Predicate and Propositional Logic - Tutorials 11,12

Dec 12, 2024

- 1. Let φ , ψ be sentences or formulas in a free variable x, denoted by $\varphi(x)$, $\psi(x)$. Find tableau proofs of the following formulas.
 - (a) $(\exists x)(\varphi(x) \lor \psi(x)) \leftrightarrow (\exists x)\varphi(x) \lor (\exists x)\psi(x),$
 - (b) $(\forall x)(\varphi(x) \land \psi(x)) \leftrightarrow (\forall x)\varphi(x) \land (\forall x)\psi(x),$
 - (c) $(\varphi \lor (\forall x)\psi(x)) \to (\forall x)(\varphi \lor \psi(x))$ where x is not free in φ ,
 - (d) $(\varphi \land (\exists x)\psi(x)) \rightarrow (\exists x)(\varphi \land \psi(x))$ where x is not free in φ .
 - (e) $(\exists x)(\varphi \to \psi(x)) \to (\varphi \to (\exists x)\psi(x))$ where x is not free in φ ,
 - (f) $(\exists x)(\varphi \land \psi(x)) \rightarrow (\varphi \land (\exists x)\psi(x))$ where x is not free in φ ,
 - (g) $(\exists x)(\varphi(x) \to \psi) \to ((\forall x)\varphi(x) \to \psi)$ where x is not free in ψ ,
 - (h) $((\exists x)\varphi(x) \to \psi) \to (\forall x)(\varphi(x) \to \psi)$ where x is not free in ψ .
- 2. Let T^* be a theory with axioms of equality. Prove by tableau method that
 - (a) $T^* \models x = y \rightarrow y = x$ (symmetry of =)

(b)
$$T^* \models (x = y \land y = z) \rightarrow x = z$$
 (transitivity of =)

Hint: To show (a) apply the axiom of equality (*iii*) for $x_1 = x$, $x_2 = x$, $y_1 = y$ a $y_2 = x$, to show (b) apply (*iii*) for $x_1 = x$, $x_2 = y$, $y_1 = x$ a $y_2 = z$.

- 3. Convert the following formulas into the prenex normal form.
 - (a) $(\forall y)((\exists x)P(x,y) \to Q(y,z)) \land (\exists y)((\forall x)R(x,y) \lor Q(x,y))$
 - (b) $(\exists x) R(x, y) \leftrightarrow (\forall y) P(x, y)$
 - (c) $\neg((\forall x)(\exists y)P(x,y) \rightarrow (\exists x)(\exists y)R(x,y)) \land (\forall x)\neg(\exists y)Q(x,y)$
- 4. Find Skolem variants of the formulas in PNF from the previous problem.
- 5. Verify that (thus, a Skolem variant does not have to be equivalent to the original formula)

(a)
$$\models (\forall x)P(x, f(x)) \to (\forall x)(\exists y)P(x, y)$$

(b) $\not\models (\forall x)(\exists y)P(x, y) \to (\forall x)P(x, f(x))$

6. The theory T of fields in $L = \langle +, -, \cdot, 0, 1 \rangle$ contains one axiom φ that is not open:

$$x \neq 0 \rightarrow (\exists y)(x \cdot y = 1).$$

We know that $T \models 0 \cdot y = 0$ and $T \models (x \neq 0 \land x \cdot y = 1 \land x \cdot z = 1) \rightarrow y = z$.

- (a) Find a Skolem variant φ_S of φ with a new function symbol f.
- (b) Let T' be the theory obtained from T by replacing φ with φ_S . Is $T' \models \varphi$?
- (c) Can every model of T be uniquely expanded to a model of T'?

7. Let T denote the (previous) theory of fields. Let ψ be the formula $x \cdot y = 1 \lor (x = 0 \land y = 0)$.

- (a) Do the conditions of existence and uniqueness hold in T for $\psi(x, y)$ and the variable y?
- (b) Find an extension T^* of T by definition of a function symbol f with the formula ψ .
- (c) Is T^* equivalent to the theory T' from the previous problem?
- (d) Find a formula of the original language L that is equivalent in T^* to the formula

$$f(x \cdot y) = f(x) \cdot f(y)$$

- 8. Find Herbrand universe and an example of a Herbrand structure for the following languages.
 - (a) $L = \langle P, Q, f, a, b \rangle$ where P, Q are unary resp. binary relation symbols, f is a unary function symbol, a, b are constant symbols.
 - (b) $L = \langle P, f, g, a \rangle$ where P is a binary relation s., f, g unary function s., a constant symbol.
- 9. Find Herbrand models for the following theories or find unsatisfiable conjunctions of ground instances of their axioms. Assume that the language has constant symbols a, b.
 - (a) $T = \{\neg P(x) \lor Q(f(x), y), \neg Q(x, b), P(a)\}$
 - (b) $T = \{\neg P(x) \lor Q(f(x), y), Q(x, b), P(a)\}$
 - (c) $T = \{P(x, f(x)), \neg P(x, g(x))\}$
 - (d) $T = \{P(x, f(x)), \neg P(x, g(x)), P(g(x), f(y)) \rightarrow P(x, y)\}$
- 10. Transform the following formulas to equisatisfiable formulas in clausal form.
 - (a) $(\forall y)(\exists x)P(x,y)$
 - (b) $\neg(\forall y)(\exists x)P(x,y)$
 - (c) $\neg(\exists x)((P(x) \rightarrow P(a)) \land (P(x) \rightarrow P(b)))$
 - (d) $(\exists x)(\forall y)(\exists z)(P(x,z) \land P(z,y) \to R(x,y))$
- 11. Find (all) resolvents of the following pairs of clauses.
 - (a) $\{P(x,y), P(y,z)\}, \{\neg P(u,f(u))\}$
 - (b) $\{P(x,x), \neg R(x,f(x))\}, \{R(x,y), Q(y,z)\}$
 - (c) $\{P(x,y), \neg P(x,x), Q(x,f(x),z)\}, \{\neg Q(f(x),x,z), P(x,z)\}$
- 12. Show that the following set of clauses if resolution refutable. Describe the resolution refutation by a resolution tree. In each resolution step write down the unification used and underline resolved literals.
 - (a) $\{P(a, x, f(y)), P(a, z, f(h(b))), \neg Q(y, z)\}$
 - (b) $\{\neg Q(h(b), w), H(w, a)\}$
 - (c) $\{\neg P(a, w, f(h(b))), H(x, a)\}$
 - (d) $\{P(a, u, f(h(u))), H(u, a), Q(h(b), b)\}$
 - (e) $\{\neg H(v, a)\}$
- 13. We know that
 - (a) If a brick is on (another) brick, then it is not on the ground.
 - (b) Every brick is on (another) brick or on the ground.
 - (c) No brick is on a brick that is on (another) brick.

Express these facts in a first-order language and prove by resolution that if a brick is on another brick, the lower brick is on the ground.

- 14. We know that
 - (a) Every barber shaves all who do not shave themselves.
 - (b) No barber shaves someone who shaves himself.

Express these facts in a first-order language and prove by resolution that no barber exists.