Propositional and Predicate Logic - Appendix

Petr Gregor

KTIML MFF UK

WS 2024/25

Set-theoretical notions

All notions are introduced within a set theory using only the membership predicate and equality (and means of logic).

- A property of sets φ(x) defines a class {x | φ(x)}. A class that is not a set is called a proper class, eg. {x | x = x},
- $x \notin y$, $x \neq y$ are shortcuts for $\neg(x \in y)$, $\neg(x = y)$,
- $\{x_0, \ldots, x_{n-1}\}$ denotes the set containing exactly $x_0, \ldots, x_{n-1}, \{x\}$ is called a *singleton*, $\{x, y\}$ is called an *unordered pair*,
- ∅, ∪, ∩, \, △ stand for empty set, union, intersection, difference, symmetric difference of sets, e.g.

$$x \triangle y = (x \setminus y) \cup (y \setminus x) = \{z \mid (z \in x \land z \notin y) \lor (z \notin x \land z \in y)\}$$

- x, y are disjoint if $x \cap y = \emptyset$, we denote by $x \subseteq y$ that x is a subset of y,
- the *power set* of x is $\mathcal{P}(x) = \{y \mid y \subseteq x\}$,
- the *union* of x is $\bigcup x = \{z \mid \exists y (z \in y \land y \in x)\},$
- a *cover* of a set x is a set $y \subseteq \mathcal{P}(x) \setminus \{\emptyset\}$ with $\bigcup y = x$. If, moreover, all sets in y are mutually disjoint, then y is a *partition* of x.

Relations

- An ordered pair is $(x, y) = \{x, \{x, y\}\}$, so $(x, x) = \{x, \{x\}\}$, an ordered n-tuple is $(x_0, \dots, x_{n-1}) = ((x_0, \dots, x_{n-2}), x_{n-1})$ for n > 2,
- the *Cartesian product* of a and b is $a \times b = \{(x, y) \mid x \in a, y \in b\}$, the *Cartesian power* of x is $x^0 = \{\emptyset\}$, $x^1 = x$, $x^n = x^{n-1} \times x$ for n > 1,
- the *disjoint union* of x and y is $x \uplus y = (\{\emptyset\} \times x) \cup (\{\{\emptyset\}\} \times y)$,
- a *relation* is a set R of ordered pairs, instead of $(x, y) \in R$ we usually

write R(x, y) or x R y,

```
the domain of R is dom(R) = \{x \mid \exists y \ (x,y) \in R\}, the range of R is rng(R) = \{y \mid \exists x \ (x,y) \in R\}, the extension of x in R is R[x] = \{y \mid (x,y) \in R\}, the inverse relation to R is R^{-1} = \{(y,x) \mid (x,y) \in R\}, the restriction of R to the set z is R \mid z = \{(x,y) \in R \mid x \in z\},
```

the composition of relations R and S is the relation

$$R \circ S = \{(x, z) \mid \exists y \ ((x, y) \in R \land (y, z) \in S)\},\$$

• the *identity* on a set z is the relation $\mathrm{Id}_z = \{(x,x) \mid x \in z\}$.

Equivalences

• A relation R on X is an *equivalence* if for every $x, y, z \in X$

$$R(x,x)$$
 (reflexivity)
 $R(x,y) \to R(y,x)$ (symmetry)
 $R(x,y) \land R(y,z) \to R(x,z)$ (transitivity)

- R[x] is called the *equivalence class* of x in R, denoted also $[x]_R$.
- $X/R = \{R[x] \mid x \in X\}$ is the *quotient set* of X by R.
- It holds that X/R is a partition of X since the equivalence classes are mutually disjoint and cover X.
- On the other hand, a partition S of X determines the equivalence (on X)

$$\{(x,y)\mid x\in z,y\in z \text{ for some } z\in S\}.$$

Orders

Let \leq be a relation on a set X. We say that \leq is

• a *partial order* (of the set X) if for every $x, y, z \in X$

$$x \le x$$
 (reflexivity)
 $x \le y \land y \le x \rightarrow x = y$ (antisymmetry)
 $x \le y \land y \le z \rightarrow x \le z$ (transitivity)

• a *linear* (total) order if, moreover, for every $x, y \in X$

$$x \le y \quad \forall \quad y \le x$$
 (dichotomy)

 a well-order if, moreover, every non-empty subset of X has a least element.

Let us write 'x < y' for ' $x \le y \land x \ne y$ '. A linear order \le on X is

• a *dense order* if X is not a singleton and for every $x, y \in X$

$$x < y \rightarrow \exists z \ (x < z \land z < y)$$
 (density)

Functions

A relation f is a function if every $x \in dom(f)$ has exactly one y with $(x, y) \in f$.

- We say that y is the *value* of the function f at x, denoted by f(x) = y,
- $f: X \to Y$ denotes that f is a function with dom(f) = X and $rng(f) \subseteq Y$,
- a function f is a surjection (onto Y) if rng(f) = Y,
- a function f is *injection* (*one-to-one*) if for every $x, y \in dom(f)$

$$x \neq y \rightarrow f(x) \neq f(y)$$

- $f: X \to Y$ is *bijection* from X to Y if it is both injection and surjection,
- if $f: X \to Y$ is injective, then $f^{-1} = \{(y, x) \mid (x, y) \in f\}$ is its *inverse*,
- the *image* of the set *A* under *f* is $f[A] = \{y \mid (x, y) \in f \text{ for some } x \in A\},$
- if $f: X \to Y$ and $g: Y \to Z$, their composition $(f \circ g): X \to Z$ satisfies

$$(f \circ g)(x) = g(f(x))$$

XY denotes the set of all functions from X to Y.

