Propositional and Predicate Logic - VI

Petr Gregor
KTIML MFF UK
WS 2014/2015

Petr Gregor (KTIML MFF UK)

Propositional and Predicate Logic - VI

Resolution in Prolog LI-resolution

LI-resolution
Linear resolution can be further refined for Horn formulas as follows.
@ a Horn clause is a clause containing at most one positive literal,
@ a Horn formula is a (possibly infinite) set of Horn clauses,
@ a factis a (Horn) clause {p} where p is a positive literal,
@ a ruleis a (Horn) clause with exactly one positive literal and at least one
negative literal. Rules and facts are program clauses,
@ a goal is a nonempty (Horn) clause with only negative literals.

Observation If a Horn formula S is unsatisfiable and O ¢ S, it contains some

fact and some goal.

Proof If S does not contain any fact (goal), it is satisfied by the assignment of
all propositional variables to 0 (resp. to 1). &

A linear input resolution (LI-resolution) from a formula S is a linear resolution

from S in which every side clause B; is from the (input) formula S. We write
S b1y C to denote that C is provable by LI-resolution from S.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - VI WS 2014/2015 2/23

Resolution in Prolog LI-resolution

Completeness of LI-resolution for Horn formulas

Theorem If T is satisfiable Horn formula but T U {G} is unsatisfiable for
some goal G, thenO has a Ll-resolution from T U { G} with starting clause G.

Proof By the compactness theorem we may assume that T is finite.

@ We proceed by induction on the number of variables in T.

@ By Observation, T contains a fact {p} for some variable p.

@ By Lemma, T' = (T U{G})? = TP U {GP} is unsatisfiable where
GP = G\ {p}.

@ If G =0, we have G = {p} and thus O is a resolvent of G and {p} € T.

@ Otherwise, since T? is satisfiable (by the assignment satisfying T) and
has less variables than T, by induction assumption, there is an
LI-resolution of (I from T’ starting with GP.

@ By appending the literal p to all leaves that are notin T U {G} (and nodes
below) we obtain an LI-resolution of {p} from T U {G} that starts with G.

@ By an additional resolution step with the fact {p} € T we infer . B

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - VI WS 2014/2015 3/23

Example of LI-resolution

T = {{p,~r, s} {r,~q¢}, {¢,~s}. {s}}, G ={-p,~q}

T° = {{p,~r}, {r,~a}, {a}} G={-»p-q {p - s}
| _—
7% = {{p,~r},{r}} G* ={-p,~q} {p,—r} {=q,~r,=s} {r,—q}
| | _—
T = {{p}} G* = {-p} {p,—r} {=q,=r} {r,~q} {=q¢,=s} {g,~s}
|~ | | _—
G ={-p} {p} {=r} {r} {—q} {4} {=s} {s}
|~ |~ | _— | _—
Gsrr = [O O O
s G by, O T34, G% b1, O T5,G% by O T,GFp; O
o> <& = = = 9ac

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - VI

Program in Prolog

A (propositional) program (in Prolog) is a Horn formula containing only
program clauses, i.e. facts or rules.

arule p:i—q,r. gAT =D {p,—q,—r}

pi— s. s—=p {p,—s}

q:— s. s—q {q,—s}
a fact 1. r {r}

s. s {s} a program
aquery ™—pgq {-p,~q} agodl

We would like to know whether a given query follows from a given program.

Corollary For every program P and query (p1 A ... A\ py) it is equivalent that

(1) PEpLA... A pn,
(2) PU{=p1,...,pn} is unsatisfiable,
(3) O has Ll-resolution from P U {G} starting by goal G = {-p1, ..., pn}.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - VI WS 2014/2015 5/23

Formal proof systems Hilbert's calculus

Axiomatic approach

@ basic connectives: -, — (others can be defined from them)
@ logical axioms (schemes of axioms):

(1) o= (Y —9)
(i) (p—= W —=x) = (p—=v)=(¢—x)
(iif) (mp =) = (Y —)

where ¢, ¥, x are any propositions (of a given language).
@ a rule of inference:
0, o=
(0

(modus ponens)

A proof (in Hilbert-style) of a formula o from a theory T is a finite sequence

©o, - - -, pn = Of formulas such that for every i < n
@ ¢; is a logical axiom or ¢; € T (an axiom of the theory), or

@ ; can be inferred from the previous formulas applying a rule of inference.

