Propositional and Predicate Logic - Il

Petr Gregor
KTIML MFF UK

ZS 2014/2015

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - Il

Language
Propositional logic is a “logic of propositional connectives”. We start from

a (nonempty) set P of propositional letters (variables), e.g.

P = {p',plapZa'"’q7q17q27"'}
We usually assume that P is at most countable.

The language of propositional logic (over P) consists of symbols

@ propositional letters from P
@ propositional connectives —, A, V, —, <
@ parentheses (,),[,],{,}, ..

Thus the language is given by the set P. We say that connectives and
parentheses are symbols of logic.

We also use symbols for constants T (true), L (false) which are introduced
as shortcuts for p v —=p, resp. p A =p where p is any fixed variable from P.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - Il ZS 2014/2015 2/16

Formula

Propositional formulae (propositions) (over P) are given inductively by

(i) every propositional letter from P is a proposition,
(1) if o, ¢ are propositions, then also
(—0) , (e AD) (e V), (e = ¥), (0 1)
are propositions,
(ii7) every proposition is formed by a finite number of steps (i), (ii).
@ Thus propositions are (well-formed) finite sequences of symbols
from the given language (strings).

@ A proposition that is a part of another proposition ¢ as a substring is
called a subformula (subproposition) of ¢.

@ The set of all propositions over P is denoted by VFp.

@ The set of all letters (variables) that occur in ¢ is denoted by var(yp).

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - Il ZS 2014/2015

3/16

Conventions

After introducing (standard) priorities for connectives we are allowed in
a concise form to omit parentheses that are around a subformula formed
by a connective of a higher priority.

(1) =, «

(2) A,V

(3) -
The outer parentheses can be omitted as well, e.g.

(=p)Aq) = (=(pV (=q)))) isshortly -pAqg——(pV-q)

Note If we do not respect the priorities, we can obtain an ambiguous form
or even a concise form of a non-equivalent proposition.

Further possibilities to omit parentheses follow from semantical properties of
connectives (associativity of v, A).

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - Il ZS 2014/2015 4/16

Formation trees

A formation tree is a finite ordered tree whose nodes are labeled with
propositions according to the following rules

@ leaves (and only leaves) are labeled with propositional letters,

@ if a node has label (=), then it has a single son labeled with ¢,

@ if a node has label (o A), (0 V), (¢ — 1), or (p < 1), then it has
two sons, the left son labeled with ¢, and the right son labeled with).

A formation tree of a proposition ¢ is a formation tree with the root labeled
with ¢.

Proposition Every proposition is associated with a unique formation tree.

Proof By induction on the number of nested parentheses. [

Note Such proofs are called proofs by the structure of the formula or by the
depth of the formation tree.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - Il ZS 2014/2015 5/16

N S R Basic semantics
Semantics

@ We consider only two-valued logic.

@ Propositional letters represent (atomic) statements whose ‘meaning’ is
given by an assignment of truth values 0 (false) or 1 (false).

@ Semantics of propositional connectives is given by their truth tables.

(plal-rlprglpvalp—qlpeq]

0|0 1 0 0 1 1
0|1 1 0 1 1 0
110 0 0 1 0 0
1|1 0 1 1 1 1

This determines the truth value of every proposition based on the values
assigned to its propositional letters.

@ Thus we may assign “truth tables” also to all propositions. We say that
propositions represent Boolean functions (up to the order of variables).

@ A Boolean function is an n-ary operation on 2 = {0, 1}.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - Il ZS 2014/2015 6/16

Truth valuations

@ A truth assignmentis a function v: P — {0,1}, i.e. v € F2.
@ A truth value v(p) of a proposition ¢ for a truth assignment v is given by
v(p)=v(p) if peP V(=) = —1(U())
(o A) = M (T(9), T(¥)) (o V1) = Vi (), T(1))
V(e =) = —1(U(p), v())) V(e <) = <1 (V(p), 0(1))

where —1, A1, V1, —1, <1 are the Boolean functions given by the tables.

Proposition The truth value of a proposition ¢ depends only on the truth
assignment of var(yp).

