Propositional and Predicate Logic - II

Petr Gregor

KTIML MFF UK

ZS 2014/2015

Petr Gregor (KTIML MFF UK)

Propositional and Predicate Logic - II

ZS 2014/2015 1 / 16

イロト イヨト イヨト

Language

Propositional logic is a *"logic of propositional connectives"*. We start from a (nonempty) set \mathbb{P} of *propositional letters* (*variables*), e.g.

 $\mathbb{P} = \{p, p_1, p_2, \ldots, q, q_1, q_2, \ldots\}$

We usually assume that \mathbb{P} is at most countable.

The *language* of propositional logic (over \mathbb{P}) consists of symbols

- propositional letters from $\mathbb P$
- propositional connectives \neg , \land , \lor , \rightarrow , \leftrightarrow
- parentheses $(,), [,], \{, \}, \dots$

Thus the language is given by the set \mathbb{P} . We say that connectives and parentheses are *symbols of logic*.

We also use symbols for constants \top (true), \perp (false) which are introduced as shortcuts for $p \lor \neg p$, resp. $p \land \neg p$ where p is any fixed variable from \mathbb{P} .

Formula

Propositional formulae (*propositions*) (over \mathbb{P}) are given inductively by

- (*i*) every propositional letter from \mathbb{P} is a proposition,
- (*ii*) if φ , ψ are propositions, then also

 $(\neg \varphi) , (\varphi \land \psi) , (\varphi \lor \psi) , (\varphi \to \psi) , (\varphi \leftrightarrow \psi)$

are propositions,

(*iii*) every proposition is formed by a finite number of steps (*i*), (*ii*).

- Thus propositions are (well-formed) finite sequences of symbols from the given language (strings).
- A proposition that is a part of another proposition φ as a substring is called a *subformula* (*subproposition*) of φ.
- The set of all propositions over

 [™] is denoted by VF_P
- The set of all letters (variables) that occur in φ is denoted by $var(\varphi)$.

Conventions

After introducing (standard) priorities for connectives we are allowed in a concise form to omit parentheses that are around a subformula formed by a connective of a higher priority.

$$\begin{array}{ll} (1) \rightarrow, \leftrightarrow \\ (2) \wedge, \lor \\ (3) \neg \end{array}$$

The outer parentheses can be omitted as well, e.g.

 $(((\neg p) \land q) \rightarrow (\neg (p \lor (\neg q))))$ is shortly $\neg p \land q \rightarrow \neg (p \lor \neg q)$

Note If we do not respect the priorities, we can obtain an ambiguous form or even a concise form of a non-equivalent proposition.

Further possibilities to omit parentheses follow from semantical properties of connectives (associativity of \lor , \land).

Formation trees

A *formation tree* is a finite ordered tree whose nodes are labeled with propositions according to the following rules

- leaves (and only leaves) are labeled with propositional letters,
- if a node has label (¬φ), then it has a single son labeled with φ,
- if a node has label (φ ∧ ψ), (φ ∨ ψ), (φ → ψ), or (φ ↔ ψ), then it has two sons, the left son labeled with φ, and the right son labeled with ψ.

A *formation tree of a proposition* φ is a formation tree with the root labeled with φ .

Proposition Every proposition is associated with a unique formation tree.Proof By induction on the number of nested parentheses. □

Note Such proofs are called proofs by the structure of the formula or by the depth of the formation tree.

Semantics

- We consider only two-valued logic.
- Propositional letters represent (atomic) statements whose 'meaning' is given by an assignment of *truth values* 0 (*false*) or 1 (*false*).
- Semantics of propositional connectives is given by their *truth tables*.

p	q	$\neg p$	$p \wedge q$	$p \lor q$	p ightarrow q	$p \leftrightarrow q$
0	0	1	0	0	1	1
0	1	1	0	1	1	0
1	0	0	0	1	0	0
1	1	0	1	1	1	1

This determines the truth value of every proposition based on the values assigned to its propositional letters.

