Propositional and Predicate Logic - V

Petr Gregor

KTIML MFF UK

ZS 2014/2015

Properties of theories

We introduce syntactic variants of previous semantically defined notions.

Let T be a theory over \mathbb{P} . If φ is provable from T, we say that φ is a *theorem* of T. The set of theorems of T is denoted by

$$\operatorname{Thm}^{\mathbb{P}}(T) = \{ \varphi \in \operatorname{VF}_{\mathbb{P}} \mid T \vdash \varphi \}.$$

We say that a theory T is

- *inconsistent* if $T \vdash \bot$, otherwise T is *consistent*,
- complete if it is consistent and every proposition is provable or refutable from T, i.e. $T \vdash \varphi$ or $T \vdash \neg \varphi$ for every $\varphi \in VF_{\mathbb{P}}$,
- *extension* of a theory T' over \mathbb{P}' if $\mathbb{P}' \subseteq \mathbb{P}$ and $\operatorname{Thm}^{\mathbb{P}'}(T') \subseteq \operatorname{Thm}^{\mathbb{P}}(T)$; we say that an extension T of a theory T' is *simple* if $\mathbb{P} = \mathbb{P}'$; and *conservative* if $\operatorname{Thm}^{\mathbb{P}'}(T') = \operatorname{Thm}^{\mathbb{P}}(T) \cap \operatorname{VF}_{\mathbb{P}'}$,
- equivalent with a theory T' if T is an extension of T' and vice-versa.

Corollaries

From the soundness and completeness of the tableau method it follows that these syntactic definitions agree with their semantic variants.

Corollary For every theory T and propositions φ , ψ over \mathbb{P} ,

- $T \vdash \varphi$ if and only if $T \models \varphi$,
- Thm $^{\mathbb{P}}(T) = \theta^{\mathbb{P}}(T)$,
- T is inconsistent if and only if T is unsatisfiable, i.e. it has no model,
- T is complete if and only if T is semantically complete, i.e. it has a single model,
- $T, \varphi \vdash \psi$ if and only if $T \vdash \varphi \rightarrow \psi$ (Deduction theorem).

Remark Deduction theorem can be proved directly by transformations of tableaux.

Theorem on compactness

Theorem A theory T has a model iff every finite subset of T has a model.

Proof 1 The implication from left to right is obvious. If T has no model, then it is inconsistent, i.e. \bot is provable by a systematic tableau τ from T. Since τ is finite, \bot is provable from some finite $T' \subseteq T$, i.e. T' has no model. \Box

Remark This proof is based on finiteness of proofs, soundness and completeness. We present an alternative proof (applying König's lemma).

Proof 2 Let $T = \{ \varphi_i \mid i \in \mathbb{N} \}$. Consider a tree S on (certain) finite binary strings σ ordered by being a prefix. We put $\sigma \in S$ if and only if there exists an assignment v with prefix σ such that $v \models \varphi_i$ for every $i \leq \mathrm{lth}(\sigma)$.

Observation S has an infinite branch if and only if T has a model.

Since $\{\varphi_i \mid i \in n\} \subseteq T$ has a model for every $n \in \mathbb{N}$, every level in S is nonempty. Thus S is infinite and moreover binary, hence by König's lemma, S contains an infinite branch. \square

Application of compactness

A graf (V, E) is k-colorable if there exists $c \colon V \to k$ such that $c(u) \neq c(v)$ for every edge $\{u, v\} \in E$.

Theorem A countable graph G = (V, E) is k-colorable if and only if every finite subgraph of G is k-colorable.

Proof The implication \Rightarrow is obvious. Assume that every finite subgraph of G is k-colorable. Consider $\mathbb{P}=\{p_{u,i}\mid u\in V, i\in k\}$ and a theory T with axioms

$$p_{u,0} \lor \cdots \lor p_{u,k-1}$$
 for every $u \in V$, $\neg (p_{u,i} \land p_{u,j})$ for every $u \in V, i < j < k$, $\neg (p_{u,i} \land p_{v,i})$ for every $\{u, v\} \in E, i < k$.

