Propositional and Predicate Logic - VII

Petr Gregor

KTIML MFF UK

WS 2014/2015

Petr Gregor (KTIML MFF UK)

Propositional and Predicate Logic - VII

WS 2014/2015 1 / 14

イロト イヨト イヨト

Structures

- <u>S</u> = ⟨S, ≤⟩ is an ordered set where ≤ is reflexive, antisymmetric, transitive binary relation on S,
- G = ⟨V, E⟩ is an undirected graph without loops where V is the set of vertices and E is irreflexive, symmetric binary relation on V (adjacency),
- $\underline{\mathbb{Z}}_p = \langle \mathbb{Z}_p, +, -, 0 \rangle$ is the additive group of integers modulo p,
- $\mathbb{Q} = \langle \mathbb{Q}, +, -, \cdot, 0, 1 \rangle$ is the field of rational numbers,
- $\mathcal{P}(X) = \langle \mathcal{P}(X), -, \cap, \cup, \emptyset, X \rangle$ is the set algebra over X,
- $\underline{\mathbb{N}} = \langle \mathbb{N}, S, +, \cdot, 0, \leq \rangle$ is the standard model of arithmetic,
- finite automata and other models of computation,
- relational databases, . . .

A structure for a language

Let $L = \langle \mathcal{R}, \mathcal{F} \rangle$ be a signature of a language and A be a nonempty set.

- A realization (interpretation) of a relation symbol $R \in \mathcal{R}$ on A is any relation $R^A \subseteq A^{\operatorname{ar}(R)}$. A realization of = on A is the relation Id_A (identity).
- A realization (interpretation) of a function symbol $f \in \mathcal{F}$ on A is any function $f^A: A^{\operatorname{ar}(f)} \to A$. Thus a realization of a constant symbol is some element of A.

A structure for the language L (*L*-structure) is a triple $\mathcal{A} = \langle A, \mathcal{R}^A, \mathcal{F}^A \rangle$, where

- A is a nonempty set, called the *domain* of the structure \mathcal{A} ,
- $\mathcal{R}^A = \langle R^A | R \in \mathcal{R} \rangle$ is a collection of realizations of relation symbols,
- $\mathcal{F}^A = \langle f^A | f \in \mathcal{F} \rangle$ is a collection of realizations of function symbols.

A structure for the language L is also called a *model of the language L*. The class of all models of L is denoted by M(L). Examples for $L = \langle \langle \rangle$ are

 $\langle \mathbb{N}, < \rangle, \langle \mathbb{O}, > \rangle, \langle V, E \rangle, \langle \mathcal{P}(X), \subset \rangle.$

・ロト ・回 ト ・ ヨト ・ ヨ

Values of terms

Let *t* be a term of $L = \langle \mathcal{R}, \mathcal{F} \rangle$ and $\mathcal{A} = \langle A, \mathcal{R}^A, \mathcal{F}^A \rangle$ be an *L*-structure.

- A *variable assignment* over the domain A is a function $e: Var \rightarrow A$.
- The *value* $t^{A}[e]$ of the term *t* in the structure A with respect to the assignment *e* is defined by

 $x^{A}[e] = e(x)$ for every $x \in Var$,

 $(f(t_0,\ldots,t_{n-1}))^A[e]=f^A(t_0^A[e],\ldots,t_{n-1}^A[e]) \quad \text{for every } f\in\mathcal{F}.$

- In particular, for a constant symbol c we have $c^{A}[e] = c^{A}$.
- If *t* is a ground term, its value in *A* is independent on the assignment *e*.
- The value of t in A depends only on the assignment of variables in t.

For example, the value of the term x + 1 in the structure $\mathcal{N} = \langle \mathbb{N}, +, 1 \rangle$ with respect to the assignment *e* with e(x) = 2 is $(x + 1)^N[e] = 3$.

Truth values

Values of atomic formulas

Let φ be an atomic formula of $L = \langle \mathcal{R}, \mathcal{F} \rangle$ in the form $R(t_0, \ldots, t_{n-1})$,

 $\mathcal{A} = \langle A, \mathcal{R}^A, \mathcal{F}^A \rangle$ be an *L*-structure, and *e* be a variable assignment over *A*.