Proof Easily by induction on the structure of the formula. [

Note Since the function 7: VFp — 2 is a unique extension of the function v,
we can (unambiguously) write v instead of 7.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - Il ZS 2014/2015

7/16

Semantic notions

A proposition ¢ over P is
@ /s true in (satisfied by) an assignment v € F2, if 7(p) = 1. Then vis
a satisfying assignment for ¢, denoted by v |= .

@ valid (a tautology), if D(p) = 1 for every v € ¥2, i.e. ¢ is satisfied
by every assignment, denoted by | ¢.

@ unsatisfiable (a contradiction), if T(p) = 0 for every v € F2, i.e.
- is valid.
@ independent (a contingency), if U1 (¢) = 0 and 7,(¢) = 1 for some
v, 1, € P2, i.e. o is neither a tautology nor a contradiction.
e satisfiable, if () = 1 for some v € F2, i.e. y is not a contradiction.
Propositions ¢ and ¢ are (logically) equivalent, denoted by ¢ ~ 1, if
() = T(v) for every v € F2, i.e. the proposition ¢ < 1 is valid.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - Il ZS 2014/2015

8/16

Propositional Logic Basic semantics

We reformulate these semantic notions in the terminology of models.
A model of a language P is a truth assignment of P. The class of all models of
PP is denoted by M(P), so M(P) = 2. A proposition ¢ over P is
@ frue in a model v € M(P), if v(p) = 1. Then v is a model of y, denoted by
v g and MF(¢) = {ve M(P) | v = o} is the class of all models of .

@ valid (a tautology) if it is true in every model of the language,
denoted by |= ¢.

@ unsatisfiable (a contradiction) if it does not have a model.
@ independent (a contingency) if it is true in some model and false in other.
@ satisfiable if it has a model.

Propositions ¢ and 1 are (logically) equivalent, denoted by ¢ ~ 1), if they
have same models.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - Il ZS 2014/2015 9/16

Adequacy

The language of propositional logic has basic connectives =, A, V, =, <.
In general, we can introduce n-ary connective for any Boolean function, e.g.

plq ‘neitherp norq” (NOR, Peirce arrow)
p1Tq “notbothpandq” (NAND, Sheffer stroke)

A set of connectives is adequate if they can express any Boolean function
by some (well) formed proposition from them.

Proposition {— A ,V} is adequate.

Proof Any f: 72 — 2 is expressed by the proposition \/ . - Al b}
where pi) stands for the proposition p; if v(i) = 1; and for —p; if v(i) = 0.
For f~![1] = 0 we take the proposition L. [J

Proposition {-,—} is adequate.

Proof (pAq) ~—=(p = —=q), (pVq) ~(p—gq). O

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - Il ZS 2014/2015 10/16

CNF and DNF

@ A literal is a propositional letter or its negation. For a propositional letter p
let p° denote the literal =p and let p' denote the literal p. For a literal [
let I denote the complementary literal of L.
@ A clause is a disjunction of literals, by the empty clause we mean L.
@ A proposition is in conjunctive normal form (CNF) if it is a conjunction of
clauses. By the empty proposition in CNF we mean T.
@ An elementary conjunction is a conjunction of literals, by the empty
conjunction we mean T.
@ A proposition is in disjunctive normal form (DNF) if it is a disjunction of
elementary conjunctions. By the empty proposition in DNF we mean L.
Note A clause or an elementary conjunction is both in CNF and DNF.
Observation A proposition in CNF is valid if and only if each of its clauses
contains a pair of complementary literals. A proposition in DNF is satisfiable
if and only if at least one of its elementary conjunctions does not contain
a pair of complementary literals.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - Il ZS 2014/2015 11/16

Propositional Logic Normal forms

Transformations by tables
Proposition Let K C ¥2 where P is finite. Denote K = 2\ K. Then
W (VA == m (A 59)
veK peP veK PEP

Proof The first equality follows from w(A ,cp p"?)) = 1 whenever w = v,
for every w € 2. Similarly, the second one follows from w(V pep prn) =1
whenever w # v. [
For example, K = {(1,0,0),(1,1,0),(0,1,0),(1,1,1)} can be modeled by

(PA=GA=)V(PAGA=T)V (2P AGA=T)V (DPAGAT) ~

(pvavr)A(pVaqVv-r)A(pV-qV-r)A(=pVqV-r)

Corollary Every proposition has CNF and DNF equivalents.