Remark Choice of axioms and inference rules differs in various Hilbert-style

proof systems.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - VI

Example and soundness

A formula ¢ is provable from T if it has a proof from T, denoted by T Fp .
If T =0, we write by ¢. E.g. for T = {—¢} we have T -y © — 1 for every 1.

1) - an axiomof T

2) = = (=) = =) a logical axiom (i)

3)) = —p by modus ponens from 1), 2)
4) (- = —p) = (p =) a logical axiom (iii)

5) = by modus ponens from 3), 4)

Theorem For every theory T and formula p, Tty ¢ = T E .

Proof
@ If pis an axiom (logical or from T), then T = ¢ (I. axioms are tautologies),
oifTEpand T = ¢ — ¢, then T |= ¢, i.e. modus ponens is sound,
@ thus every formula in a proof from T is validin 7.

Remark The completeness holds as well, i.e. T = = Tty .

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - VI WS 2014/2015 7/23

Predicate Logic Introduction

Predicate logic

Deals with statements about objects, their properties and relations.

“She is intelligent and her father knows the rector.” I(x) NK(f(x),1)
@ x is a variable, representing an object,

@ ris a constant symbol, representing a concrete object,

@ fis a function symbol, representing a function,

@ I, K are relation (predicate) symbols, representing relations

(the property of “being intelligent” and the relation “to know”).

“Everybody has a father.”
@ (Vx) is the universal quantifier (for every x),
@ (3Jy) is the existential quantifier (there exists y),
@ = is a (binary) relation symbol, representing the identity relation.

(V) 3Fy)(y = f(x))

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - VI WS 2014/2015 8/23

Language

A first-order language consists of

@ variables x,y,z,..., X, x1,... (countable many),
the set of all variables is denoted by Var,

@ function symbols f, g, h, ..., including constant symbols c, d, ...,
which are nullary function symbols,

@ relation (predicate) symbols P, Q, R, ..., eventually the symbol =
(equality) as a special relation symbol,

@ quantifiers (Vx), (3x) for every variable x € Var,

@ logical connectives —, A, V, =, +

@ parentheses (,),[,],{,},...

Every function and relation symbol S has an associated arity ar(S) € N.

Remark Compared to propositional logic we have no (explicit) propositional
variables, but they can be introduced as nullary relation symbols.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - VI WS 2014/2015 9/23

Signatures

@ Symbols of logic are variables, quantifiers, connectives and parentheses.

@ Non-logical symbols are function and relation symbols except the
equality symbol. The equality is (usually) considered separately.

@ A signature is a pair (R, F) of disjoint sets of relation and function
symbols with associated arities, whereas none of them is the equality
symbol. A signature lists all non-logical symbols.

@ A language is determined by a signature L = (R, F) and by specifying
whether it is a language with equality or not. A language must contain at
least one relation symbol (non-logical or the equality).

Remark The meaning of symbols in a language is not assigned, e.g. the
symbol + does not have to represent the standard addition.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - VI WS 2014/2015 10/23

Examples of languages

We describe a language by a list of all non-logical symbols with eventual
clarification of arity and whether they are relation or function symbols.

The following examples of languages are all with equality.

) is the language of pure equality,

ci)icn is the language of countable many constants,
) is the language of orderings,

E) is the language of the graph theory,

,—, 0) is the language of the group theory,

,—,-, 0, 1) is the language of the field theory,
—,/\,V,0,1) is the language of Boolean algebras,
S.+,-,0, <) is the language of arithmetic,

I |
+ + IN

® 6 6 6 6 6 o6 o
NN NN NN
I

where ¢;, 0, 1 are constant symbols, S, — are unary function symbols,
+, -, A, V are binary function symbols, E, < are binary relation symbols.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - VI WS 2014/2015 11/28

Terms

Are expressions representing values of (composed) functions.

Terms of a language L are defined inductively by

(i) every variable or constant symbol in L is a term,

(ii) if f is a function symbol in L of arity n > 0 and &, ..., t,—; are terms,

then also the expression f(t, ..., t,—1) is a term,

(ii7) every term is formed by a finite number of steps (i), (ii).

