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Resolution in Prolog LI-resolution

LI-resolution
Linear resolution can be further refined for Horn formulas as follows.

a Horn clause is a clause containing at most one positive literal,
a Horn formula is a (possibly infinite) set of Horn clauses,
a fact is a (Horn) clause {p} where p is a positive literal,
a rule is a (Horn) clause with exactly one positive literal and at least one
negative literal. Rules and facts are program clauses,
a goal is a nonempty (Horn) clause with only negative literals.

Observation If a Horn formula S is unsatisfiable and � /∈ S, it contains some
fact and some goal.

Proof If S does not contain any fact (goal), it is satisfied by the assignment of
all propositional variables to 0 (resp. to 1).

A linear input resolution (LI-resolution) from a formula S is a linear resolution
from S in which every side clause Bi is from the (input) formula S. We write
S `LI C to denote that C is provable by LI-resolution from S.
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Resolution in Prolog LI-resolution

Completeness of LI-resolution for Horn formulas
Theorem If T is satisfiable Horn formula but T ∪ {G} is unsatisfiable for
some goal G, then � has a LI-resolution from T ∪ {G} with starting clause G.

Proof By the compactness theorem we may assume that T is finite.
We proceed by induction on the number of variables in T .
By Observation, T contains a fact {p} for some variable p.
By Lemma, T ′ = (T ∪ {G})p = T p ∪ {Gp} is unsatisfiable where
Gp = G \ {p}.
If Gp = �, we have G = {p} and thus � is a resolvent of G and {p} ∈ T .
Otherwise, since T p is satisfiable (by the assignment satisfying T ) and
has less variables than T , by induction assumption, there is an
LI-resolution of � from T ′ starting with Gp.
By appending the literal p to all leaves that are not in T ∪ {G} (and nodes
below) we obtain an LI-resolution of {p} from T ∪ {G} that starts with G.
By an additional resolution step with the fact {p} ∈ T we infer �.
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Resolution in Prolog LI-resolution

Example of LI-resolution

T = {{p,¬r,¬s}, {r,¬q}, {q,¬s}, {s}},

{p,¬r,¬s}

{¬q,¬s} {q,¬s}

{¬s}

{r,¬q}{¬q,¬r,¬s}

{s}

T s = {{p,¬r}, {r,¬q}, {q}}

T sq = {{p,¬r}, {r}}

T sqr = {{p}}

G = {¬p,¬q}

Gs = {¬p,¬q}

Gsq = {¬p}

Gsqr = {¬p}

Gsqrp =

{p,¬r}

{¬q} {q}

{r,¬q}{¬q,¬r}{p,¬r}

{r}{¬r}{p}

T,G `LIT s, Gs `LIT sq, Gsq `LIT sqr, Gsqr `LI

G = {¬p,¬q}
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Resolution in Prolog LI-resolution

Program in Prolog
A (propositional) program (in Prolog) is a Horn formula containing only
program clauses, i.e. facts or rules.

p :− q, r. {p,¬q,¬r}

{r}
{q,¬s}

{¬p,¬q}

p :− s.

r.

s.

?− p, q.

q ∧ r → p

s→ p

r

s

{p,¬s}

{s}
a query a goal

a program

a rule

a fact

q :− s. s→ q

We would like to know whether a given query follows from a given program.

Corollary For every program P and query (p1 ∧ . . . ∧ pn) it is equivalent that
(1) P |= p1 ∧ . . . ∧ pn,
(2) P ∪ {¬p1, . . . ,¬pn} is unsatisfiable,
(3) � has LI-resolution from P ∪ {G} starting by goal G = {¬p1, . . . ,¬pn}.
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Formal proof systems Hilbert’s calculus

Axiomatic approach
basic connectives: ¬,→ (others can be defined from them)
logical axioms (schemes of axioms):

(i) ϕ→ (ψ → ϕ)

(ii) (ϕ→ (ψ → χ))→ ((ϕ→ ψ)→ (ϕ→ χ))

(iii) (¬ϕ→ ¬ψ)→ (ψ → ϕ)

where ϕ, ψ, χ are any propositions (of a given language).
a rule of inference:

ϕ, ϕ→ ψ

ψ
(modus ponens)

A proof (in Hilbert-style) of a formula ϕ from a theory T is a finite sequence
ϕ0, . . . , ϕn = ϕ of formulas such that for every i ≤ n

ϕi is a logical axiom or ϕi ∈ T (an axiom of the theory), or
ϕi can be inferred from the previous formulas applying a rule of inference.

