
Propositional and Predicate Logic - II

Petr Gregor

KTIML MFF UK

ZS 2014/2015

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - II ZS 2014/2015 1 / 16

Propositional Logic Basic syntax

Language

Propositional logic is a “logic of propositional connectives”. We start from
a (nonempty) set P of propositional letters (variables), e.g.

P = {p,p1,p2, . . . ,q,q1,q2, . . . }
We usually assume that P is at most countable.

The language of propositional logic (over P) consists of symbols

propositional letters from P
propositional connectives ¬, ∧, ∨,→,↔
parentheses (,) , [,] , { , } , . . .

Thus the language is given by the set P. We say that connectives and
parentheses are symbols of logic.

We also use symbols for constants > (true), ⊥ (false) which are introduced
as shortcuts for p ∨ ¬p, resp. p ∧ ¬p where p is any fixed variable from P.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - II ZS 2014/2015 2 / 16

Propositional Logic Basic syntax

Formula
Propositional formulae (propositions) (over P) are given inductively by

(i) every propositional letter from P is a proposition,
(ii) if ϕ, ψ are propositions, then also

(¬ϕ) , (ϕ ∧ ψ) , (ϕ ∨ ψ) , (ϕ→ ψ) , (ϕ↔ ψ)

are propositions,
(iii) every proposition is formed by a finite number of steps (i), (ii).

Thus propositions are (well-formed) finite sequences of symbols
from the given language (strings).

A proposition that is a part of another proposition ϕ as a substring is
called a subformula (subproposition) of ϕ.

The set of all propositions over P is denoted by VFP.

The set of all letters (variables) that occur in ϕ is denoted by var(ϕ).

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - II ZS 2014/2015 3 / 16

Propositional Logic Basic syntax

Conventions

After introducing (standard) priorities for connectives we are allowed in
a concise form to omit parentheses that are around a subformula formed
by a connective of a higher priority.

(1) →,↔
(2) ∧, ∨
(3) ¬

The outer parentheses can be omitted as well, e.g.

(((¬p) ∧ q)→ (¬(p ∨ (¬q)))) is shortly ¬p ∧ q → ¬(p ∨ ¬q)

Note If we do not respect the priorities, we can obtain an ambiguous form
or even a concise form of a non-equivalent proposition.

Further possibilities to omit parentheses follow from semantical properties of
connectives (associativity of ∨, ∧).

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - II ZS 2014/2015 4 / 16

Propositional Logic Basic syntax

Formation trees
A formation tree is a finite ordered tree whose nodes are labeled with
propositions according to the following rules

leaves (and only leaves) are labeled with propositional letters,
if a node has label (¬ϕ), then it has a single son labeled with ϕ,
if a node has label (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ→ ψ), or (ϕ↔ ψ), then it has
two sons, the left son labeled with ϕ, and the right son labeled with ψ.

A formation tree of a proposition ϕ is a formation tree with the root labeled
with ϕ.

Proposition Every proposition is associated with a unique formation tree.

Proof By induction on the number of nested parentheses.

Note Such proofs are called proofs by the structure of the formula or by the
depth of the formation tree.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - II ZS 2014/2015 5 / 16

Propositional Logic Basic semantics

Semantics
We consider only two-valued logic.

Propositional letters represent (atomic) statements whose ‘meaning’ is
given by an assignment of truth values 0 (false) or 1 (false).

Semantics of propositional connectives is given by their truth tables.

p q ¬p p ∧ q p ∨ q p → q p ↔ q

0 0 1 0 0 1 1
0 1 1 0 1 1 0
1 0 0 0 1 0 0
1 1 0 1 1 1 1

This determines the truth value of every proposition based on the values
assigned to its propositional letters.

Thus we may assign “truth tables” also to all propositions. We say that
propositions represent Boolean functions (up to the order of variables).

A Boolean function is an n-ary operation on 2 = {0, 1}.
Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - II ZS 2014/2015 6 / 16

Propositional Logic Basic semantics

Truth valuations

A truth assignment is a function v : P→ {0, 1}, i.e. v ∈ P2.

A truth value v(ϕ) of a proposition ϕ for a truth assignment v is given by

v(p) = v(p) if p ∈ P v(¬ϕ) = −1(v(ϕ))

v(ϕ ∧ ψ) = ∧1(v(ϕ), v(ψ)) v(ϕ ∨ ψ) = ∨1(v(ϕ), v(ψ))

v(ϕ→ ψ) =→1 (v(ϕ), v(ψ)) v(ϕ↔ ψ) =↔1 (v(ϕ), v(ψ))

where −1, ∧1, ∨1,→1,↔1 are the Boolean functions given by the tables.

Proposition The truth value of a proposition ϕ depends only on the truth
assignment of var(ϕ).

Proof Easily by induction on the structure of the formula.