@ A ground termis a term with no variables.
@ The set of all terms of a language L is denoted by Term;.
@ Aterm that is a part of another term ¢ is called a subterm of t.
@ The structure of terms can be represented by their formation trees.
@ For binary function symbols we often use infix notation, e.g.
we write (x + y) instead of +(x, y).

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - VI WS 2014/2015

12/23

Examples of terms

(S(0) +x) -y —(zAy)V L
~ . ~ I
5(0) + z y —(z Ay) L
PN |
5(0) z T Ay
| PN
a) 0 b) = Y

a) The formation tree of the term (S5(0) + x) - y of the language of arithmetic.

b) Propositional formulas only with connectives —, A, Vv, eventually with
constants T, L can be viewed as terms of the language of Boolean
algebras.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - VI WS 2014/2015 13/23

Atomic formulas

Are the simplest formulas.

@ An atomic formula of a language L is an expression R(fy, ..., t,_1) where
R is an n-ary relation symbol in L and , ..., t,—; are terms of L.

@ The set of all atomic formulas of a language L is denoted by AFm;.

@ The structure of an atomic formula can be represented by a formation
tree from the formation subtrees of its terms.

@ For binary relation symbols we often use infix notation, e.g.
h = b instead of = (1,) or 1 < 1, instead of <(#, &).
@ Examples of atomic formulas
K(f(x),r), x-y<(S0)+x)-y, —(xAyVvL=.L1.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - VI WS 2014/2015 14/23

Formula

Formulas of a language L are defined inductively by
(i) every atomic formula is a formula,
(i7) if ¢, ¢ are formulas, then also the following expressions are formulas
(=@), (P AY) (e V), (e = ¥), (0 <),

(iii) if p is a formula and x is a variable, then also the expressions ((Vx)y)
and ((3x)p) are formulas.

(iv) every formula is formed by a finite number of steps (i), (ii), (iii).

@ The set of all formulas of a language L is denoted by Fm;.
@ A formula that is a part of another formula ¢ is called a subformula of .

@ The structure of formulas can be represented by their formation trees.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - VI WS 2014/2015 15/23

Conventions

@ After introducing priorities for binary function symbols e.g. + , - we are
in infix notation allowed to omit parentheses that are around a subterm
formed by a symbol of higher priority, e.g. x - y + z instead of (x - y) + z.

@ After introducing priorities for connectives and quantifiers we are allowed
to omit parentheses that are around subformulas formed by connectives
of higher priority.

(1) —, & (2) A,V (3) -, (Vx), (Fx)

@ They can be always omitted around subformulas formed by -, (vx), (3x).

@ We may also omit parentheses in (Vx) and (3x) for every x € Var.

@ The outer parentheses may be omitted as well.

(=((vVx)R(x))) A (EY)P(y))) = (=((VX)R(x)) V (=(EFy)P(¥))))))
—VxR(x) A dyP(y) — —(VxR(x) vV =3yP(y))

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - VI WS 2014/2015 16/23

An example of a formula

(Vo) (z -y < (S(0) +)-y)
\

-y <(S0)+=z)y

Ty (500) +)y
PN e N
T Yy S(0) + =

PN
5(0)

x
|

0

Y

Petr Gregor (KTIML MFF UK)

The formation tree of the formula (Vx)(x -y < (S(0) + x) -)

Propositional and Predicate Logic - VI

Occurrences of variables
Let ¢ be a formula and x be a variable.

@ An occurrence of x in ¢ is a leaf labeled by x in the formation tree of .

@ An occurrence of x in is bound if it is in some subformula v that starts
with (Vx) or (3x). An occurrence of x in ¢ is freeif it is not bound.

@ A variable x is free in ¢ if it has at least one free occurrence in .
It is bound in ¢ if it has at least one bound occurrence in .

@ A variable x can be both free and bound in . For example in
(vx)(Iy)(x<y)Vx <z
@ We write p(x, ..., x,) to denote that x1, ..., x, are all free variables

in the formula . (¢ states something about these variables.)

Remark We will see that the truth value of a formula (in a given interpretation
of symbols) depends only on the assignment of free variables.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - VI WS 2014/2015 18/23

Open and closed formulas

@ A formula is open if it is without quantifiers. For the set OFm;, of all open
formulas in a language L it holds that AFm; C OFm; C Fm;.