Remark Choice of axioms and inference rules differs in various Hilbert-style
proof systems.
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Formal proof systems Hilbert’s calculus

Example and soundness
A formula ϕ is provable from T if it has a proof from T , denoted by T `H ϕ.
If T = ∅, we write `H ϕ. E.g. for T = {¬ϕ} we have T `H ϕ→ ψ for every ψ.

1) ¬ϕ an axiom of T

2) ¬ϕ→ (¬ψ → ¬ϕ) a logical axiom (i)

3) ¬ψ → ¬ϕ by modus ponens from 1), 2)
4) (¬ψ → ¬ϕ)→ (ϕ→ ψ) a logical axiom (iii)

5) ϕ→ ψ by modus ponens from 3), 4)

Theorem For every theory T and formula ϕ, T `H ϕ ⇒ T |= ϕ.
Proof

If ϕ is an axiom (logical or from T ), then T |= ϕ (l. axioms are tautologies),
if T |= ϕ and T |= ϕ→ ψ, then T |= ψ, i.e. modus ponens is sound,
thus every formula in a proof from T is valid in T .

Remark The completeness holds as well, i.e. T |= ϕ⇒ T `H ϕ.
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Predicate Logic Introduction

Predicate logic

Deals with statements about objects, their properties and relations.

“She is intelligent and her father knows the rector.” I (x) ∧ K (f (x), r)

x is a variable, representing an object,
r is a constant symbol, representing a concrete object,
f is a function symbol, representing a function,
I , K are relation (predicate) symbols, representing relations
(the property of “being intelligent” and the relation “to know”).

“Everybody has a father.” (∀x)(∃y)(y = f (x))

(∀x) is the universal quantifier (for every x),
(∃y) is the existential quantifier (there exists y),
= is a (binary) relation symbol, representing the identity relation.
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Basic syntax of predicate logic Language

Language
A first-order language consists of

variables x, y, z, . . . , x0, x1, . . . (countable many),
the set of all variables is denoted by Var,
function symbols f , g ,h, . . . , including constant symbols c,d, . . . ,
which are nullary function symbols,
relation (predicate) symbols P,Q,R, . . . , eventually the symbol =
(equality) as a special relation symbol,
quantifiers (∀x), (∃x) for every variable x ∈ Var,
logical connectives ¬, ∧, ∨,→,↔
parentheses ( , ) , [ , ] , { , } , . . .

Every function and relation symbol S has an associated arity ar(S) ∈ N.

Remark Compared to propositional logic we have no (explicit) propositional
variables, but they can be introduced as nullary relation symbols.
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Basic syntax of predicate logic Language

Signatures

Symbols of logic are variables, quantifiers, connectives and parentheses.

Non-logical symbols are function and relation symbols except the
equality symbol. The equality is (usually) considered separately.

A signature is a pair 〈R,F〉 of disjoint sets of relation and function
symbols with associated arities, whereas none of them is the equality
symbol. A signature lists all non-logical symbols.

A language is determined by a signature L = 〈R,F〉 and by specifying
whether it is a language with equality or not. A language must contain at
least one relation symbol (non-logical or the equality).

Remark The meaning of symbols in a language is not assigned, e.g. the
symbol + does not have to represent the standard addition.
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Basic syntax of predicate logic Language

Examples of languages
We describe a language by a list of all non-logical symbols with eventual
clarification of arity and whether they are relation or function symbols.

The following examples of languages are all with equality.

L = 〈 〉 is the language of pure equality,
L = 〈ci〉i∈N is the language of countable many constants,
L = 〈≤〉 is the language of orderings,
L = 〈E〉 is the language of the graph theory,
L = 〈+,−, 0〉 is the language of the group theory,
L = 〈+,−, ·, 0, 1〉 is the language of the field theory,
L = 〈−,∧,∨, 0, 1〉 is the language of Boolean algebras,
L = 〈S,+, ·, 0,≤〉 is the language of arithmetic,

where ci, 0, 1 are constant symbols, S, − are unary function symbols,
+, · , ∧, ∨ are binary function symbols, E , ≤ are binary relation symbols.
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Basic syntax of predicate logic Terms

Terms
Are expressions representing values of (composed) functions.

Terms of a language L are defined inductively by

(i) every variable or constant symbol in L is a term,

(ii) if f is a function symbol in L of arity n > 0 and t0, . . . , tn−1 are terms,
then also the expression f (t0, . . . , tn−1) is a term,

(iii) every term is formed by a finite number of steps (i), (ii).

