Predicate and Propositional Logic - Tutorial 9

Dec 7, 2023

1. Let $\mathbb{Q}=\langle\mathbb{Q},+,-, \cdot, 0,1\rangle$ be the structure of rational numbers with standard operations (thus forming a field) and let T be the theory of groups (see previous tutorials).
(a) Is there a reduct of $\underline{\mathbb{Q}}$ that is a model of T ?
(b) Can we expand the reduct $\langle\mathbb{Q}, \cdot, 1\rangle$ to a model of T ?
(c) Does $\underline{\mathbb{Q}}$ contain a substructure that is not elementary equivalent to $\underline{\mathbb{Q}}$?
(d) Let $T h(\underline{\mathbb{Q}})$ denote the set of all sentences valid in $\underline{\mathbb{Q}}$. Is $T h(\underline{\mathbb{Q}})$ a complete theory?
2. Let $T=\left\{x=c_{1} \vee x=c_{2} \vee x=c_{3}\right\}$ be a theory of $L=\left\langle c_{1}, c_{2}, c_{3}\right\rangle$ with equality.
(a) Is T (semantically) consistent?
(b) Are all models of T elementarily equivalent? That is, is T (semantically) complete?
(c) Find all simple complete extensions of T.
(d) Is a theory $T^{\prime}=T \cup\left\{x=c_{1} \vee x=c_{4}\right\}$ of the language $L=\left\langle c_{1}, c_{2}, c_{3}, c_{4}\right\rangle$ an extension of T ? Is T^{\prime} a simple extension of T ? Is T^{\prime} a conservative extension of T ?
3. Let T^{\prime} be the extension of $T=\{(\exists y)(x+y=0),(x+y=0) \wedge(x+z=0) \rightarrow y=z\}$ in $L=\langle+, 0, \leq\rangle$ with equality by definitions of $<$ and unary - with axioms

$$
\begin{aligned}
-x=y & \leftrightarrow x+y=0 \\
x<y & \leftrightarrow \quad x \leq y \wedge \neg(x=y)
\end{aligned}
$$

Find formulas of L that are equivalent in T^{\prime} to the following formulas.
(a) $x+(-x)=0$
(b) $x+(-y)<x$
(c) $-(x+y)<-x$
4. Consider the following database as a relational structure $\mathcal{D}=\left\langle D \text {, Movies, Program, } c^{D}\right\rangle_{c \in D}$
 and $c^{D}=c$ for every $c \in D$. Write formulas that define in \mathcal{D} tables of
(a) movies in which a director is acting,
(b) cinemas and times where and when one can see a movie in which a director is acting,
(c) directors that act in movies that are on program in the cinema Mat,
(d) actors or directors whose movie is not on a program in any cinema.

Movie	name	director	actor	Program	cinema	name	time
	Lidé z Maringotek	M. Frič	J. Tříska		Světozor	Po strništi bos	$13: 15$
	Po strništi bos	J. Svěrák	Z. Svěrák		Mat	Po strništi bos	$16: 15$
	Po strništi bos	J. Svěrák	J. Tříska		Mat	Lidé z Maringotek	$18: 30$
	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	

5. Let $L=\langle F\rangle$ be a language with equality where F is a binary function symbol. Write formulas that define (without parameters) the following sets in the following structures:
(a) the interval $(0, \infty)$ in $\mathcal{A}=\langle\mathbb{R}, \cdot\rangle$ where \cdot is the standard multiplication of real numbers,
(b) the set $\{(x, 1 / x) \mid x \neq 0\}$ in the same structure \mathcal{A},
(c) the set of all at most one-element subsets of \mathbb{N} in $\mathcal{B}=\langle\mathcal{P}(\mathbb{N}), \cup\rangle$.
6. Assume that
(a) all guilty persons are liars,
(b) at least one of the accused is also a witness,
(c) no witness lies.

Prove by tableau method that not all accused are guilty.
7. Let $L(x, y)$ represent that "there is a flight from x to y " and let $S(x, y)$ represent that "there is a connection from x to y ". Assume that
(a) From Prague you can fly to Bratislava, London and New York, and from New York to Paris,
(b) $(\forall x)(\forall y)(L(x, y) \rightarrow L(y, x))$,
(c) $(\forall x)(\forall y)(L(x, y) \rightarrow S(x, y))$,
(d) $(\forall x)(\forall y)(\forall z)(S(x, y) \wedge L(y, z) \rightarrow S(x, z))$.

Prove by tableau method that there is a connection from Bratislava to Paris.
8. Let φ, ψ be sentences or formulas in a free variable x, denoted by $\varphi(x), \psi(x)$. Find tableau proofs of the following formulas.
(a) $(\exists x)(\varphi(x) \vee \psi(x)) \leftrightarrow(\exists x) \varphi(x) \vee(\exists x) \psi(x)$,
(b) $(\forall x)(\varphi(x) \wedge \psi(x)) \leftrightarrow(\forall x) \varphi(x) \wedge(\forall x) \psi(x)$,
(c) $(\varphi \vee(\forall x) \psi(x)) \rightarrow(\forall x)(\varphi \vee \psi(x))$ where x is not free in φ,
(d) $(\varphi \wedge(\exists x) \psi(x)) \rightarrow(\exists x)(\varphi \wedge \psi(x))$ where x is not free in φ.
(e) $(\exists x)(\varphi \rightarrow \psi(x)) \rightarrow(\varphi \rightarrow(\exists x) \psi(x))$ where x is not free in φ,
(f) $(\exists x)(\varphi \wedge \psi(x)) \rightarrow(\varphi \wedge(\exists x) \psi(x))$ where x is not free in φ,
(g) $(\exists x)(\varphi(x) \rightarrow \psi) \rightarrow((\forall x) \varphi(x) \rightarrow \psi)$ where x is not free in ψ,
(h) $((\exists x) \varphi(x) \rightarrow \psi) \rightarrow(\forall x)(\varphi(x) \rightarrow \psi)$ where x is not free in ψ.
9. Let T^{*} be a theory with axioms of equality. Prove by tableau method that
(a) $T^{*} \models x=y \rightarrow y=x$
(symmetry of $=$)
(b) $T^{*} \models(x=y \wedge y=z) \rightarrow x=z$
$($ transitivity of $=)$
Hint: To show (a) apply the axiom of equality (iii) for $x_{1}=x, x_{2}=x, y_{1}=y$ a $y_{2}=x$, to show (b) apply (iii) for $x_{1}=x, x_{2}=y, y_{1}=x$ a $y_{2}=z$.
10. Let L be a language with equality containing a binary relation symbol \leq and let T be a theory of L such that T has an infinite model and the axioms of linear ordering are valid in T. Applying the compactness theorem show that T has a model \mathcal{A} with an infinite decreasing chain; that is, there are elements c_{i} for every $i \in \mathbb{N}$ in A such that

$$
\cdots<c_{n+1}<c_{n}<\cdots<c_{0}
$$

(This shows that the notion of well-ordering is not definable in a first-order language.)