- Thus we may assign *"truth tables"* also to all propositions. We say that propositions represent Boolean functions (up to the order of variables).
- A *Boolean function* is an *n*-ary operation on $2 = \{0, 1\}$.

Basic semantics

Truth valuations

- A *truth assignment* is a function $v \colon \mathbb{P} \to \{0, 1\}$, i.e. $v \in \mathbb{P}2$.
- A *truth value* $\overline{v}(\varphi)$ of a proposition φ for a truth assignment v is given by

 $\overline{\nu}(p) = \nu(p)$ if $p \in \mathbb{P}$ $\overline{\nu}(\neg\varphi) = -1(\overline{\nu}(\varphi))$ $\overline{\nu}(\varphi \land \psi) = \land_1(\overline{\nu}(\varphi), \overline{\nu}(\psi)) \qquad \overline{\nu}(\varphi \lor \psi) = \lor_1(\overline{\nu}(\varphi), \overline{\nu}(\psi))$ $\overline{\nu}(\varphi \to \psi) = \to_1(\overline{\nu}(\varphi), \overline{\nu}(\psi)) \qquad \overline{\nu}(\varphi \leftrightarrow \psi) = \leftrightarrow_1(\overline{\nu}(\varphi), \overline{\nu}(\psi))$

where $-1, \wedge_1, \vee_1, \rightarrow_1, \leftrightarrow_1$ are the Boolean functions given by the tables.

Proposition The truth value of a proposition φ depends only on the truth assignment of $var(\varphi)$.

Proof Easily by induction on the structure of the formula.

Note Since the function $\overline{\nu}: VF_{\mathbb{P}} \to 2$ is a unique extension of the function ν , we can (unambiguously) write v instead of \overline{v} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Semantic notions

A proposition φ over $\mathbb P$ is

- is true in (satisfied by) an assignment v ∈ ^P2, if v(φ) = 1. Then v is a satisfying assignment for φ, denoted by v ⊨ φ.
- valid (a tautology), if v
 (φ) = 1 for every v ∈ ^P2, i.e. φ is satisfied by every assignment, denoted by ⊨ φ.
- *unsatisfiable* (*a contradiction*), if $\overline{\nu}(\varphi) = 0$ for every $\nu \in \mathbb{P}2$, i.e. $\neg \varphi$ is valid.
- *independent* (*a contingency*), if $\overline{\nu_1}(\varphi) = 0$ and $\overline{\nu_2}(\varphi) = 1$ for some $\nu_1, \nu_2 \in \mathbb{P}^2$, i.e. φ is neither a tautology nor a contradiction.
- *satisfiable*, if $\overline{\nu}(\varphi) = 1$ for some $\nu \in \mathbb{P}2$, i.e. φ is not a contradiction.

Propositions φ and ψ are (logically) *equivalent*, denoted by $\varphi \sim \psi$, if $\overline{\nu}(\varphi) = \overline{\nu}(\psi)$ for every $\nu \in \mathbb{P}^2$, i.e. the proposition $\varphi \leftrightarrow \psi$ is valid.

Models

We reformulate these semantic notions in the terminology of models.

A *model of a language* \mathbb{P} is a truth assignment of \mathbb{P} . The class of all models of \mathbb{P} is denoted by $M(\mathbb{P})$, so $M(\mathbb{P}) = \mathbb{P}2$. A proposition φ over \mathbb{P} is

- true in a model v ∈ M(P), if v(φ) = 1. Then v is a model of φ, denoted by v ⊨ φ and M^P(φ) = {v ∈ M(P) | v ⊨ φ} is the class of all models of φ.
- valid (a tautology) if it is true in every model of the language, denoted by ⊨ φ.
- *unsatisfiable* (*a contradiction*) if it does not have a model.
- *independent* (*a contingency*) if it is true in some model and false in other.
- *satisfiable* if it has a model.

Propositions φ and ψ are (logically) *equivalent*, denoted by $\varphi \sim \psi$, if they have same models.