• The value $H^A_{at}(\varphi)[e]$ of the formula φ in the structure \mathcal{A} with respect to e is

 $H_{at}^{A}(R(t_{0},...,t_{n-1}))[e] = \begin{cases} 1 & \text{if } (t_{0}^{A}[e],...,t_{n-1}^{A}[e]) \in R^{A}, \\ 0 & \text{otherwise.} \end{cases}$ where $=^{A}$ is Id_A; that is, $H_{at}^{A}(t_{0} = t_{1})[e] = 1$ if $t_{0}^{A}[e] = t_{1}^{A}[e]$, and $H_{at}^A(t_0 = t_1)[e] = 0$ otherwise.

- If φ is a sentence; that is, all its terms are ground, then its value in \mathcal{A} is independent on the assignment e.
- The value of φ in \mathcal{A} depends only on the assignment of variables in φ .

For example, the value of φ : $x + 1 \le 1$ in $\mathcal{N} = \langle \mathbb{N}, +, 1, \le \rangle$ with respect to the assignment *e* is $H_{at}^{N}(\varphi)[e] = 1$ if and only if e(x) = 0.

・ロト ・回ト ・ヨト ・ヨト … ヨ

Values of formulas

The value $H^{A}(\varphi)[e]$ of the formula φ in the structure \mathcal{A} with respect to e is

$$\begin{split} H^{A}(\varphi)[e] &= H^{A}_{at}(\varphi)[e] \quad \text{if } \varphi \text{ is atomic,} \\ H^{A}(\neg \varphi)[e] &= -_{1}(H^{A}(\varphi)[e]) \\ H^{A}(\varphi \land \psi)[e] &= \land_{1}(H^{A}(\varphi)[e], H^{A}(\psi)[e]) \\ H^{A}(\varphi \lor \psi)[e] &= \lor_{1}(H^{A}(\varphi)[e], H^{A}(\psi)[e]) \\ H^{A}(\varphi \rightarrow \psi)[e] &= \rightarrow_{1}(H^{A}(\varphi)[e], H^{A}(\psi)[e]) \\ H^{A}(\varphi \leftrightarrow \psi)[e] &= \leftrightarrow_{1}(H^{A}(\varphi)[e], H^{A}(\psi)[e]) \\ H^{A}((\forall x)\varphi)[e] &= \min_{a \in A}(H^{A}(\varphi)[e(x/a)]) \\ H^{A}((\exists x)\varphi)[e] &= \max_{a \in A}(H^{A}(\varphi)[e(x/a)]) \end{split}$$

where $-_1$, \wedge_1 , \vee_1 , \rightarrow_1 , \leftrightarrow_1 are the Boolean functions given by the tables and e(x/a) for $a \in A$ denotes the assignment obtained from e by setting e(x) = a. *Observation* $H^A(\varphi)[e]$ depends only on the assignment of free variables in φ .

Satisfiability with respect to assignments

The structure \mathcal{A} satisfies the formula φ with assignment e if $H^A(\varphi)[e] = 1$. Then we write $\mathcal{A} \models \varphi[e]$, and $\mathcal{A} \not\models \varphi[e]$ otherwise. It holds that

Observation Let t be a term substitutable for x in φ and ψ be a variant of φ . Then for every structure A and assignment e

1)
$$\mathcal{A} \models \varphi(x/t)[e]$$
 if and only if $\mathcal{A} \models \varphi[e(x/a)]$ where $a = t^{A}[e]$,

2)
$$\mathcal{A} \models \varphi[e]$$
 if and only if $\mathcal{A} \models \psi[e]$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Validity in a structure

Let φ be a formula of a language L and A be an L-structure.

- φ is *valid* (*true*) *in the structure* A, denoted by A ⊨ φ, if A ⊨ φ[e] for every e: Var → A. We say that A satisfies φ. Otherwise, we write A ⊭ φ.
- φ is *contradictory in* \mathcal{A} if $\mathcal{A} \models \neg \varphi$; that is, $\mathcal{A} \not\models \varphi[e]$ for every $e \colon \text{Var} \to A$.
- For every formulas φ , ψ , variable x, and structure \mathcal{A}

(1)	$\mathcal{A}\models\varphi$	\Rightarrow	$\mathcal{A} \not\models \neg \varphi$
(2)	$\mathcal{A}\models\varphi\wedge\psi$	\Leftrightarrow	$\mathcal{A}\models \varphi$ and $\mathcal{A}\models \psi$
(3)	$\mathcal{A}\models\varphi\lor\psi$	\Leftarrow	$\mathcal{A}\models arphi$ or $\mathcal{A}\models \psi$
(4)	$\mathcal{A}\models\varphi$	\Leftrightarrow	$\mathcal{A} \models (\forall x) \varphi$

- If φ is a sentence, it is valid or contradictory in A, and thus (1) holds also in ⇐. If moreover ψ is a sentence, also (3) holds in ⇒.
- By (4), A ⊨ φ if and only if A ⊨ ψ where ψ is the *universal closure* of φ,
 i.e. a formula (∀x₁) · · · (∀x_n)φ where x₁, . . . , x_n are all free variables in φ.