Then G is k-colorable if and only if T has a model. By compactness, it suffices to show that every finite $T' \subseteq T$ has a model. Let G' be the subgraph of G induced by vertices u such that $p_{u,i}$ appears in T' for some i. Since G' is k-colorable by the assumption, the theory T' has a model. \square

Resolution method - introduction

Main features of the resolution method (informally)

- is the underlying method of many systems, e.g. Prolog interpreters, SAT solvers, automated deduction / verification systems, . . .
- assumes input formulas in CNF (in general, "expensive" transformation),
- works under set representation (clausal form) of formulas,
- has a single rule, so called a resolution rule,
- has no explicit axioms (or atomic tableaux), but certain axioms are incorporated "inside" via various formatting rules,
- is a refutation procedure, similarly as the tableau method; that is, it tries
 to show that a given formula (or theory) is unsatisfiable,
- has several refinements e.g. with specific conditions on when the resolution rule may be applied.

Set representation (clausal from) of CNF formulas

- A *literal* l is a prop. letter or its negation. \bar{l} is its *complementary* literal.
- A clause C is a finite set of literals ("forming disjunction"). The empty clause, denoted by □, is never satisfied (has no satisfied literal).
- A formula S is a (possibly infinite) set of clauses ("forming conjunction").
 An empty formula ∅ is always satisfied (is has no unsatisfied clause).
 Infinite formulas represent infinite theories (as conjunction of axioms).
- A (partial) assignment $\mathcal V$ is a consistent set of literals, i.e. not containing any pair of complementary literals. An assignment $\mathcal V$ is *total* if it contains a positive or negative literal for each propositional letter.
- V satisfies S, denoted by $V \models S$, if $C \cap V \neq \emptyset$ for every $C \in S$.

$$((\neg p \lor q) \land (\neg p \lor \neg q \lor r) \land (\neg r \lor \neg s) \land (\neg t \lor s) \land s) \text{ is represented by }$$

$$S = \{\{\neg p, q\}, \{\neg p, \neg q, r\}, \{\neg r, \neg s\}, \{\neg t, s\}, \{s\}\} \text{ and }$$

$$\mathcal{V} \models S \text{ for } \mathcal{V} = \{s, \neg r, \neg p\}$$

Resolution rule

Let C_1 , C_2 be clauses with $l \in C_1$, $\bar{l} \in C_2$ for some literal l. Then from C_1 and C_2 infer through the literal l the clause C, called a resolvent, where

$$C = (C_1 \setminus \{l\}) \cup (C_2 \setminus \{\bar{l}\}).$$

Equivalently, if \sqcup means union of disjoint sets.

$$\frac{C_1' \sqcup \{l\}, C_2' \sqcup \{\bar{l}\}}{C_1' \cup C_2'}$$

For example, from $\{p, q, r\}$ and $\{\neg p, \neg q\}$ we can infer $\{q, \neg q, r\}$ or $\{p, \neg p, r\}$.

Observation The resolution rule is sound; that is, for every assignment V

$$\mathcal{V} \models C_1 \text{ and } \mathcal{V} \models C_2 \quad \Rightarrow \quad \mathcal{V} \models C.$$

Remark The resolution rule is a special case of the (so called) cut rule

$$\frac{\varphi \vee \psi, \ \neg \varphi \vee \chi}{\psi \vee \chi}$$

where φ , ψ , χ are arbitrary formulas.

Resolution proof

- A resolution proof (deduction) of a clause C from a formula S is a finite sequence $C_0, \ldots, C_n = C$ such that for every i < n, we have $C_i \in S$ or C_i is a resolvent of some previous clauses,
- a clause C is (resolution) provable from S, denoted by $S \vdash_R C$, if it has a resolution proof from S,
- a (resolution) *refutation* of formula S is a resolution proof of \square from S,
- S is (resolution) *refutable* if $S \vdash_R \square$.

Theorem (soundness) If S is resolution refutable, then S is unsatisfiable.

Proof Let $S \vdash_R \square$. If it was $\mathcal{V} \models S$ for some assignment \mathcal{V} , from the soundness of the resolution proof we would have $\mathcal{V} \models \square$, which is impossible.