@ Aformula is closed (a sentence) if it has no free variable; that is, all
occurrences of variables are bound.

@ A formula can be both open and closed. In this case, all its terms
are ground terms.

x+y<0 open, p(x,y)
(VX)(Vy)(x+y <0) a sentence,
(Vx)(x+y<0) neither open nor a sentence, o(y)
1+0<0 open sentence

Remark We will see that in a fixed interpretation of symbols a sentence has
a fixed truth value; that is, it does not depend on the assignment of variables.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - VI WS 2014/2015 19/28

Basic syntax of predicate logic Instances and variants

Instances
After substituting a term t for a free variable x in a formula », we would expect
that the new formula (newly) says about t “the same” as ¢ did about x.

o(x) (Fy)(x+y=1) “thereis anelementl — x”
fort =1wecanye(x/t) (3y)(1+y=1) ‘thereisanelementl —1"
for t = y we cannot Gy (y+y=1) " isdivisible by 2”

@ Aterm tis substitutable for a variable x in a formula ¢ if substituting ¢ for
all free occurrences of x in ¢ does not introduce a new bound occurrence
of a variable from t.

@ Then we denote the obtained formula ¢(x/t) and we call it an instance of
the formula ¢ after a substitution of a term t for a variable x.

@ tis not substitutable for x in ¢ if and only if x has a free occurrence in
some subformula that starts with (Vy) or (3y) for some variable y in ¢.

@ Ground terms are always substitutable.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - VI WS 2014/2015 20/23

Variants

Quantified variables can be (under certain conditions) renamed so that we
obtain an equivalent formula.

Let (Qx)v be a subformula of » where Q means vV or 3 and y is a variable
such that the following conditions hold.

1) yis substitutable for x in ¢, and

2) y does not have a free occurrence in .

Then by replacing the subformula (Qx)v with (Qy)¥(x/y) we obtain a variant
of ¢ in subformula (Qx)«. After variation of one or more subformulas in ¢
we obtain a variant of ¢. For example,

Fx)(Vy)(x < y) is a formula ¢,

Fu)(Vv)(u < v) is a variant of ¢,

Gy)(vY) (¥ <) is not a variant of ¢, 1) does not hold,
(3x)(Vx)(x < x) is not a variant of ¢, 2) does not hold.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - VI WS 2014/2015 21/23

Structures

@ S = (S, <) is an ordered set where < is reflexive, antisymmetric,
transitive binary relation on S,

@ G = (V,E)is an undirected graph without loops where V is the set of
vertices and E is irreflexive, symmetric binary relation on V' (adjacency),

® 2, = (Zp,+,—,0) is the additive group of integers modulo p,
@ Q=(Q,+,—,-,0,1) is the field of rational numbers,

@ P(X) = (P(X),—,N,U,0,X) is the set algebra over X,

e N =(N,S§, +,-,0, <) is the standard model of arithmetic,

@ finite automata and other models of computation,

@ relational databases, ...

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - VI WS 2014/2015 22/23

Basic semantics of predicate logic Structures

A structure for a language
Let L = (R, F) be a signature of a language and A be a nonempty set.
@ A realization (interpretation) of a relation symbol R € R on A is any
relation R4 C A*(®) A realization of = on A is the relation Id, (identity).

@ A realization (interpretation) of a function symbol f € F on A is any
function f4: A%() — A. Thus a realization of a constant symbol is
some element of A.

A structure for the language L (L-structure) is a triple A = (A, R4, F4), where
@ Ais nonempty set, called the domain of the structure A,

@ R* = (RY| R € R) is a collection of realizations of relation symbols,
e FA = (f4|f € F)is acollection of realizations of function symbols.

A structure for the language L is also called a model of the language L. The
class of all models of L is denoted by M(L). Examples for L = (<) are

(N, <), (Q,>), (X, E), (P(X),S).

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - VI WS 2014/2015 23/23

	Resolution in Prolog
	LI-resolution

	Formal proof systems
	Hilbert's calculus

	Predicate Logic
	Introduction

	Basic syntax of predicate logic
	Language
	Terms
	Formula
	Open formulas and sentences
	Instances and variants

	Basic semantics of predicate logic
	Structures