Theory

Validity in a theory

- A theory of a language L is any set T of formulas of L (so called axioms).
- A model of a theory T is an L-structure A such that $A \models \varphi$ for every $\varphi \in T$. Then we write $\mathcal{A} \models T$ and we say that \mathcal{A} satisfies T.
- The *class of models* of a theory *T* is $M(T) = \{A \in M(L) \mid A \models T\}$.
- A formula φ is valid in T (true in T), denoted by $T \models \varphi$, if $\mathcal{A} \models \varphi$ for every model \mathcal{A} of T. Otherwise, we write $T \not\models \varphi$.
- φ is contradictory in T if $T \models \neg \varphi$, i.e. φ is contradictory in all models of T.
- φ is *independent in T* if it is neither valid nor contradictory in T.
- If $T = \emptyset$, we have M(T) = M(L) and we omit T, eventually we say *"in logic"*. Then $\models \varphi$ means that φ is (*universally*) *valid* (a *tautology*).
- A consequence of T is the set $\theta^L(T)$ of all sentences of L valid in T, i.e. $\theta^{L}(T) = \{ \varphi \in \operatorname{Fm}_{L} \mid T \models \varphi \text{ and } \varphi \text{ is a sentence} \}.$

Theory

Example of a theory

The *theory of orderings* T of the language $L = \langle \leq \rangle$ with equality has axioms

$x \leq x$	(reflexivity)
$x \leq y \land y \leq x \rightarrow x = y$	(antisymmetry)
$x \leq y \land y \leq z \rightarrow x \leq z$	(transitivity)

Models of T are L-structures (S, \leq_s) , so called ordered sets, that satisfy the axioms of T, for example $\mathcal{A} = \langle \mathbb{N}, \leq \rangle$ or $\mathcal{B} = \langle \mathcal{P}(X), \subseteq \rangle$ for $X = \{0, 1, 2\}$.

- The formula $\varphi: x \leq y \lor y \leq x$ is valid in \mathcal{A} but not in \mathcal{B} since $\mathcal{B} \not\models \varphi[e]$ for the assignment $e(x) = \{0\}, e(y) = \{1\}$, thus φ is independent in T.
- The sentence $\psi : (\exists x)(\forall y)(y \leq x)$ is valid in \mathcal{B} and contradictory in \mathcal{A} , hence it is independent in *T* as well. We write $\mathcal{B} \models \psi$, $\mathcal{A} \models \neg \psi$.
- The formula $\chi: (x \leq y \land y \leq z \land z \leq x) \rightarrow (x = y \land y = z)$ is valid in *T*, denoted by $T \models \chi$, the same holds for its universal closure.

Theory

Properties of theories

A theory T of a language L is (semantically)

- *inconsistent* if $T \models \bot$, otherwise T is *consistent* (*satisfiable*),
- complete if it is consistent and every sentence of L is valid in T or contradictory in T,
- an *extension* of a theory T' of language L' if $L' \subset L$ and $\theta^{L'}(T') \subset \theta^{L}(T)$. we say that an extension T of a theory T' is simple if L = L'; and *conservative* if $\theta^{L'}(T') = \theta^{L}(T) \cap \operatorname{Fm}_{L'}$,
- equivalent with a theory T' if T is an extension of T' and vice-versa,

Structures \mathcal{A}, \mathcal{B} for a language L are *elementarily equivalent*, denoted by $\mathcal{A} \equiv \mathcal{B}$, if they satisfy the same sentences of L.

Observation Let T and T' be theories of a language L. T is (semantically)

- (1) consistent if and only if it has a model,
- (2) complete iff it has a single model, up to elementarily equivalence,
- (3) an extension of T' if and only if $M(T) \subseteq M(T')$,
- (4) equivalent with T' if and only if M(T) = M(T').

Unsatisfiability and validity

The problem of validity in a theory can be transformed to the problem of satisfiability of (another) theory.

Proposition For every theory T and sentence φ (of the same language)

 $T, \neg \varphi$ is unsatisfiable \Leftrightarrow $T \models \varphi$.