Resolution trees and closures

A *resolution tree* of a clause *C* from formula *S* is finite binary tree with nodes labeled by clauses so that

- (i) the root is labeled C,
- (ii) the leaves are labeled with clauses from S.
- (iii) every inner node is labeled with a resolvent of the clauses in his sons.

Observation C has a resolution tree from S if and only if $S \vdash_R C$.

A resolution closure $\mathcal{R}(S)$ of a formula S is the smallest set satisfying

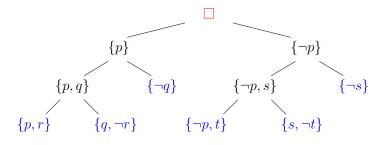
- (i) $C \in \mathcal{R}(S)$ for every $C \in S$,
- (ii) if $C_1, C_2 \in \mathcal{R}(S)$ and C is a resolvent of C_1, C_2 , then $C \in \mathcal{R}(S)$.

Observation $C \in \mathcal{R}(S)$ if and only if $S \vdash_R C$.

Remark All notions on resolution proofs can therefore be equivalently introduced in terms of resolution trees or resolution closures.

Example

Formula $((p \lor r) \land (q \lor \neg r) \land (\neg q) \land (\neg p \lor t) \land (\neg s) \land (s \lor \neg t))$ is unsatisfiable since for $S = \{\{p,r\}, \{q,\neg r\}, \{\neg q\}, \{\neg p,t\}, \{\neg s\}, \{s,\neg t\}\}$ we have $S \vdash_R \Box$.



The resolution closure of *S* (the closure of *S* under resolution) is

$$\begin{split} \mathcal{R}(S) &= \{ \{p,r\}, \{q,\neg r\}, \{\neg q\}, \{\neg p,t\}, \{\neg s\}, \{s,\neg t\}, \{p,q\}, \{\neg r\}, \{r,t\}, \\ &\{q,t\}, \{\neg t\}, \{\neg p,s\}, \{r,s\}, \{t\}, \{q\}, \{q,s\}, \Box, \{\neg p\}, \{p\}, \{r\}, \{s\}\}. \end{split}$$

Reduction by substitution

Let S be a formula and l be a literal. Let us define

$$S^l = \{C \setminus \{\bar{l}\} \mid l \notin C \in S\}.$$

Observation

- S^l is equivalent to a formula obtained from S by substituting the constant \top (true, 1) for all literals l and the constant \bot (false, 0) for all literals \bar{l} in S,
- Neither l nor \bar{l} occurs in (the clauses of) S^l .
- if $\{\bar{l}\} \in S$, then $\square \in S^l$.

Lemma *S* is satisfiable if and only if S^l or $S^{\bar{l}}$ is satisfiable.

Proof (\Rightarrow) Let $V \models S$ for some V and assume (w.l.o.g.) that $\bar{l} \notin V$.

- Then $\mathcal{V} \models S^l$ as for $l \notin C \in S$ we have $\mathcal{V} \setminus \{l, \overline{l}\} \models C$ and thus $\mathcal{V} \models C \setminus \{\overline{l}\}$.
- On the other hand (\Leftarrow), assume (w.l.o.g.) that $\mathcal{V} \models S^l$ for some \mathcal{V} .
- Since neither l nor \bar{l} occurs in S^l , we have $\mathcal{V}' \models S^l$ for $\mathcal{V}' = (\mathcal{V} \setminus \{\bar{l}\}) \cup \{l\}$.
- Then $\mathcal{V}' \models S$ since for $C \in S$ containing l we have $l \in \mathcal{V}'$ and for $C \in S$ not containing l we have $\mathcal{V}' \models (C \setminus \{\overline{l}\}) \in S^l$.

Tree of reductions

Step by step reductions of literals can be represented in a binary tree.

$$S = \{\{p\}, \{\neg q\}, \{\neg p, \neg q\}\}$$

$$S^{p} = \{\{\neg q\}\}$$

$$S^{p\bar{q}} = \{\Box\}$$

$$S^{p\bar{q}} = \emptyset$$

Corollary *S* is unsatisfiable if and only if every branch contains \Box .

