Predicate and Propositional Logic - Tutorials 2,3

Oct 10, 2024

- 1. Consider a theory $T = \{\neg q \rightarrow (\neg p \lor q), \neg p \rightarrow q, r \rightarrow q\}$. Which of the following propositions are valid, contradictory, independent, satisfiable, equivalent in T?
 - (a) p, q, r, s
 - (b) $p \lor q, p \lor r, p \lor s, q \lor s$
 - (c) $p \wedge q, q \wedge s, p \rightarrow q, s \rightarrow q$
- 2. Prove or disprove that the following sets of connectives are universal.
 - (a) $\{\downarrow\}$ where \downarrow is Peirce arrow (NOR)
 - (b) $\{\uparrow\}$ where \uparrow is Sheffer stroke (NAND)
 - (c) $\{\lor, \rightarrow, \leftrightarrow\}, \{\lor, \land, \rightarrow\}$
- 3. Transform the following propositions into DNF and CNF a) by using truth tables (determining the models), b) by using transformation rules.
 - (a) $(\neg p \lor q) \to (\neg q \land r)$
 - (b) $(\neg p \rightarrow (\neg q \rightarrow r)) \rightarrow p$
 - (c) $((p \rightarrow \neg q) \rightarrow \neg r) \rightarrow \neg p$
- 4. Let $\operatorname{maj}_n: (\{0,1\}^n)^3 \to \{0,1\}^n$ be the coordinate-wise majority function; that is, for example

 $\operatorname{maj}_4((0,1,0,1),(1,1,0,0),(1,1,0,0)) = (1,1,0,0)$

We say that a set $K \subseteq \{0, 1\}^n$ is a *median* set if it is closed under maj_n.

- (a) Show that for every 2-CNF proposition φ it holds that $M(\varphi)$ is a median set.
- (b)* Show that for every median set $K \subseteq \{0,1\}^n$ there exists a 2-CNF proposition φ over n variables such that $M(\varphi) = K$.
- 5. Consider an infinite theory $T = \{p_i \to (p_{i+1} \lor q_{i+1}), q_i \to (p_{i+1} \lor q_{i+1}) \mid i \in \mathbb{N}\}$ over $\operatorname{var}(T)$.
 - (a) Which propositions in the form $p_i \to p_j$ are logical consequences of T?
 - (b) Which propositions in the form $p_i \to (p_j \lor q_j)$ are logical consequences of T?
 - (c) Determine all models of the theory T.
- 6. Prove or disprove (or find the correct relation) that for every theory T and propositions φ , ψ over \mathbb{P} it holds
 - (a) $T \models \varphi$, if and only if $T \not\models \neg \varphi$
 - (b) $T \models \varphi$ and $T \models \psi$, if and only if $T \models \varphi \land \psi$
 - (c) $T \models \varphi$ or $T \models \psi$, if and only if $T \models \varphi \lor \psi$
 - (d) $T \models \varphi \rightarrow \psi$ and $T \models \psi \rightarrow \chi$, if and only if $T \models \varphi \rightarrow \chi$
- 7. Prove or disprove (or find the correct relation). For every theories T and S over \mathbb{P}
 - (a) $S \subseteq T \Rightarrow \theta^{\mathbb{P}}(T) \subseteq \theta^{\mathbb{P}}(S)$
 - (b) $\theta^{\mathbb{P}}(S \cup T) = \theta^{\mathbb{P}}(S) \cup \theta^{\mathbb{P}}(T)$
 - (c) $\theta^{\mathbb{P}}(S \cap T) = \theta^{\mathbb{P}}(S) \cap \theta^{\mathbb{P}}(T)$
- 8. Let $|\mathbb{P}| = n$ and $\varphi \in VF_{\mathbb{P}}$ with $|M(\varphi)| = m$.

- (a) What is the number of nonequivalent propositions ψ such that $\varphi \models \psi$ or $\psi \models \varphi$?
- (b) What is the number of nonequivalent theories over \mathbb{P} in which φ is valid? What is the number of nonequivalent *complete* theories over \mathbb{P} in which φ is valid?
- (c) What is the number of nonequivalent theories T over \mathbb{P} such that $T \cup \{\varphi\}$ is satisfiable?
- (d) Let, moreover, $\{\varphi, \psi\}$ be an unsatisfiable theory with $|M(\psi)| = p$. What is the number of nonequivalent propositions χ such that $\varphi \lor \psi \models \chi$? What is the number of nonequivalent theories in which $\varphi \lor \psi$ is valid?
- 9. Let $T = \{q \to (\neg p \to r), \ \neg r \to (\neg p \land q), \ (s \to r) \to p\}$ be a theory over the language $\mathbb{P} = \{p, q, r, s\}.$
 - (a) Axiomatize the theory T by a proposition in CNF.
 - (b) Find all models of the theory T.
 - (c) Is the theory T an extension of the theory $S = \{q \leftrightarrow \neg r\}$ over the language $\{q, r\}$? Is T a conservative extension of S? Justify.
 - (d) Determine the number of mutually inequivalent propositions in the language \mathbb{P} that are *contradictory* in both the theories T and S. Justify.
- 10. Let $T = \{p \lor q \to r, \neg (p \to \neg s)\}$ be a theory over the propositional language $\mathbb{P} = \{p, q, r, s\}$.
 - (a) Is the proposition $q \to p$ valid in the theory T? Is it contradictory? Is it independent? Justify.
 - (b) Find all models of the theory T.
 - (c) Find a theory S over the language $\mathbb{P}' = \{p, q, r\}$ such that T is a conservative extension of S. Axiomatize S by a proposition in CNF. Justify why S has the desired property.
 - (d) Determine the number of mutually inequivalent propositions φ over \mathbb{P} such that φ is valid in T and independent in S.
- 11. Let $T = \{p, \neg q \rightarrow \neg r, \neg q \rightarrow \neg s, r \rightarrow p, \neg s \rightarrow \neg p\}$ be a theory over the language $\mathbb{P} = \{p, q, r, s\}.$
 - (a) Using the implication graph, show that T is satisfiable.
 - (b) Find all models of the theory T and axiomatize $M^{\mathbb{P}}(T)$ by a proposition in CNF.
 - (c) Determine, and justify, the number of mutually
 - (i) inequivalent propositions over \mathbb{P} that are independent in T,
 - (ii) T-inequivalent propositions over \mathbb{P} which are independent in T.
- 12. Let $T = \{(r \to p) \to \neg q, \neg q \to p, \neg (r \land q), r \to \neg s\}$ be a theory in the language $\mathbb{P} = \{p, q, r, s\}$.
 - (a) Axiomatize $M^{\mathbb{P}}(T)$ by a proposition in CNF.
 - (b) Is the theory T a conservative extension of some theory over the language $\{p,q,r\}?$ Justify.
 - (c) Determine the number of mutually inequivalent noncontradictory extensions of the theory T over the language $\{p, q, r, s, t\}$. Justify.

13. Let $T = \{p \to \neg q \land r, q \lor r, (q \land s) \leftrightarrow r\}$ be a theory over the language $\mathbb{P} = \{p, q, r, s\}$.

- (a) Is the proposition $q \to p$ valid in the theory T? Is it contradictory? Is it independent? Justify your answers.
- (b) Axiomatize M(T) by a proposition in CNF.
- (c) Determine the number of mutually inequivalent theories S over $\mathbb{P}' = \{r, s\}$ such that T is a conservative extension of S. How many of them are complete?