・ロト ・回ト ・ヨト ・ヨト … ヨ

Adequacy

The language of propositional logic has *basic* connectives \neg , \land , \lor , \rightarrow , \leftrightarrow . In general, we can introduce *n*-ary connective for any Boolean function, e.g.

 $p \downarrow q$ "neither p nor q" (NOR, Peirce arrow) $p \uparrow q$ "not both p and q" (NAND, Sheffer stroke)

A set of connectives is *adequate* if they can express any Boolean function by some (well) formed proposition from them.

Proposition $\{\neg, \land, \lor\}$ *is adequate.*

Proof Any $f: {}^{n}2 \to 2$ is expressed by the proposition $\bigvee_{v \in f^{-1}[1]} \bigwedge_{i=0}^{n-1} p_i^{v(i)}$ where $p_i^{v(i)}$ stands for the proposition p_i if v(i) = 1; and for $\neg p_i$ if v(i) = 0. For $f^{-1}[1] = \emptyset$ we take the proposition \bot . \Box

 $\begin{array}{l} \mbox{Proposition} \ \{\neg \ , \rightarrow\} \ is \ adequate. \\ \mbox{Proof} \ (p \land q) \sim \neg (p \rightarrow \neg q), \ (p \lor q) \sim (\neg p \rightarrow q). \end{array} \ \ \Box$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

CNF and DNF

- A literal is a propositional letter or its negation. For a propositional letter p let p^0 denote the literal $\neg p$ and let p^1 denote the literal p. For a literal l let *l* denote the *complementary* literal of *l*.
- A *clause* is a disjunction of literals, by the empty clause we mean \perp .
- A proposition is in conjunctive normal form (CNF) if it is a conjunction of clauses. By the empty proposition in CNF we mean \top .
- An *elementary conjunction* is a conjunction of literals, by the empty conjunction we mean \top .
- A proposition is in disjunctive normal form (DNF) if it is a disjunction of elementary conjunctions. By the empty proposition in DNF we mean \perp .

Note A clause or an elementary conjunction is both in CNF and DNF.

Observation A proposition in CNF is valid if and only if each of its clauses contains a pair of complementary literals. A proposition in DNF is satisfiable if and only if at least one of its elementary conjunctions does not contain a pair of complementary literals.

Petr Gregor (KTIML MFF UK)

Transformations by tables

Proposition Let $K \subseteq \mathbb{P}^2$ where \mathbb{P} is finite. Denote $\overline{K} = \mathbb{P}^2 \setminus K$. Then

$$M^{\mathbb{P}}\Big(igvee_{v\in K}igwee_{p\in\mathbb{P}}p^{v(p)}\Big)=K=M^{\mathbb{P}}\Big(igwee_{v\in\overline{K}}igvee_{p\in\mathbb{P}}\overline{p^{v(p)}}\Big)$$

Proof The first equality follows from $\overline{w}(\bigwedge_{p\in\mathbb{P}} p^{\nu(p)}) = 1$ whenever w = v, for every $w \in \mathbb{P}2$. Similarly, the second one follows from $\overline{w}(\bigvee_{p\in\mathbb{P}} \overline{p^{\nu(p)}}) = 1$ whenever $w \neq v$. \Box

For example, $K = \{(1, 0, 0), (1, 1, 0), (0, 1, 0), (1, 1, 1)\}$ can be modeled by $(p \land \neg q \land \neg r) \lor (p \land q \land \neg r) \lor (\neg p \land q \land \neg r) \lor (p \land q \land r) \sim$ $(p \lor q \lor r) \land (p \lor q \lor \neg r) \land (p \lor q \lor \neg r) \land (\neg p \lor q \lor \neg r)$

Corollary Every proposition has CNF and DNF equivalents.

Proof The value of a proposition φ depends only on the assignment of $var(\varphi)$ which is finite. Hence we can apply the above proposition for $K = M^{\mathbb{P}}(\varphi)$ and $\mathbb{P} = var(\varphi)$. \Box

・ロト ・回ト ・ヨト ・ヨト … ヨ

Transformations by rules

Proposition Let φ' be the proposition obtained from φ by replacing some occurrences of a subformula ψ with ψ' . If $\psi \sim \psi'$, then $\varphi \sim \varphi'$.

