Predicate and Propositional Logic - Tutorial 7

Nov 14, 2024

- 1. Which of the variable occurrences are free/bound in the following formulas? Find variants of these formulas without variables that have both free and bound occurrence.
 - (a) $(\exists x)(\forall y)P(y,z) \lor (y=0)$
 - (b) $(\exists x)(P(x) \land (\forall x)Q(x)) \lor (x=0)$
 - (c) $(\exists x)(x > y) \land (\exists y)(y > x)$
- 2. Let φ denote the formula $(\forall x)((x = z) \lor (\exists y)(f(x) = y) \lor (\forall z)(y = f(z)))$. Which of the following terms are substitutable into φ ?
 - (a) the term z for the variable x, the term y for the variable x,
 - (b) the term z for the variable y, the term 2 * y for the variable y,
 - (c) the term x for the variable z, the term y for the variable z,
- 3. Are the following formulas variants of the formula $(\forall x)(x < y \lor (\exists z)(z = y \land z \neq x))?$
 - (a) $(\forall z)(z < y \lor (\exists z)(z = y \land z \neq z))$
 - (b) $(\forall y)(y < y \lor (\exists z)(z = y \land z \neq y))$
 - (c) $(\forall u)(u < y \lor (\exists z)(z = y \land z \neq u))$
- 4. Let $\mathcal{A} = (\{a, b, c, d\}, \rhd^A)$ be a structure for the language with a single binary relation symbol \rhd , where $\rhd^A = \{(a, c), (b, c), (c, c), (c, d)\}$. Which of the following formulas are valid in \mathcal{A} ?
 - (a) $x \triangleright y$
 - (b) $(\exists x)(\forall y)(y \triangleright x)$
 - (c) $(\exists x)(\forall y)((y \rhd x) \to (x \rhd x))$
 - (d) $(\forall x)(\forall y)(\exists z)((x \rhd z) \land (z \rhd y))$
 - (e) $(\forall x)(\exists y)((x \rhd z) \lor (z \rhd y))$
- 5. For every formula φ from the previous exercise find a structure \mathcal{B} (if it exists) such that $\mathcal{B} \models \varphi$ if and only if $\mathcal{A} \not\models \varphi$.
- 6. Are the following sentences valid / contradictory / independent (in logic)?
 - (a) $(\exists x)(\forall y)(P(x) \lor \neg P(y))$
 - (b) $(\forall x)(P(x) \to Q(f(x))) \land (\forall x)P(x) \land (\exists x) \neg Q(x)$
 - (c) $(\forall x)(P(x) \lor Q(x)) \to ((\forall x)(P(x) \lor (\forall x)Q(x)))$
 - (d) $(\forall x)(P(x) \to Q(x)) \to ((\exists x)P(x) \to (\exists x)Q(x))$
 - (e) $(\exists x)(\forall y)P(x,y) \to (\forall y)(\exists x)P(x,y)$
- 7. Prove (semantically) the following claims. For every structure \mathcal{A} , formula φ , and sentence ψ ,
 - (a) $\mathcal{A} \models (\psi \to (\exists x)\varphi) \Leftrightarrow \mathcal{A} \models (\exists x)(\psi \to \varphi)$
 - (b) $\mathcal{A} \models (\psi \to (\forall x)\varphi) \Leftrightarrow \mathcal{A} \models (\forall x)(\psi \to \varphi)$
 - (c) $\mathcal{A} \models ((\exists x)\varphi \to \psi) \Leftrightarrow \mathcal{A} \models (\forall x)(\varphi \to \psi)$
 - (d) $\mathcal{A} \models ((\forall x)\varphi \to \psi) \Leftrightarrow \mathcal{A} \models (\exists x)(\varphi \to \psi)$

Does this hold also for every formula ψ with a free variable x? And for every formula ψ in which x is not free?