Note Since the function v : VFP → 2 is a unique extension of the function v,
we can (unambiguously) write v instead of v.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - II ZS 2014/2015 7 / 16

Propositional Logic Basic semantics

Semantic notions

A proposition ϕ over P is

is true in (satisfied by) an assignment v ∈ P2, if v(ϕ) = 1. Then v is
a satisfying assignment for ϕ, denoted by v |= ϕ.

valid (a tautology), if v(ϕ) = 1 for every v ∈ P2, i.e. ϕ is satisfied
by every assignment, denoted by |= ϕ.

unsatisfiable (a contradiction), if v(ϕ) = 0 for every v ∈ P2, i.e.
¬ϕ is valid.

independent (a contingency), if v1(ϕ) = 0 and v2(ϕ) = 1 for some
v1, v2 ∈ P2, i.e. ϕ is neither a tautology nor a contradiction.

satisfiable, if v(ϕ) = 1 for some v ∈ P2, i.e. ϕ is not a contradiction.

Propositions ϕ and ψ are (logically) equivalent, denoted by ϕ ∼ ψ, if
v(ϕ) = v(ψ) for every v ∈ P2, i.e. the proposition ϕ↔ ψ is valid.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - II ZS 2014/2015 8 / 16

Propositional Logic Basic semantics

Models

We reformulate these semantic notions in the terminology of models.

A model of a language P is a truth assignment of P. The class of all models of
P is denoted by M(P), so M(P) = P2. A proposition ϕ over P is

true in a model v ∈ M(P), if v(ϕ) = 1. Then v is a model of ϕ, denoted by
v |= ϕ and MP(ϕ) = {v ∈ M(P) | v |= ϕ} is the class of all models of ϕ.

valid (a tautology) if it is true in every model of the language,
denoted by |= ϕ.

unsatisfiable (a contradiction) if it does not have a model.

independent (a contingency) if it is true in some model and false in other.

satisfiable if it has a model.

Propositions ϕ and ψ are (logically) equivalent, denoted by ϕ ∼ ψ, if they
have same models.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - II ZS 2014/2015 9 / 16

Propositional Logic Normal forms

Adequacy
The language of propositional logic has basic connectives ¬ , ∧ , ∨ ,→ ,↔ .
In general, we can introduce n-ary connective for any Boolean function, e.g.

p ↓ q “neither p nor q” (NOR, Peirce arrow)
p ↑ q “not both p and q” (NAND, Sheffer stroke)

A set of connectives is adequate if they can express any Boolean function
by some (well) formed proposition from them.

Proposition {¬ ,∧ ,∨} is adequate.

Proof Any f : n2→ 2 is expressed by the proposition
∨

v∈f −1[1]

∧n−1
i=0 pv(i)

i

where pv(i)
i stands for the proposition pi if v(i) = 1; and for ¬pi if v(i) = 0.

For f −1[1] = ∅ we take the proposition ⊥.

Proposition {¬ ,→} is adequate.
Proof (p ∧ q) ∼ ¬(p → ¬q), (p ∨ q) ∼ (¬p → q).

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - II ZS 2014/2015 10 / 16

Propositional Logic Normal forms

CNF and DNF
A literal is a propositional letter or its negation. For a propositional letter p

let p0 denote the literal ¬p and let p1 denote the literal p. For a literal l

let l denote the complementary literal of l.

A clause is a disjunction of literals, by the empty clause we mean ⊥.

A proposition is in conjunctive normal form (CNF) if it is a conjunction of
clauses. By the empty proposition in CNF we mean >.

An elementary conjunction is a conjunction of literals, by the empty
conjunction we mean >.

A proposition is in disjunctive normal form (DNF) if it is a disjunction of
elementary conjunctions. By the empty proposition in DNF we mean ⊥.

Note A clause or an elementary conjunction is both in CNF and DNF.

Observation A proposition in CNF is valid if and only if each of its clauses
contains a pair of complementary literals. A proposition in DNF is satisfiable
if and only if at least one of its elementary conjunctions does not contain
a pair of complementary literals.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - II ZS 2014/2015 11 / 16

Propositional Logic Normal forms

Transformations by tables
Proposition Let K ⊆ P2 where P is finite. Denote K = P2 \ K . Then

MP
(∨

v∈K

∧
p∈P

pv(p)
)
= K = MP

(∧
v∈K

∨
p∈P

pv(p)
)

Proof The first equality follows from w(
∧

p∈P pv(p)) = 1 whenever w = v,

for every w ∈ P2. Similarly, the second one follows from w(
∨

p∈P pv(p)) = 1

whenever w 6= v.

For example, K = {(1, 0, 0), (1, 1, 0), (0, 1, 0), (1, 1, 1)} can be modeled by

(p ∧ ¬q ∧ ¬r) ∨ (p ∧ q ∧ ¬r) ∨ (¬p ∧ q ∧ ¬r) ∨ (p ∧ q ∧ r) ∼
(p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r) ∧ (p ∨ ¬q ∨ ¬r) ∧ (¬p ∨ q ∨ ¬r)

Corollary Every proposition has CNF and DNF equivalents.

