Propositional and Predicate Logic - VIII

Petr Gregor

KTIML MFF UK

WS 2014/2015

Petr Gregor (KTIML MFF UK)

Propositional and Predicate Logic - VIII

WS 2014/2015 1 / 19

イロト イヨト イヨト

Validity in a substructure

Let \mathcal{B} be a substructure of a structure \mathcal{A} for a (fixed) language L. **Proposition** For every open formula φ and assignment $e \colon \text{Var} \to B$, $\mathcal{A} \models \varphi[e]$ if and only if $\mathcal{B} \models \varphi[e]$.

Proof For atomic φ it follows from the definition of the truth value with respect to an assignment. Otherwise by induction on the structure of the formula.

Corollary For every open formula φ and structure A,

 $\mathcal{A} \models \varphi$ if and only if $\mathcal{B} \models \varphi$ for every substructure $\mathcal{B} \subseteq \mathcal{A}$.

• A theory *T* is *open* if all axioms of *T* are open.

Corollary Every substructure of a model of an open theory *T* is a model of *T*.

For example, every substructure of a graph, i.e. a model of theory of graphs, is a graph, called a subgraph. Similarly subgroups, Boolean subalgebras, etc.

・ロン ・回 と ・ 回 と

Theorem on constants

Theorem Let φ be a formula in a language *L* with free variables x_1, \ldots, x_n and let *T* be a theory in *L*. Let *L'* be the extension of *L* with new constant symbols c_1, \ldots, c_n and let *T'* denote the theory *T* in *L'*. Then

 $T \models \varphi$ if and only if $T' \models \varphi(x_1/c_1, \dots, x_n/c_n)$.

Proof (\Rightarrow) If \mathcal{A}' is a model of T', let \mathcal{A} be the reduct of \mathcal{A}' to L. Since $\mathcal{A} \models \varphi[e]$ for every assignment e, we have in particular

 $\mathcal{A} \models \varphi[e(x_1/c_1^{A'}, \dots, x_n/c_n^{A'})], \text{ i.e. } \mathcal{A}' \models \varphi(x_1/c_1, \dots, x_n/c_n).$

(\Leftarrow) If \mathcal{A} is a model of T and e an assignment, let \mathcal{A}' be the expansion of A into L' by setting $c_i^{\mathcal{A}'} = e(x_i)$ for every *i*. Since $\mathcal{A}' \models \varphi(x_1/c_1, \ldots, x_n/c_n)[e']$ for every assignment e', we have

$$\mathcal{A}' \models \varphi[e(x_1/c_1^{A'}, \dots, x_n/c_n^{A'})], \text{ i.e. } \mathcal{A} \models \varphi[e].$$

・ロト ・回ト ・ヨト ・ヨト … ヨ

Boolean algebras

The theory of *Boolean algebras* has the language $L = \langle -, \wedge, \vee, 0, 1 \rangle$ with equality and the following axioms.

 $x \wedge (y \wedge z) = (x \wedge y) \wedge z$ (asociativity of \wedge) $x \lor (y \lor z) = (x \lor y) \lor z$ (asociativity of \lor) (commutativity of \wedge) $x \wedge y = y \wedge x$ (commutativity of \lor) $x \lor y = y \lor x$ $x \land (y \lor z) = (x \land y) \lor (x \land z)$ (distributivity of \land over \lor) $x \lor (y \land z) = (x \lor y) \land (x \lor z)$ (distributivity of \lor over \land) $x \wedge (x \vee y) = x, \quad x \vee (x \wedge y) = x$ $x \lor (-x) = 1, \quad x \land (-x) = 0$ $0 \neq 1$

(absorption) (complementation) (non-triviality)

The smallest model is $\underline{2} = \langle 2, -1, \wedge_1, \vee_1, 0, 1 \rangle$. Finite Boolean algebras are (up to isomorphism) exactly ${}^{n}2 = \langle {}^{n}2, -n, \wedge_{n}, \vee_{n}, 0_{n}, 1_{n} \rangle$ for $n \in \mathbb{N}^{+}$, where the operations (on binary n-tuples) are the coordinate-wise operations of 2.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Relations of propositional and predicate logic

