Predicate and Propositional Logic - Tutorial 9

Dec 7, 2023

- 1. Let $\underline{\mathbb{Q}} = \langle \mathbb{Q}, +, -, \cdot, 0, 1 \rangle$ be the structure of rational numbers with standard operations (thus forming a *field*) and let T be the theory of groups (see previous tutorials).
 - (a) Is there a reduct of \mathbb{Q} that is a model of T?
 - (b) Can we expand the reduct $\langle \mathbb{Q}, \cdot, 1 \rangle$ to a model of T?
 - (c) Does \mathbb{Q} contain a substructure that is not elementary equivalent to \mathbb{Q} ?
 - (d) Let $Th(\mathbb{Q})$ denote the set of all sentences valid in \mathbb{Q} . Is $Th(\mathbb{Q})$ a complete theory?
- 2. Let $T = \{x = c_1 \lor x = c_2 \lor x = c_3\}$ be a theory of $L = \langle c_1, c_2, c_3 \rangle$ with equality.
 - (a) Is T (semantically) consistent?
 - (b) Are all models of T elementarily equivalent? That is, is T (semantically) complete?
 - (c) Find all simple complete extensions of T.
 - (d) Is a theory $T' = T \cup \{x = c_1 \lor x = c_4\}$ of the language $L = \langle c_1, c_2, c_3, c_4 \rangle$ an extension of T? Is T' a simple extension of T? Is T' a conservative extension of T?
- 3. Let T' be the extension of $T = \{(\exists y)(x + y = 0), (x + y = 0) \land (x + z = 0) \rightarrow y = z\}$ in $L = \langle +, 0, \leq \rangle$ with equality by definitions of \langle and unary with axioms

$$\begin{array}{rcl} -x = y & \leftrightarrow & x + y = 0 \\ x < y & \leftrightarrow & x \le y \ \land \ \neg (x = y) \end{array}$$

Find formulas of L that are equivalent in T' to the following formulas.

- (a) x + (-x) = 0(b) x + (-y) < x
- (c) -(x+y) < -x
- 4. Consider the following database as a relational structure $\mathcal{D} = \langle D, Movies, Program, c^D \rangle_{c \in D}$ of language $L = \langle F, P, c \rangle_{c \in D}$ with equality where $D = \{$ 'Po strništi bos', 'J. Tříska', 'Mat', '13:15', ... $\}$ and $c^D = c$ for every $c \in D$. Write formulas that define in \mathcal{D} tables of
 - (a) movies in which a director is acting,
 - (b) cinemas and times where and when one can see a movie in which a director is acting,
 - (c) directors that act in movies that are on program in the cinema Mat,
 - (d) actors or directors whose movie is not on a program in any cinema.

Movie	name	director	actor	Program	cinema	name	time
	Lidé z Maringotek	M. Frič	J. Tříska		Světozor	Po strništi bos	13:15
	Po strništi bos	J. Svěrák	Z. Svěrák		Mat	Po strništi bos	16:15
	Po strništi bos	J. Svěrák	J. Tříska		Mat	Lidé z Maringotek	18:30

- 5. Let $L = \langle F \rangle$ be a language with equality where F is a binary function symbol. Write formulas that define (without parameters) the following sets in the following structures:
 - (a) the interval $(0,\infty)$ in $\mathcal{A} = \langle \mathbb{R}, \cdot \rangle$ where \cdot is the standard multiplication of real numbers,
 - (b) the set $\{(x, 1/x) \mid x \neq 0\}$ in the same structure \mathcal{A} ,
 - (c) the set of all at most one-element subsets of \mathbb{N} in $\mathcal{B} = \langle \mathcal{P}(\mathbb{N}), \cup \rangle$.

- 6. Assume that
 - (a) all guilty persons are liars,
 - (b) at least one of the accused is also a witness,
 - (c) no witness lies.

Prove by tableau method that not all accused are guilty.

- 7. Let L(x, y) represent that "there is a flight from x to y" and let S(x, y) represent that "there is a connection from x to y". Assume that
 - (a) From Prague you can fly to Bratislava, London and New York, and from New York to Paris,
 - (b) $(\forall x)(\forall y)(L(x,y) \to L(y,x)),$
 - (c) $(\forall x)(\forall y)(L(x,y) \rightarrow S(x,y)),$
 - (d) $(\forall x)(\forall y)(\forall z)(S(x,y) \land L(y,z) \to S(x,z)).$

Prove by tableau method that there is a connection from Bratislava to Paris.

- 8. Let φ , ψ be sentences or formulas in a free variable x, denoted by $\varphi(x)$, $\psi(x)$. Find tableau proofs of the following formulas.
 - (a) $(\exists x)(\varphi(x) \lor \psi(x)) \leftrightarrow (\exists x)\varphi(x) \lor (\exists x)\psi(x),$
 - (b) $(\forall x)(\varphi(x) \land \psi(x)) \leftrightarrow (\forall x)\varphi(x) \land (\forall x)\psi(x),$
 - (c) $(\varphi \lor (\forall x)\psi(x)) \to (\forall x)(\varphi \lor \psi(x))$ where x is not free in φ ,
 - (d) $(\varphi \land (\exists x)\psi(x)) \rightarrow (\exists x)(\varphi \land \psi(x))$ where x is not free in φ .
 - (e) $(\exists x)(\varphi \to \psi(x)) \to (\varphi \to (\exists x)\psi(x))$ where x is not free in φ ,
 - (f) $(\exists x)(\varphi \land \psi(x)) \rightarrow (\varphi \land (\exists x)\psi(x))$ where x is not free in φ ,
 - (g) $(\exists x)(\varphi(x) \to \psi) \to ((\forall x)\varphi(x) \to \psi)$ where x is not free in ψ ,
 - (h) $((\exists x)\varphi(x) \to \psi) \to (\forall x)(\varphi(x) \to \psi)$ where x is not free in ψ .
- 9. Let T^* be a theory with axioms of equality. Prove by tableau method that
 - (a) $T^* \models x = y \rightarrow y = x$ (symmetry of =)
 - (b) $T^* \models (x = y \land y = z) \rightarrow x = z$ (transitivity of =)

Hint: To show (a) apply the axiom of equality (*iii*) for $x_1 = x$, $x_2 = x$, $y_1 = y$ a $y_2 = x$, to show (b) apply (*iii*) for $x_1 = x$, $x_2 = y$, $y_1 = x$ a $y_2 = z$.

10. Let L be a language with equality containing a binary relation symbol \leq and let T be a theory of L such that T has an infinite model and the axioms of linear ordering are valid in T. Applying the compactness theorem show that T has a model \mathcal{A} with an *infinite decreasing chain*; that is, there are elements c_i for every $i \in \mathbb{N}$ in A such that

$$\cdots < c_{n+1} < c_n < \cdots < c_0.$$

(This shows that the notion of *well-ordering* is not definable in a first-order language.)