Proof The value of a proposition ϕ depends only on the assignment of var(ϕ)

which is finite. Hence we can apply the above proposition for K = MP(ϕ) and
P = var(ϕ).

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - II ZS 2014/2015 12 / 16

Propositional Logic Normal forms

Transformations by rules
Proposition Let ϕ′ be the proposition obtained from ϕ by replacing some
occurrences of a subformula ψ with ψ′. If ψ ∼ ψ′, then ϕ ∼ ϕ′.
Proof Easily by induction on the structure of the formula.

(1) (ϕ→ ψ) ∼ (¬ϕ ∨ ψ), (ϕ↔ ψ) ∼ ((¬ϕ ∨ ψ) ∧ (¬ψ ∨ ϕ))
(2) ¬¬ϕ ∼ ϕ, ¬(ϕ ∧ ψ) ∼ (¬ϕ ∨ ¬ψ), ¬(ϕ ∨ ψ) ∼ (¬ϕ ∧ ¬ψ)
(3) (ϕ ∨ (ψ ∧ χ)) ∼ ((ψ ∧ χ) ∨ ϕ) ∼ ((ϕ ∨ ψ) ∧ (ϕ ∨ χ))
(3)’ (ϕ ∧ (ψ ∨ χ)) ∼ ((ψ ∨ χ) ∧ ϕ) ∼ ((ϕ ∧ ψ) ∨ (ϕ ∧ χ))

Proposition Every proposition can be transformed into CNF / DNF applying
the transformation rules (1), (2), (3)/(3)′.

Proof Easily by induction on the structure of the formula.

Proposition Assume that ϕ contains only ¬, ∧, ∨ and ϕ∗ is obtained from ϕ

by interchanging ∧ and ∨, and by complementing all literals. Then ¬ϕ ∼ ϕ∗.
Proof Easily by induction on the structure of the formula.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - II ZS 2014/2015 13 / 16

Propositional Logic 2-SAT

2-SAT
A proposition in CNF is in k-CNF if every its clause has at most k literals.

k-SAT is the following problem (for fixed k > 0)
INSTANCE: A proposition ϕ in k-CNF.
QUESTION: Is ϕ satisfiable?

Although for k = 3 it is an NP-complete problem, we show that 2-SAT can
be solved in linear time (with respect to the length of ϕ).

We neglect implementation details (computational model, representation
in memory) and we use the following fact, see [ADS I].

Proposition A partition of a directed graph (V ,E) to strongly connected
components can be found in time O(|V |+ |E |).

A directed graph G is strongly connected if for every two vertices u and v

there are directed paths in G both from u to v and from v to u.

A strongly connected component of a graph G is a maximal strongly
connected subgraph of G.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - II ZS 2014/2015 14 / 16

http://ktiml.mff.cuni.cz/~cepek/ADS1.ppt

Propositional Logic 2-SAT

Implication graphs
An implication graph of a proposition ϕ in 2-CNF is a directed graph Gϕ s.t.

vertices are all the propositional letters in ϕ and their negations,
a clause l1 ∨ l2 in ϕ is represented by a pair of edges l1 → l2, l2 → l1,
a clause l1 in ϕ is represented by an edge l1 → l1.

p¬p

¬r¬q

qr

t

¬t

s ¬s
¬x

¬y

y

x

c ¬c
p ∧ (¬p ∨ q) ∧ (¬q ∨ ¬r) ∧ (p ∨ r) ∧ (r ∨ ¬s) ∧ (¬p ∨ t) ∧ (q ∨ t) ∧ ¬s ∧ (x ∨ y)

Proposition ϕ is satisfiable if and only if no strongly connected component
of Gϕ contains a pair of complementary literals.

Proof Every satisfying assignment assigns the same value to all the literals
in a same component. Thus the implication from left to right holds (necessity).

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - II ZS 2014/2015 15 / 16

Propositional Logic 2-SAT

Satisfying assignment
For the implication from right to left (sufficiency), let G∗ϕ be the graph obtained
from Gϕ by contracting strongly connected components to single vertices.

Observation G∗ϕ is acyclic, and therefore has a topological ordering <.

A directed graph is acyclic if it is has no directed cycles.
A linear ordering < of vertices of a directed graph is topological
if p < q for every edge from p to q.

Now for every unassigned component in an increasing order by <, assign 0

to all its literals and 1 to all literals in the complementary component.

It remains to show that such assignment v satisfies ϕ. If not, then G∗ϕ contains
edges p → q and q → p with v(p) = 1 and v(q) = 0. But this contradicts
the order of assigning values to components since p < q and q < p.

Corollary 2-SAT can be solved in a linear time.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - II ZS 2014/2015 16 / 16

	Propositional Logic
	Basic syntax
	Basic semantics
	Normal forms
	2-SAT