Numbers

We give examples of standard formal constructions.

- The natural numbers are defined inductively by $n = \{0, ..., n-1\}$, thus $0 = \emptyset$, $1 = \{0\} = \{\emptyset\}$, $2 = \{0, 1\} = \{\emptyset, \{\emptyset\}\}$, ...
- the sef of *natural* numbers $\mathbb N$ is defined as the smallest set containing \emptyset which is closed under $S(x) := x \cup \{x\}$ (successor),
- the set of *integers* is $\mathbb{Z} = (\mathbb{N} \times \mathbb{N})/\sim$, where \sim is the equivalence $(a,b) \sim (c,d)$ if and only if a+d=b+c
- the set of *rational* numbers is $\mathbb{Q} = (\mathbb{Z} \times (\mathbb{Z} \setminus \{0\}))/\approx$, where \approx is given by $(a,b) \approx (c,d)$ if and only if a.d = b.c
- the set of *real* numbers $\mathbb R$ is the set of *cuts* of rational numbers, that is non-trivial downwards closed subsets of $\mathbb Q$ with no greatest element. $(A \subset \mathbb Q)$ is *downwards closed* if $y < x \in A$ implies $y \in A$.)

Cardinalities

- x has cardinality smaller or equal to the cardinality of y if there is an injective function f: x → y,

 (x ≼ y)
- x has same cardinality as y if there is a bijection $f: x \to y$, $(x \approx y)$
- x has cardinality strictly smaller than y if $x \leq y$ but not $x \approx y$, $(x \prec y)$

Theorem (Cantor) $x \prec \mathcal{P}(x)$ for every set x.

Proof $f(y) = \{y\}$ for $y \in x$ is an injective function $f: x \to \mathcal{P}(x)$, so $x \leq \mathcal{P}(x)$.

Suppose for a contradiction that there is an injective $g \colon \mathcal{P}(x) \to x$. Define

$$y = \{g(z) \mid z \subseteq x \land g(z) \notin z\}$$

By definition, $g(y) \in y$ if and only if $g(y) \notin y$, a contradiction.

- for every x there is *cardinal number* κ with $x \approx \kappa$, denoted by $|x| = \kappa$,
- x is *finite* if |x| = n for some $n \in \mathbb{N}$; otherwise, x is *infinite*,
- x is countable if x is finite or $|x| = |\mathbb{N}| = \omega$; otherwise, x is uncountable,
- x has cardinality of the continuum if $|x| = |\mathcal{P}(\mathbb{N})| = \mathfrak{c}$.

n-ary relations and functions

- A relation of *arity* $n \in \mathbb{N}$ on X is any set $R \subseteq X^n$, so for n = 0 we have either $R = \emptyset = 0$ or $R = \{\emptyset\} = 1$, and for n = 1 we have $R \subseteq X$,
- A (partial) function of *arity* $n \in \mathbb{N}$ from X to Y is any function $f \subseteq X^n \times Y$. We say that f is *total* on X^n if $dom(f) = X^n$, denoted by $f : X^n \to Y$. If, moreover, Y = X, we say that f is an *operation* on X.
- A function $f: X^n \to Y$ is *constant* if $rng(f) = \{y\}$ for some $y \in Y$, for n = 0 we have $f = \{(\emptyset, y)\}$ and we identify f with the *constant* y.
- The arity of a relation or function is denoted by ar(R) or ar(f) and we speak about nullary, unary, binary, etc. relations and functions.

Trees

- A tree is a set T with a partial order <_T in which there is a unique least element, called the root, and the set of predecessors of any element is well ordered by <_T,
- a *branch* of a tree T is a maximal linearly ordered subset of T,
- we adopt standard terminology on trees from the graph theory, e.g.
 a branch in a finite tree is a path from the root to a leaf.

König's lemma

We will consider *(for simplicity)* usually finitely branching trees in which every node except the root has an immediate predecessor *(father)*.

- n-th level of a tree T for $n \in \mathbb{N}$ is given by induction, it is the set of sons of nodes from the (n-1)-th level, 0-th level containing exactly the root,
- the *depth* of T is the maximal $n \in \mathbb{N}$ of non-empty level; if T has infinite branch, then it has *infinite depth* ω .
- a tree T is n-ary for $n \in \mathbb{N}$ if every node has at most n sons. It is *finitely branching*, if every node has only finitely many sons.

Lemma (König) Every infinite, finitely branching tree contains an infinite branch.

Proof We start in the root. Since it has only finitely many sons, there exists a son with infinitely many successors. We *choose* him and continue in his subtree. In this way we construct an infinite branch.

Ordered trees

- An *ordered tree* is a tree T with a linear order of sons at each node. These orders are called *left-right orders* and are denoted by $<_L$. In comparison with $<_L$, the order $<_T$ is called the *tree order*.
- A labeled tree is a tree T with an arbitrary function (a labeling function), that assigns to each node some object (a label).
- Labeled ordered trees represent, for example, structure of formulas.

