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Properties of theories

We introduce syntactic variants of previous semantically defined notions.

Let T be a theory over P. If ¢ is provable from T, we say that o is a theorem
of T. The set of theorems of T is denoted by

Thm" (T) = {¢ € VFp | T+ ¢}.
We say that a theory T is
@ inconsistentif T + 1, otherwise T is consistent,

@ complete if it is consistent and every proposition is provable or refutable
from T,i.e. T+ g or T+ —p for every ¢ € VFp,

e extension of a theory T’ over P’ if P’ C P and Thm® (T’) € Thm"(T);
we say that an extension T of a theory T’ is simple if P = P’; and
conservative if Thm® (T") = Thm®(T) N VFs,

@ equivalent with a theory T' if T is an extension of T” and vice-versa.
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Corollaries

From the soundness and completeness of the tableau method it follows that
these syntactic definitions agree with their semantic variants.
Corollary For every theory T and propositions ¢, 1 overP,

@ THyifandonlyifT = ¢,

e Thm'(T) = ¢¥(T),

@ T isinconsistent if and only if T is unsatisfiable, i.e. it has no model,

@ T is complete if and only if T is semantically complete, i.e. it has
a single model,

@ T,ptifandonlyif T+ ¢ — + (Deduction theorem).

Remark Deduction theorem can be proved directly by transformations of
tableaux.
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Theorem on compactness

Theorem A theory T has a model iff every finite subset of T has a model.

Proof 1 The implication from left to right is obvious. If T has no model, then
it is inconsistent, i.e. | is provable by a systematic tableau = from T. Since 7
is finite, L is provable from some finite 7/ C T, i.e. T has no model. [

Remark This proof is based on finiteness of proofs, soundness and
completeness. We present an alternative proof (applying Kénig’s lemma).

Proof2 Let T = {p; | i € N}. Consider a tree S on (certain) finite binary
strings o ordered by being a prefix. We put o € S if and only if there exists
an assignment v with prefix o such that v |= ¢; for every i < lth(o).

Observation S has an infinite branch if and only if T has a model.

Since {y; | i € n} C T has a model for every n € N, every level in S is
nonempty. Thus S is infinite and moreover binary, hence by Kdénig’s lemma,
S contains an infinite branch. [
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Application of compactness

A graf (V, E) is k-colorable if there exists ¢: V — k such that c(u) # c(v)
for every edge {u, v} € E.

Theorem A countable graph G = (V, E) is k-colorable if and only if every
finite subgraph of G is k-colorable.

Proof The implication = is obvious. Assume that every finite subgraph of G
is k-colorable. Consider P = {p,.; | u € V,i € k} and a theory T with axioms

Puo V-V Puk-1 forevery u e V,
~(Pu,i A Puj) forevery ue V,i<j<k,
=(Pu,i N Pu,i) for every {u, v} € E,i < k.

Then G is k-colorable if and only if T has a model. By compactness, it
suffices to show that every finite T’ C T has a model. Let G’ be the subgraph
of G induced by vertices u such that p,, ; appears in T’ for some i. Since G’ is
k-colorable by the assumption, the theory T/ has a model. [
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Resolution method - introduction
Main features of the resolution method (informally)

@ is the underlying method of many systems, e.g. Prolog interpreters, SAT
solvers, automated deduction / verification systems, . ..

@ assumes input formulas in CNF (in general, “expensive” transformation),

@ works under set representation (clausal form) of formulas,

@ has a single rule, so called a resolution rule,

@ has no explicit axioms (or atomic tableaux), but certain axioms are
incorporated “inside” via various formatting rules,

@ is a refutation procedure, similarly as the tableau method; that is, it tries
to show that a given formula (or theory) is unsatisfiable,

@ has several refinements e.g. with specific conditions on when the
resolution rule may be applied.
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Resolution method Introduction

Set representation (clausal from) of CNF formulas
@ A literal l is a prop. letter or its negation. 1 is its complementary literal.

@ A clause C is afinite set of literals (“forming disjunction”). The empty
clause, denoted by [J, is never satisfied (has no satisfied literal).

@ Aformula S is a (possibly infinite) set of clauses (“forming conjunction’).
An empty formula ) is always satisfied (is has no unsatisfied clause).
Infinite formulas represent infinite theories (as conjunction of axioms).