Proof The value of a proposition ¢ depends only on the assignment of var(y)
which is finite. Hence we can apply the above proposition for K = MF(y) and
P=var(p). O

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - Il ZS 2014/2015 12/16

Propositional Logic Normal forms

Transformations by rules
Proposition Let ¢’ be the proposition obtained from ¢ by replacing some
occurrences of a subformula i with . If ¢ ~ ', then p ~ ¢'.

Proof Easily by induction on the structure of the formula. [

(1)
(@)
(3)
©)

(p=¥)~ (V) (g ¥)~((ceVY)A (Y V)
o~ (P AY) ~ (2 V), (e VYY)~ (e A)
eV (WAX)~((LAX)Ve)~((pVi)A(pVx))

PN WVX)~((LVX)ANe)~((pA)V(pAxX))

—~~

Proposition Every proposition can be transformed into CNF / DNF applying
the transformation rules (1), (2),(3)/(3)".

Proof Easily by induction on the structure of the formula. [

Proposition Assume that ¢ contains only -, A, vV and ¢* is obtained from ¢
by interchanging N and Vv, and by complementing all literals. Then —¢ ~ ¢*.

Proof Easily by induction on the structure of the formula. [

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - Il ZS 2014/2015 13/16

2-SAT
@ A proposition in CNF is in k-CNF if every its clause has at most k literals.

@ [-SAT is the following problem (for fixed k > 0)
INSTANCE: A proposition ¢ in k-CNF.
QUESTION: Is ¢ satisfiable?

Although for k = 3 it is an NP-complete problem, we show that 2-SAT can
be solved in linear time (with respect to the length of).

We neglect implementation details (computational model, representation
in memory) and we use the following fact, see [ADS 1].

Proposition A partition of a directed graph (V, E) to strongly connected
components can be found in time O(|V| + |E|).

@ A directed graph G is strongly connected if for every two vertices u and v
there are directed paths in G both from u to v and from v to u.

@ A strongly connected component of a graph G is a maximal strongly
connected subgraph of G.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - Il ZS 2014/2015 14/16

http://ktiml.mff.cuni.cz/~cepek/ADS1.ppt

Implication graphs

An implication graph of a proposition ¢ in 2-CNF is a directed graph G, s.t.
@ vertices are all the propositional letters in ¢ and their negations,
@ aclause I V I, in ¢ is represented by a pair of edges [}, — b, L — 1,
@ aclause [in ¢ is represented by an edge I, — .

~t =

—r—>y

S/Yi\\p)é /p/l ‘ s
/ / \ / y—>
ﬁq H t S ﬁr /

pA(pV@NA(—gV-r)ANpVr)ArVas)A(—pViE)A(gViE)A-sA(xVy)
Proposition ¢ is satisfiable if and only if no strongly connected component
of G, contains a pair of complementary literals.

Proof Every satisfying assignment assigns the same value to all the literals
in a same component. Thus the implication from left to right holds (necessity).

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - Il ZS 2014/2015 15/16

Satisfying assignment
For the implication from right to left (sufficiency), let G, be the graph obtained
from G, by contracting strongly connected components to single vertices.
Observation G is acyclic, and therefore has a topological ordering <.

@ A directed graph is acyclicif it is has no directed cycles.

@ Alinear ordering < of vertices of a directed graph is topological
if p < g for every edge from p to g.

Now for every unassigned component in an increasing order by <, assign 0
to all its literals and 1 to all literals in the complementary component.

It remains to show that such assignment v satisfies ¢. If not, then G contains
edges p — g and g — p with v(p) = 1 and v(q) = 0. But this contradicts
the order of assigning values to components since p < gandg <p. O

Corollary 2-SAT can be solved in a linear time.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - Il ZS 2014/2015 16/16

	Propositional Logic
	Basic syntax
	Basic semantics
	Normal forms
	2-SAT

