \theta^L(T)$, we say that an extension T of a theory T' is *simple* if L = L'; and *conservative* if $\theta^{L'}(T') = \theta^L(T) \cap \operatorname{Fm}_{L'}$,
- equivalent with a theory T' if T is an extension of T' and vice-versa,

Structures A, B for a language L are *elementarily equivalent*, denoted by $A \equiv B$, if they satisfy the same sentences of L.

Observation Let T and T' be theories of a language L. T is (semantically)

- (1) consistent if and only if it has a model,
- (2) complete iff it has a single model, up to elementarily equivalence,
- (3) an extension of T' if and only if $M(T) \subseteq M(T')$,
- (4) equivalent with T' if and only if M(T) = M(T').

Substructures

Let $\mathcal{A} = \langle A, \mathcal{R}^A, \mathcal{F}^A \rangle$ and $\mathcal{B} = \langle B, \mathcal{R}^B, \mathcal{F}^B \rangle$ be structures for $L = \langle \mathcal{R}, \mathcal{F} \rangle$.

We say that \mathcal{B} is an (induced) *substructure* of \mathcal{A} , denoted by $\mathcal{B} \subseteq \mathcal{A}$, if

- (i) $B \subseteq A$,
- (ii) $R^B = R^A \cap B^{\operatorname{ar}(R)}$ for every $R \in \mathcal{R}$,
- $(\emph{iii}) \ \ f^B = f^A \cap (B^{\operatorname{ar}(f)} \times B); \text{ that is, } f^B = f^A \upharpoonright B^{\operatorname{ar}(f)}, \text{ for every } f \in \mathcal{F}.$

A set $C \subseteq A$ is a domain of some substructure of \mathcal{A} if and only if C is closed under all functions of \mathcal{A} . Then the respective substructure, denoted by $\mathcal{A} \upharpoonright C$, is said to be the *restriction* of the structure \mathcal{A} to C.

• A set $C \subseteq A$ is *closed* under a function $f: A^n \to A$ if $f(x_1, \dots, x_n) \in C$ for every $x_1, \dots, x_n \in C$.

Example: $\underline{\mathbb{Z}} = \langle \mathbb{Z}, +, \cdot, 0 \rangle$ is a substructure of $\underline{\mathbb{Q}} = \langle \mathbb{Q}, +, \cdot, 0 \rangle$ and $\underline{\mathbb{Z}} = \underline{\mathbb{Q}} \upharpoonright \mathbb{Z}$. Furthermore, $\underline{\mathbb{N}} = \langle \mathbb{N}, +, \cdot, 0 \rangle$ is their substructure and $\underline{\mathbb{N}} = \mathbb{Q} \upharpoonright \mathbb{N} = \underline{\mathbb{Z}} \upharpoonright \mathbb{N}$.

←□ → ←□ → ← = → ← = → へ ○

Validity in a substructure

Let $\mathcal B$ be a substructure of a structure $\mathcal A$ for a (fixed) language L.

Proposition For every open formula φ and assignment $e \colon \operatorname{Var} \to B$,

$$\mathcal{A} \models \varphi[e]$$
 if and only if $\mathcal{B} \models \varphi[e]$.

Proof For atomic φ it follows from the definition of the truth value with respect to an assignment. Otherwise by induction on the structure of the formula.

Corollary For every open formula φ and structure A,

$$\mathcal{A} \models \varphi$$
 if and only if $\mathcal{B} \models \varphi$ for every substructure $\mathcal{B} \subseteq \mathcal{A}$.

A theory T is open if all axioms of T are open.

Corollary Every substructure of a model of an open theory T is a model of T.

For example, every substructure of a graph, i.e. a model of theory of graphs, is a graph, called a subgraph. Similarly subgroups, Boolean subalgebras, etc.

WS 2024/2025

Generated substructure, expansion, reduct

Let $\mathcal{A}=\langle A,\mathcal{R}^A,\mathcal{F}^A\rangle$ be a structure and $X\subseteq A$. Let B be the smallest subset of A containing X that is closed under all functions of the structure \mathcal{A} (including constants). Then the structure $\mathcal{A}\upharpoonright B$ is denoted by $\mathcal{A}\langle X\rangle$ and is called the substructure of \mathcal{A} *generated* by the set X.