@ A (partial) assignment V is a consistent set of literals, i.e. not containing
any pair of complementary literals. An assignment V is total if it contains
a positive or negative literal for each propositional letter.

@ V satisfies S, denoted by V |= S, if CN'V = () for every C € S.

(=pV g) N (=pV =gV T)N(—rV=s)A(—tVs)As) is represented by

S= {{_'pv q}v {_‘pv -q, I’}, {_‘rv _'S}v {_‘tv S}v {S}} and
ViES for V={s-r -p}
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Resolution method Introduction

Resolution rule

Let C, G, be clauses with [ € Cy, I € G, for some literal I. Then from C, and
G, infer through the literal I the clause C, called a resolvent, where

C=(G\{Hu(G\{]).
Equivalently, if U means union of disjoint sets,
Gu{ly,gu{l
CluC
For example, from {p. g, r} and {-p, —q} we can infer {q,—q, r} or {p,—p, r}.

Observation The resolution rule is sound; that is, for every assignmentV
VG and VEG = VEC.

Remark The resolution rule is a special case of the (so called) cut rule
eV, 7pVx
YV x
where ¢, ¥, x are arbitrary formulas.
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Resolution proof

@ A resolution proof (deduction) of a clause C from a formula S is a finite
sequence Cy, ..., C, = C such that for every i < n, we have C; € S
or C; is a resolvent of some previous clauses,

@ aclause C is (resolution) provable from S, denoted by S g C, if it has
a resolution proof from S,

@ a (resolution) refutation of formula S is a resolution proof of (1 from S,
@ Sis (resolution) refutable if S g O.

Theorem (soundness) IfS is resolution refutable, then S is unsatisfiable.

Proof Let S g O. Ifitwas V = S for some assignment V, from the soundness
of the resolution proof we would have V |= [J, which is impossible. B
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Resolution method Introduction

Resolution trees and closures

A resolution tree of a clause C from formula S is finite binary tree with nodes
labeled by clauses so that

(i) the root is labeled C,
(i) the leaves are labeled with clauses from S,

(iii) every inner node is labeled with a resolvent of the clauses in his sons.
Observation C has a resolution tree from S if and only if S +r C.

A resolution closure R(S) of a formula S is the smallest set satisfying
(i) C e R(S)forevery C € S,
(ii) if G, G, € R(S) and C is a resolvent of C;, G, then C € R(S).

Observation C € R(S) ifand only if Skg C.

Remark All notions on resolution proofs can therefore be equivalently
introduced in terms of resolution trees or resolution closures.
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Resolution method Introduction

Example
Formula ((pV 1r)A(gV —1r)A(=g) A (—pVt) A (=) A(sV—t)) is unsatisfiable
since for S = {{p, r}.{q, ~r}.{~q},{—p. t},{=s},{s,~t}} we have S kg 0.

u
/ \
{r} {-p}
N N
{r,q} {—aq} {-p, s} {=s}
VRN VRN

{p,7} {q,~r} {-p,t} {s,~t}

The resolution closure of S (the closure of S under resolution) is

R(S) - {{p7 I‘}, {qa _'r}v {_‘q}7 {_'pv [}7 {_'S}v {37 _'t}v {p q} {_'r}7 {r7 t}a
{q7 t}v {ﬁt}v {ﬁpv S}v {rv S}s {t}v {CI} {CI S}v 4, {ﬁp}v {p} {T}, {S}}
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Resolution method Completeness

Reduction by substitution
Let S be a formula and [ be a literal. Let us define

Sl={C\{l}|1¢ Ces}.
Observation

@ S'is equivalent to a formula obtained from S by substituting the constant
T (true, 1) for all literals I and the constant L (false, 0) for all literals [in S,

@ Neither I nor [ occurs in (the clauses of) S'.

e if {I} € S,thenO e S

Lemma S is satisfiable if and only if S' or St is satisfiable.

Proof (=) Let V |= S for some V and assume (w.l.o.g.) that [ ¢ V.
@ ThenV |=Stasforl ¢ C e Swe have V\ {l,1} = Candthus V = C\ {I}.
@ On the other hand (<), assume (w.l.0.g.) that V |= S’ for some V.
@ Since neither I nor I occurs in S!, we have V' |= S for V' = (V\ {I}) U {I}.