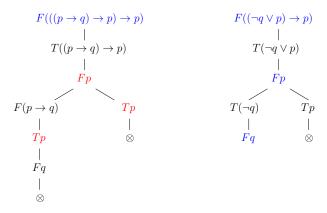
- Propositional formulas over connectives ¬, ∧, ∨ (eventually with ⊤, ⊥) can be viewed as Boolean terms. Then the truth value of φ in a given assignment is the value of the term in the Boolean algebra 2.
- Lindenbaum-Tarski algebra over \mathbb{P} is Boolean algebra (also for \mathbb{P} infinite).
- If we represent atomic subformulas in an open formula φ (without equality) with propositional letters, we obtain a proposition that is valid if and only if φ is valid.
- Propositional logic can be introduced as a fragment of predicate logic using nullary relation symbols (*syntax*) and nullary relations (*semantics*) since A⁰ = {∅} = 1, so R^A ⊆ A⁰ is either R^A = ∅ = 0 or R^A = {∅} = 1.

Introduction

Tableau method in propositional logic - a review

- A tableau is a binary tree that represents a search for a counterexample.
- Nodes are labeled by entries, i.e. formulas with a sign T / F that represents an assumption that the formula is true / false in some model.
- If this assumption is correct, then it is correct also for all the entries in some branch below that came from this entry.
- A branch is contradictory (it fails) if it contains $T\psi$, $F\psi$ for some ψ .
- A proof of formula φ is a contradictory tableau with root $F\varphi$, i.e. a tableau in which every branch is contradictory. If φ has a proof, it is valid.
- If a counterexample exists, there will be a branch in a finished tableau that provides us with this counterexample, but this branch can be infinite.
- We can construct a systematic tableau that is always finished.
- If φ is valid, the systematic tableau for φ is contradictory, i.e. it is a proof of φ ; and in this case, it is also finite.

Tableau method in propositional logic - examples



- *a*) A tableau proof of the formula $((p \rightarrow q) \rightarrow p) \rightarrow p$.
- *b*) A finished tableau for $(\neg q \lor p) \to p$. The left branch provides us with a counterexample v(p) = v(q) = 0.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Tableau method in predicate logic - what is different

- Formulas in entries will always be sentences (closed formulas), i.e. formulas without free variables.
- We add new atomic tableaux for quantifiers.
- In these tableaux we substitute ground terms for quantified variables following certain rules.
- We extend the language by new (auxiliary) constant symbols (countably many) to represent *"witnesses"* of entries $T(\exists x)\varphi(x)$ and $F(\forall x)\varphi(x)$.
- In a finished branch containing an entry $T(\forall x)\varphi(x)$ or $F(\exists x)\varphi(x)$ we have instances $T\varphi(x/t)$ resp. $F\varphi(x/t)$ for every ground term t (of the extended language).

Assumptions

1) The formula φ that we want to prove (or refute) is a sentence. If not, we can replace φ with its universal closure φ' , since for every theory *T*,

 $T \models \varphi$ if and only if $T \models \varphi'$.

 We prove from a theory in a closed form, i.e. every axiom is a sentence. By replacing every axiom ψ with its universal closure ψ' we obtain an equivalent theory since for every structure A (of the given language L),

 $\mathcal{A} \models \psi$ if and only if $\mathcal{A} \models \psi'$.