Remarks Since S can be infinite over a countable language, this tree can be infinite. However, if S is unsatisfiable, by the compactness theorem there is a finite $S' \subseteq S$ that is unsatisfiable. Thus after reduction of all literals occurring in S', there will be \square in every branch after finitely many steps.

Completeness of resolution

Theorem If a finite S is unsatisfiable, it is resolution refutable, i.e. $S \vdash_R \Box$.

Proof By induction on the number of variables in *S* we show that $S \vdash_R \Box$.

- If unsatisfiable S has no variable, it is $S = \{\Box\}$ and thus $S \vdash_R \Box$,
- ullet Let l be a literal occurring in S. By Lemma, S^l and S^l are unsatisfiable.
- Since S^l and $S^{\overline{l}}$ have less variables than S, by induction there exist resolution trees T^l and $T^{\overline{l}}$ for derivation of \square from S^l resp. $S^{\overline{l}}$.
- If every leaf of T^l is in S, then T^l is a resolution tree of \square from S, $S \vdash_R \square$.
- Otherwise, by appending the literal \bar{l} to every leaf of T^l that is not in S, (and to all predecessors) we obtain a resolution tree of $\{\bar{l}\}$ from S.
- Similarly, we get a resolution tree $\{l\}$ from S by appending l in the tree $T^{\bar{l}}$.
- By resolution of roots $\{\bar{l}\}$ and $\{l\}$ we get a resolution tree of \square from S.

Corollary *If* S *is unsatisfiable, it is resolution refutable, i.e.* $S \vdash_R \Box$.

Proof Follows from the previous theorem by applying compactness.

Linear resolution - introduction

The resolution method can be significantly refined.

- A *linear proof* of a clause C from a formula S is a finite sequence of pairs $(C_0, B_0), \ldots, (C_n, B_n)$ such that $C_0 \in S$ and for every $i \leq n$
 - *i*) $B_i \in S$ or $B_i = C_i$ for some j < i, and
 - *ii*) C_{i+1} is a resolvent of C_i and B_i where $C_{n+1} = C$.
- C_0 is called a *starting* clause, C_i a *central* clause, B_i a *side* clause.
- C is *linearly provable* from $S, S \vdash_L C$, if it has a linear proof from S.
- A *linear refutation* of S is a linear proof of \square from S.
- *S* is *linearly refutable* if $S \vdash_L \Box$.

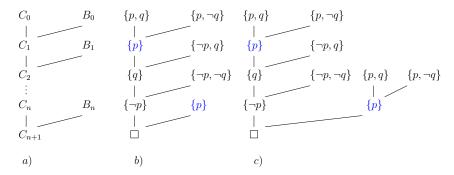
Observation (soundness) If S is linearly refutable, it is unsatisfiable.

Proof Every linear proof can be transformed to a (general) resolution proof.

Remark The completeness is preserved as well (proof omitted here).

←□ → ←□ → ←□ →

Example of linear resolution



- a) a general form of linear resolution,
- b) for $S = \{\{p,q\}, \{p,\neg q\}, \{\neg p,q\}, \{\neg p,\neg q\}\}\}$ we have $S \vdash_L \Box$,
- c) a transformation of a linear proof to a (general) resolution proof.

LI-resolution

Linear resolution can be further refined for Horn formulas as follows.

- a *Horn clause* is a clause containing at most one positive literal,
- a Horn formula is a (possibly infinite) set of Horn clauses,
- a *fact* is a (Horn) clause $\{p\}$ where p is a positive literal,
- a rule is a (Horn) clause with exactly one positive literal and at least one negative literal. Rules and facts are program clauses,
- a goal is a nonempty (Horn) clause with only negative literals.

Observation If a Horn formula S is unsatisfiable and $\square \notin S$, it contains some fact and some goal.

Proof If S does not contain any fact (goal), it is satisfied by the assignment of all propositional variables to 0 (resp. to 1).

A *linear input resolution* (*LI-resolution*) from a formula S is a linear resolution from S in which every side clause B_i is from the (input) formula S. We write $S \vdash_{LI} C$ to denote that C is provable by LI-resolution from S.