Proof Easily by induction on the structure of the formula.

- (1) $(\varphi \to \psi) \sim (\neg \varphi \lor \psi), \quad (\varphi \leftrightarrow \psi) \sim ((\neg \varphi \lor \psi) \land (\neg \psi \lor \varphi))$
- (2) $\neg \neg \varphi \sim \varphi$, $\neg (\varphi \land \psi) \sim (\neg \varphi \lor \neg \psi)$, $\neg (\varphi \lor \psi) \sim (\neg \varphi \land \neg \psi)$
- (3) $(\varphi \lor (\psi \land \chi)) \sim ((\psi \land \chi) \lor \varphi) \sim ((\varphi \lor \psi) \land (\varphi \lor \chi))$
- (3)' $(\varphi \land (\psi \lor \chi)) \sim ((\psi \lor \chi) \land \varphi) \sim ((\varphi \land \psi) \lor (\varphi \land \chi))$

Proposition Every proposition can be transformed into CNF / DNF applying the transformation rules (1), (2), (3)/(3)'.

Proof Easily by induction on the structure of the formula.

Proposition Assume that φ contains only \neg , \land , \lor and φ^* is obtained from φ by interchanging \land and \lor , and by complementing all literals. Then $\neg \varphi \sim \varphi^*$.

Proof Easily by induction on the structure of the formula.

2-SAT

- A proposition in CNF is in *k-CNF* if every its clause has at most *k* literals.
- k-SAT is the following problem (for fixed k > 0) INSTANCE: A proposition φ in k-CNF. QUESTION: Is φ satisfiable?

Although for k = 3 it is an NP-complete problem, we show that 2-SAT can be solved in *linear* time (with respect to the length of φ).

We neglect implementation details (computational model, representation in memory) and we use the following fact, see [ADS I].

Proposition A partition of a directed graph (V, E) to strongly connected components can be found in time O(|V| + |E|).

- A directed graph *G* is *strongly connected* if for every two vertices *u* and *v* there are directed paths in *G* both from *u* to *v* and from *v* to *u*.
- A strongly connected *component* of a graph *G* is a maximal strongly connected subgraph of *G*.

Petr Gregor (KTIML MFF UK)

Implication graphs

An *implication graph* of a proposition φ in 2-CNF is a directed graph G_{φ} s.t.

- vertices are all the propositional letters in φ and their negations,
- a clause $l_1 \vee l_2$ in φ is represented by a pair of edges $\overline{l_1} \to l_2$, $\overline{l_2} \to l_1$,
- a clause l_1 in φ is represented by an edge $\overline{l_1} \rightarrow l_1$.

 $p \land (\neg p \lor q) \land (\neg q \lor \neg r) \land (p \lor r) \land (r \lor \neg s) \land (\neg p \lor t) \land (q \lor t) \land \neg s \land (x \lor y)$

Proposition φ is satisfiable if and only if no strongly connected component of G_{φ} contains a pair of complementary literals.

Proof Every satisfying assignment assigns the same value to all the literals in a same component. Thus the implication from left to right holds (necessity).

Satisfying assignment

For the implication from right to left (sufficiency), let G_{φ}^* be the graph obtained from G_{φ} by contracting strongly connected components to single vertices. **Observation** G_{φ}^* *is acyclic, and therefore has a topological ordering* <.

- A directed graph is *acyclic* if it is has no directed *cycles*.
- A linear ordering < of vertices of a directed graph is *topological* if p < q for every edge from p to q.

Now for every unassigned component in an increasing order by <, assign 0 to all its literals and 1 to all literals in the complementary component.

It remains to show that such assignment ν satisfies φ . If not, then G_{φ}^* contains edges $p \to q$ and $\overline{q} \to \overline{p}$ with v(p) = 1 and v(q) = 0. But this contradicts the order of assigning values to components since p < q and $\overline{q} < \overline{p}$. \Box

Corollary 2-SAT can be solved in a linear time.