A ground term is a term with no variables.
The set of all terms of a language L is denoted by TermL.
A term that is a part of another term t is called a subterm of t .
The structure of terms can be represented by their formation trees.
For binary function symbols we often use infix notation, e.g.
we write (x + y) instead of +(x, y).
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Basic syntax of predicate logic Terms

Examples of terms

x

S(0) + x

S(0)

0

y

(S(0) + x) · y

a) b) y

¬(x ∧ y)

x

x ∧ y

⊥

¬(x ∧ y) ∨ ⊥

a) The formation tree of the term (S(0) + x) · y of the language of arithmetic.

b) Propositional formulas only with connectives ¬, ∧, ∨, eventually with
constants >, ⊥ can be viewed as terms of the language of Boolean
algebras.
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Basic syntax of predicate logic Formula

Atomic formulas

Are the simplest formulas.

An atomic formula of a language L is an expression R(t0, . . . , tn−1) where
R is an n-ary relation symbol in L and t0, . . . , tn−1 are terms of L.

The set of all atomic formulas of a language L is denoted by AFmL.

The structure of an atomic formula can be represented by a formation
tree from the formation subtrees of its terms.

For binary relation symbols we often use infix notation, e.g.
t1 = t2 instead of =(t1, t2) or t1 ≤ t2 instead of ≤(t1, t2).

Examples of atomic formulas

K (f (x), r), x · y ≤ (S(0) + x) · y, ¬(x ∧ y) ∨ ⊥ = ⊥.
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Basic syntax of predicate logic Formula

Formula

Formulas of a language L are defined inductively by

(i) every atomic formula is a formula,

(ii) if ϕ, ψ are formulas, then also the following expressions are formulas

(¬ϕ) , (ϕ ∧ ψ) , (ϕ ∨ ψ) , (ϕ→ ψ) , (ϕ↔ ψ),

(iii) if ϕ is a formula and x is a variable, then also the expressions ((∀x)ϕ)

and ((∃x)ϕ) are formulas.

(iv) every formula is formed by a finite number of steps (i), (ii), (iii).

The set of all formulas of a language L is denoted by FmL.

A formula that is a part of another formula ϕ is called a subformula of ϕ.

The structure of formulas can be represented by their formation trees.
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Basic syntax of predicate logic Formula

Conventions

After introducing priorities for binary function symbols e.g. + , · we are
in infix notation allowed to omit parentheses that are around a subterm
formed by a symbol of higher priority, e.g. x · y + z instead of (x · y) + z.

After introducing priorities for connectives and quantifiers we are allowed
to omit parentheses that are around subformulas formed by connectives
of higher priority.

(1) →, ↔ (2) ∧, ∨ (3) ¬, (∀x), (∃x)

They can be always omitted around subformulas formed by ¬, (∀x), (∃x).

We may also omit parentheses in (∀x) and (∃x) for every x ∈ Var.

The outer parentheses may be omitted as well.

(((¬((∀x)R(x))) ∧ ((∃y)P(y)))→ (¬(((∀x)R(x)) ∨ (¬((∃y)P(y))))))

¬∀xR(x) ∧ ∃yP(y)→ ¬(∀xR(x) ∨ ¬∃yP(y))
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Basic syntax of predicate logic Formula

An example of a formula

x

S(0) + x

S(0)

0

y

(S(0) + x) · y

x y

x · y

x · y ≤ (S(0) + x) · y

(∀x)(x · y ≤ (S(0) + x) · y)

The formation tree of the formula (∀x)(x · y ≤ (S(0) + x) · y).
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Basic syntax of predicate logic Open formulas and sentences

Occurrences of variables
Let ϕ be a formula and x be a variable.

An occurrence of x in ϕ is a leaf labeled by x in the formation tree of ϕ.

An occurrence of x in ϕ is bound if it is in some subformula ψ that starts
with (∀x) or (∃x). An occurrence of x in ϕ is free if it is not bound.

A variable x is free in ϕ if it has at least one free occurrence in ϕ.
It is bound in ϕ if it has at least one bound occurrence in ϕ.

A variable x can be both free and bound in ϕ. For example in

(∀x)(∃y)(x ≤ y) ∨ x ≤ z.

We write ϕ(x1, . . . , xn) to denote that x1, . . . , xn are all free variables
in the formula ϕ. (ϕ states something about these variables.)

Remark We will see that the truth value of a formula (in a given interpretation
of symbols) depends only on the assignment of free variables.
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Basic syntax of predicate logic Open formulas and sentences

Open and closed formulas

A formula is open if it is without quantifiers. For the set OFmL of all open
formulas in a language L it holds that AFmL ( OFmL ( FmL.