@ Then V' = S since for C € S containing [ we have [ € V' andforC € S
not containing I we have V' = (C\ {I}) € S". &
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Tree of reductions

Step by step reductions of literals can be represented in a binary tree.

S ={{p} {=d} . {-p,~q}}

— i
SP = {{~q}} SP=A{0,{~q}}
~ N

Corollary S is unsatisfiable if and only if every branch contains O.

Remarks Since S can be infinite over a countable language, this tree can be
infinite. However, if S is unsatisfiable, by the compactness theorem there is a
finite S' C S that is unsatisfiable. Thus after reduction of all literals occurring
in §', there will be O in every branch after finitely many steps.
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Completeness of resolution

Theorem [f a finite S is unsatisfiable, it is resolution refutable, i.e. S +x O.
Proof By induction on the number of variables in S we show that S -z .
@ If unsatisfiable S has no variable, itis S = {00} and thus S+x [T,
@ Let I be a literal occurring in S. By Lemma, S’ and S are unsatisfiable.

@ Since S’ and S have less variables than S, by induction there exist
resolution trees T' and T for derivation of O from ' resp. s,

@ If every leaf of T!isin S, then T!is a resolution tree of O from S, S+ .

@ Otherwise, by appending the literal I to every leaf of T* that is not in S,
(and to all predecessors) we obtain a resolution tree of {I} from S.

@ Similarly, we get a resolution tree {I} from S by appending [ in the tree T

@ By resolution of roots {1} and {1} we get a resolution tree of CJ from S. B

Corollary IfS is unsatisfiable, it is resolution refutable, i.e. S g .

Proof Follows from the previous theorem by applying compactness.
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Linear resolution - introduction

The resolution method can be significantly refined.

@ A linear proof of a clause C from a formula S is a finite sequence
of pairs (G, By), ..., (Cy, B,) such that Gy € Sand forevery i < n

i) B; € Sor B; = C; forsome j < i, and

ii) Ciy1 is aresolvent of C; and B; where C,., = C.
@ (4 is called a starting clause, C; a central clause, B; a side clause.
@ C s linearly provable from S, S+ C, if it has a linear proof from S.
@ A linear refutation of S is a linear proof of (J from S.

@ Sis linearly refutable if S - [O.

Observation (soundness) If S is linearly refutable, it is unsatisfiable.
Proof Every linear proof can be transformed to a (general) resolution proof.

Remark The completeness is preserved as well (proof omitted here).
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Gred
Example of linear resolution

Co By {p,q} {r,~a}  {p,q} {p,~q}

| _— | _— | _—

Cy B {r} {-p,a}y {p} {-p,q}

| _— | __— | __—

Cy {a} {-p,—q} {4} {-p,-¢} {p,¢} {p,~q}
: | __— | _— |

Cy B, {-p} {r} {-p} {r}

| _— | _— /"

C7z+1 O O

a) b) c)

a) a general form of linear resolution,

b) for S = {{p.q}.{p.~q}.{-p.q}.{-p.~q}} we have S+, [,
¢) atransformation of a linear proof to a (general) resolution proof.
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Resolution in Prolog LI-resolution

LI-resolution
Linear resolution can be further refined for Horn formulas as follows.
@ a Horn clause is a clause containing at most one positive literal,
@ a Horn formula is a (possibly infinite) set of Horn clauses,
@ a factis a (Horn) clause {p} where p is a positive literal,
@ a ruleis a (Horn) clause with exactly one positive literal and at least one
negative literal. Rules and facts are program clauses,
@ a goal is a nonempty (Horn) clause with only negative literals.

Observation If a Horn formula S is unsatisfiable and O ¢ S, it contains some

fact and some goal.

Proof If S does not contain any fact (goal), it is satisfied by the assignment of
all propositional variables to 0 (resp. to 1). &

A linear input resolution (LI-resolution) from a formula S is a linear resolution

from S in which every side clause B; is from the (input) formula S. We write
S b1y C to denote that C is provable by LI-resolution from S.
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