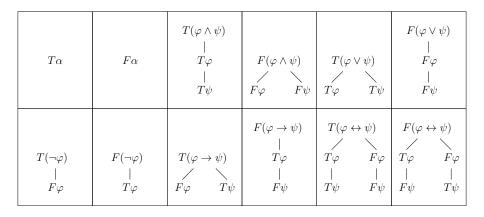
- 3) The language *L* is at most countable. Then every theory of *L* is at most countable. We denote by L_C the extension of *L* by new constant symbols c_0, c_1, \ldots (countably many). Then there are countable many ground terms of L_C . Let t_i denote the *i*-th ground term (in some fixed enumeration).
- 4) *First, we assume that the language is without equality.*

Tableaux in predicated logic - examples

$$\begin{array}{ccccc} F((\exists x) \neg P(x) \rightarrow \neg (\forall x) P(x)) & F(\neg (\forall x) P(x) \rightarrow (\exists x) \neg P(x)) \\ & & & & & \\ T(\exists x) \neg P(x) & & & & \\ T(\exists x) \neg P(x) & & & & \\ F(\neg (\forall x) P(x)) & & F(\exists x) \neg P(x) \\ & & & & & \\ F(\forall x) P(x) & & & F(\forall x) P(x) \\ & & & & & \\ T(\neg P(c)) & c & \text{new} & & FP(d) & d & \text{new} \\ & & & & & \\ FP(c) & & & F(\exists x) \neg P(x) \\ & & & & & \\ T(\forall x) P(x) & & & F(\neg P(d)) \\ & & & & & \\ & & & & \\ & & & & \\ \end{array}$$

Atomic tableaux - original

An *atomic tableau* is one of the following trees (labeled by entries), where α is any atomic sentence and φ , ψ are any sentences, all of language L_C .



<ロ> <同> <同> < 回> < 回> < 回> = 三

Atomic tableaux - new

Atomic tableaux are also the following trees (labeled by entries), where φ is any formula of the language L_C with a free variable x, t is any ground term of L_C and c is a new constant symbol from $L_C \setminus L$.

$ \stackrel{\sharp}{=} T(\forall x)\varphi(x) $	$ * F(\forall x)\varphi(x) $	$* T(\exists x)\varphi(x)$	$\stackrel{\sharp}{=} F(\exists x)\varphi(x)$
 $T\varphi(x/t)$	$ F\varphi(x/c)$	 $T\varphi(x/c)$	 $F\varphi(x/t)$
for any ground term t of L_C	for a new constant c	for a new constant c	for any ground term t of L_C

Remark The constant symbol *c* represents a "witness" of the entry $T(\exists x)\varphi(x)$ or $F(\forall x)\varphi(x)$. Since we need that no prior demands are put on *c*, we specify (in the definition of a tableau) which constant symbols *c* may be used.

Tableau

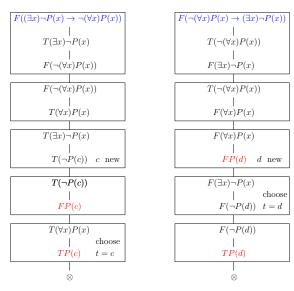
A *finite tableau* from a theory T is a binary tree labeled with entries described

- (*i*) every atomic tableau is a finite tableau from *T*, whereas in case (*) we may use any constant symbol $c \in L_C \setminus L$,
- (*ii*) if *P* is an entry on a branch *V* in a finite tableau from *T*, then by adjoining the atomic tableau for *P* at the end of branch *V* we obtain (again) a finite tableau from *T*, whereas in case (*) we may use only a constant symbol $c \in L_C \setminus L$ that does not appear on *V*,
- (*iii*) if *V* is a branch in a finite tableau from *T* and $\varphi \in T$, then by adjoining $T\varphi$ at the end of branch *V* we obtain (again) a finite tableau from *T*.

(iv) every finite tableau from T is formed by finitely many steps (i), (ii), (iii).

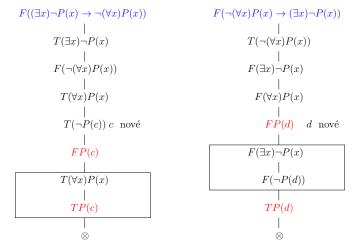
A *tableau* from *T* is a sequence $\tau_0, \tau_1, \ldots, \tau_n, \ldots$ of finite tableaux from *T* such that τ_{n+1} is formed from τ_n by (*ii*) or (*iii*), formally $\tau = \cup \tau_n$.