A formula is closed (a sentence) if it has no free variable; that is, all
occurrences of variables are bound.

A formula can be both open and closed. In this case, all its terms
are ground terms.

x + y ≤ 0 open, ϕ(x, y)

(∀x)(∀y)(x + y ≤ 0) a sentence,
(∀x)(x + y ≤ 0) neither open nor a sentence, ϕ(y)

1 + 0 ≤ 0 open sentence

Remark We will see that in a fixed interpretation of symbols a sentence has
a fixed truth value; that is, it does not depend on the assignment of variables.
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Basic syntax of predicate logic Instances and variants

Instances
After substituting a term t for a free variable x in a formula ϕ, we would expect
that the new formula (newly) says about t “the same” as ϕ did about x.

ϕ(x) (∃y)(x + y = 1) “there is an element 1− x”
for t = 1 we can ϕ(x/t) (∃y)(1 + y = 1) “there is an element 1− 1”
for t = y we cannot (∃y)(y + y = 1) “1 is divisible by 2”

A term t is substitutable for a variable x in a formula ϕ if substituting t for
all free occurrences of x in ϕ does not introduce a new bound occurrence
of a variable from t .

Then we denote the obtained formula ϕ(x/t) and we call it an instance of
the formula ϕ after a substitution of a term t for a variable x.

t is not substitutable for x in ϕ if and only if x has a free occurrence in
some subformula that starts with (∀y) or (∃y) for some variable y in t .

Ground terms are always substitutable.
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Basic syntax of predicate logic Instances and variants

Variants

Quantified variables can be (under certain conditions) renamed so that we
obtain an equivalent formula.

Let (Qx)ψ be a subformula of ϕ where Q means ∀ or ∃ and y is a variable
such that the following conditions hold.

1) y is substitutable for x in ψ, and
2) y does not have a free occurrence in ψ.

Then by replacing the subformula (Qx)ψ with (Qy)ψ(x/y) we obtain a variant
of ϕ in subformula (Qx)ψ. After variation of one or more subformulas in ϕ
we obtain a variant of ϕ. For example,

(∃x)(∀y)(x ≤ y) is a formula ϕ,
(∃u)(∀v)(u ≤ v) is a variant of ϕ,
(∃y)(∀y)(y ≤ y) is not a variant of ϕ, 1) does not hold,
(∃x)(∀x)(x ≤ x) is not a variant of ϕ, 2) does not hold.
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Basic semantics of predicate logic Structures

Structures

S = 〈S,≤〉 is an ordered set where ≤ is reflexive, antisymmetric,
transitive binary relation on S,

G = 〈V ,E〉 is an undirected graph without loops where V is the set of
vertices and E is irreflexive, symmetric binary relation on V (adjacency),

Zp = 〈Zp,+,−, 0〉 is the additive group of integers modulo p,

Q = 〈Q,+,−, ·, 0, 1〉 is the field of rational numbers,

P(X ) = 〈P(X ),−,∩,∪, ∅,X 〉 is the set algebra over X ,

N = 〈N, S,+, ·, 0,≤〉 is the standard model of arithmetic,

finite automata and other models of computation,

relational databases, . . .
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Basic semantics of predicate logic Structures

A structure for a language
Let L = 〈R,F〉 be a signature of a language and A be a nonempty set.

A realization (interpretation) of a relation symbol R ∈ R on A is any
relation RA ⊆ Aar(R). A realization of = on A is the relation IdA (identity).

A realization (interpretation) of a function symbol f ∈ F on A is any
function f A : Aar(f ) → A. Thus a realization of a constant symbol is
some element of A.

A structure for the language L (L-structure) is a triple A = 〈A,RA,FA〉, where

A is nonempty set, called the domain of the structure A,
RA = 〈RA | R ∈ R〉 is a collection of realizations of relation symbols,
FA = 〈f A | f ∈ F〉 is a collection of realizations of function symbols.

A structure for the language L is also called a model of the language L. The
class of all models of L is denoted by M(L). Examples for L = 〈≤〉 are

〈N,≤〉, 〈Q, >〉, 〈X ,E〉, 〈P(X ),⊆〉.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - VI WS 2014/2015 23 / 23


	Resolution in Prolog
	LI-resolution

	Formal proof systems
	Hilbert's calculus

	Predicate Logic
	Introduction

	Basic syntax of predicate logic
	Language
	Terms
	Formula
	Open formulas and sentences
	Instances and variants

	Basic semantics of predicate logic
	Structures