Example: for $\underline{\mathbb{Q}} = \langle \mathbb{Q}, +, \cdot, 0 \rangle$, $\underline{\mathbb{Z}} = \langle \mathbb{Z}, +, \cdot, 0 \rangle$, $\underline{\mathbb{N}} = \langle \mathbb{N}, +, \cdot, 0 \rangle$ it is $\underline{\mathbb{Q}} \langle \{1\} \rangle = \underline{\mathbb{N}}$, $\underline{\mathbb{Q}} \langle \{-1\} \rangle = \underline{\mathbb{Z}}$, and $\underline{\mathbb{Q}} \langle \{2\} \rangle$ is the substructure on all even natural numbers.

Let \mathcal{A} be a structure for a language L and $L' \subseteq L$. By omitting realizations of symbols that are not in L' we obtain from \mathcal{A} a structure \mathcal{A}' called the *reduct* of \mathcal{A} to the language L'. Conversely, \mathcal{A} is an *expansion* of \mathcal{A}' into L.

For example, $\langle \mathbb{N}, + \rangle$ is a reduct of $\langle \mathbb{N}, +, \cdot, 0 \rangle$. On the other hand, the structure $\langle \mathbb{N}, +, c_i \rangle_{i \in \mathbb{N}}$ with $c_i = i$ for every $i \in \mathbb{N}$ is the expansion of $\langle \mathbb{N}, + \rangle$ by names of elements from \mathbb{N} .

Theorem on constants

Theorem Let φ be a formula in a language L with free variables x_1, \ldots, x_n and let T be a theory in L. Let L' be the extension of L with new constant symbols c_1, \ldots, c_n and let T' denote the theory T in L'. Then

$$T \models \varphi$$
 if and only if $T' \models \varphi(x_1/c_1, \dots, x_n/c_n)$.

Proof (\Rightarrow) If \mathcal{A}' is a model of T', let \mathcal{A} be the reduct of \mathcal{A}' to L. Since $\mathcal{A} \models \varphi[e]$ for every assignment e, we have in particular

$$\mathcal{A} \models \varphi[e(x_1/c_1^{A'},\ldots,x_n/c_n^{A'})], \quad \text{i.e. } \mathcal{A}' \models \varphi(x_1/c_1,\ldots,x_n/c_n).$$

 (\Leftarrow) If \mathcal{A} is a model of T and e an assignment, let \mathcal{A}' be the expansion of A into L' by setting $c_i^{A'} = e(x_i)$ for every i. Since $\mathcal{A}' \models \varphi(x_1/c_1, \dots, x_n/c_n)[e']$ for every assignment e', we have

$$\mathcal{A}' \models \varphi[e(x_1/c_1^{A'},\ldots,x_n/c_n^{A'})], \text{ i.e. } \mathcal{A} \models \varphi[e]. \square$$

Extensions of theories

Proposition Let T be a theory of L and T' be a theory of L' where $L \subseteq L'$.

- (i) T' is an extension of T if and only if the reduct A of every model A' of T' to the language L is a model of T,
- (ii) T' is a conservative extension of T if T' is an extension of T and every model $\mathcal A$ of T can be expanded to the language L' on a model $\mathcal A'$ of T'.

Proof

- (i)a) If T' is an extension of T and φ is any axiom of T, then $T' \models \varphi$. Thus $\mathcal{A}' \models \varphi$ and also $\mathcal{A} \models \varphi$, which implies that \mathcal{A} is a model of T.
- (i)b) If \mathcal{A} is a model of T and $T \models \varphi$ where φ is of L, then $\mathcal{A} \models \varphi$ and also $\mathcal{A}' \models \varphi$. This implies that $T' \models \varphi$ and thus T' is an extension of T.
 - (ii) If $T' \models \varphi$ where φ is of L and \mathcal{A} is a model of T, then in its expansion \mathcal{A}' that models T' we have $\mathcal{A}' \models \varphi$. Thus also $\mathcal{A} \models \varphi$, and hence $T \models \varphi$. Therefore T' is conservative. \square