Construction of tableaux



イロト イヨト イヨト イヨト

Convention



We will not write the entry that is expanded again on the branch, except in cases when the entry is in the form of $T(\forall x)\varphi(x)$ or $F(\exists x)\varphi(x)$.

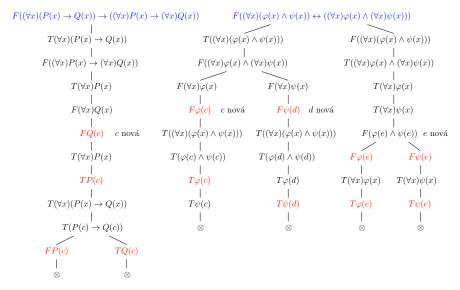
Proof

Tableau proofs

- A branch V in a tableau τ is *contradictory* if it contains entries $T\varphi$ and $F\varphi$ for some sentence φ , otherwise V is *noncontradictory*.
- A tableau τ is contradictory if every branch in τ is contradictory.
- A *tableau proof* (*proof by tableau*) of a sentence φ from a theory T is a contradictory tableau from T with $F\varphi$ in the root.
- A sentence φ is (tableau) provable from T, denoted by $T \vdash \varphi$, if it has a tableau proof from T.
- A *refutation* of a sentence φ by *tableau* from a theory T is a contradictory tableau from T with the root entry $T\varphi$.
- A sentence φ is (tableau) refutable from T if it has a refutation by tableau from T, i.e. $T \vdash \neg \varphi$.

Proof

Examples



Finished tableaux

A finished noncontradictory branch should provide us with a counterexample. An occurrence of an entry P in a node v of a tableau τ is *i*-th if v has exactly i-1 predecessors labeled by P; and is *reduced* on a branch V through v if

- *a*) *P* is neither in form of $T(\forall x)\varphi(x)$ nor $F(\exists x)\varphi(x)$ and *P* occurs on *V* as a root of an atomic tableau, i.e. it was already expanded on *V*, or
- *b) P* is in form of $T(\forall x)\varphi(x)$ or $F(\exists x)\varphi(x)$, *P* has an (i + 1)-th occurrence on *V*, and *V* contains an entry $T\varphi(x/t_i)$ resp. $F\varphi(x/t_i)$ where t_i is the *i*-th ground term (of the language L_C).
- Let V be a branch in a tableau τ from a theory T. We say that
 - V is *finished* if it is contradictory, or every occurrence of an entry on V is reduced on V and, moreover, V contains Tφ for every φ ∈ T,
 - τ is *finished* if every branch in τ is finished.

Systematic tableaux - construction

Let *R* be an entry and $T = \{\varphi_0, \varphi_1, \dots\}$ be a (possibly infinite) theory.

- (1) We take the atomic tableau for *R* as τ_0 . In case (*) we choose any $c \in L_C \setminus L$, in case (\sharp) we take t_1 for *t*. Till possible, proceed as follows.
- (2) Let *v* be the leftmost node in the smallest level as possible in tableau τ_n containing an occurrence of an entry *P* that is not reduced on some noncontradictory branch through *v*. (If *v* does not exist, we take $\tau'_n = \tau_n$.)
- (3*a*) If *P* is neither $T(\forall x)\varphi(x)$ nor $F(\exists x)\varphi(x)$, let τ'_n be the tableau obtained from τ_n by adjoining the atomic tableau for *P* to every noncontradictory branch through v. In case (*) we choose c_i for the smallest possible *i*.
- (3b) If *P* is $T(\forall x)\varphi(x)$ or $F(\exists x)\varphi(x)$ and it has *i*-th occurrence in v, let τ'_n be the tableau obtained from τ_n by adjoining atomic tableau for *P* to every noncontradictory branch through v, where we take the term t_i for *t*.
 - (4) Let τ_{n+1} be the tableau obtained from τ'_n by adjoining $T\varphi_n$ to every noncontradictory branch that does not contain $T\varphi_n$ yet. (If φ_n does not exist, we take $\tau_{n+1} = \tau'_n$.)

The systematic tableau for R from T is the result $\tau = \bigcup \tau_n$ of this construction,