Proof By definitions, it is equivalent that

- (1) $T, \neg \varphi$ is unsatisfiable (i.e. it has no model),
- (2) $\neg \varphi$ is not valid in any model of *T*,
- (3) φ is valid in every model of T,

(4) $T \models \varphi$. \Box

Remark The assumption that φ is a sentence is necessary for $(2) \Rightarrow (3)$. For example, the theory $\{P(c), \neg P(x)\}$ is unsatisfiable, but $P(c) \not\models P(x)$, where *P* is a unary relation symbol and *c* is a constant symbol.

◆□▶ ◆□▶ ◆ □▶ ◆ □ ▶ ● ● ● ● ●

Substructures

Let $\mathcal{A} = \langle A, \mathcal{R}^A, \mathcal{F}^A \rangle$ and $\mathcal{B} = \langle B, \mathcal{R}^B, \mathcal{F}^B \rangle$ be structures for $L = \langle \mathcal{R}, \mathcal{F} \rangle$.

We say that \mathcal{B} is an (induced) *substructure* of \mathcal{A} , denoted by $\mathcal{B} \subseteq \mathcal{A}$, if

$$\begin{array}{ll} (i) & B \subseteq A, \\ (ii) & R^B = R^A \cap B^{\operatorname{ar}(R)} \text{ for every } R \in \mathcal{R}, \\ (iii) & f^B = f^A \cap (B^{\operatorname{ar}(f)} \times B); \text{ that is, } f^B = f^A \upharpoonright B^{\operatorname{ar}(f)}, \text{ for every } f \in \mathcal{F}. \end{array}$$

A set $C \subseteq A$ is a domain of some substructure of A if and only if C is closed under all functions of A. Then the respective substructure, denoted by $A \upharpoonright C$, is said to be the *restriction* of the structure A to C.

• A set $C \subseteq A$ is *closed* under a function $f : A^n \to A$ if $f(x_0, \ldots, x_{n-1}) \in C$ for every $x_0, \ldots, x_{n-1} \in C$.

Example: $\underline{\mathbb{Z}} = \langle \mathbb{Z}, +, \cdot, 0 \rangle$ *is a substructure of* $\underline{\mathbb{Q}} = \langle \mathbb{Q}, +, \cdot, 0 \rangle$ *and* $\underline{\mathbb{Z}} = \underline{\mathbb{Q}} \upharpoonright \mathbb{Z}$. *Furthermore,* $\underline{\mathbb{N}} = \langle \mathbb{N}, +, \cdot, 0 \rangle$ *is their substructure and* $\underline{\mathbb{N}} = \mathbb{Q} \upharpoonright \mathbb{N} = \underline{\mathbb{Z}} \upharpoonright \mathbb{N}$.

・ロト ・回ト ・ヨト ・ヨト … ヨ

Generated substructure, expansion, reduct

Let $\mathcal{A} = \langle A, \mathcal{R}^A, \mathcal{F}^A \rangle$ be a structure and $X \subseteq A$. Let *B* be the smallest subset of *A* containing *X* that is closed under all functions of the structure \mathcal{A} (including constants). Then the structure $\mathcal{A} \upharpoonright B$ is denoted by $\mathcal{A}\langle X \rangle$ and is called the substructure of \mathcal{A} generated by the set *X*.

Example: for $\underline{\mathbb{Q}} = \langle \mathbb{Q}, +, \cdot, 0 \rangle$, $\underline{\mathbb{Z}} = \langle \mathbb{Z}, +, \cdot, 0 \rangle$, $\underline{\mathbb{N}} = \langle \mathbb{N}, +, \cdot, 0 \rangle$ it is $\underline{\mathbb{Q}} \langle \{1\} \rangle = \underline{\mathbb{N}}$, $\underline{\mathbb{Q}} \langle \{-1\} \rangle = \underline{\mathbb{Z}}$, and $\underline{\mathbb{Q}} \langle \{2\} \rangle$ is the substructure on all even natural numbers.

Let \mathcal{A} be a structure for a language L and $L' \subseteq L$. By omitting realizations of symbols that are not in L' we obtain from \mathcal{A} a structure \mathcal{A}' called the *reduct* of \mathcal{A} to the language L'. Conversely, \mathcal{A} is an *expansion* of \mathcal{A}' into L.

For example, $\langle \mathbb{N}, + \rangle$ is a reduct of $\langle \mathbb{N}, +, \cdot, 0 \rangle$. On the other hand, the structure $\langle \mathbb{N}, +, c_i \rangle_{i \in \mathbb{N}}$ with $c_i = i$ for every $i \in \mathbb{N}$ is the expansion of $\langle \mathbb{N}, + \rangle$ by names of elements from \mathbb{N} .