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Extensions of theories Extensions by definitions

Extensions of theories
We show that introducing new definitions has only an “auxiliary character”.

Proposition Let T be a theory of L and T’ be a theory of L' where L C L'.
(i) T’ is an extension of T if and only if the reduct A of every model A’ of
T’ to the language L is a model of T,
(ii) T' is a conservative extension of T if T' is an extension of T and every
model A of T can be expanded to the language L' on a model A’ of T'.
Proof
(i)a) If T" is an extension of T and ¢ is any axiom of T, then T’ |= . Thus
A’ = p and also A = ¢, which implies that A is a model of T.

(i)b) If Ais a model of T and T |= ¢ where ¢ is of L, then A |= ¢ and also
A’ |E ¢. This implies that T' = ¢ and thus T is an extension of T.

(ii) If T' = ¢ where ¢ is of L and A is a model of T, then in its expansion A’
that models T” we have A’ = ¢. Thus also A = ¢, and hence T = .
Therefore T’ is conservative. [
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Extensions of theories Extensions by definitions

Extensions by definition of a relation symbol
Let T be a theory of L, ¢(x1, ..., x,) be a formula of L in free variables
x1,..., X%, and L' denote the language L with a new n-ary relation symbol R.

The extension of T by definition of R with the formula ¢ is the theory T’ of L’
obtained from T by adding the axiom

R(xt, .., %0) (X1, %)

Observation Every model of T can be uniquely expanded to a model of T'.

Corollary T’ is a conservative extension of T.

Proposition For every formula ¢’ of L' thereis ¢ of Ls.t. T' = ¢’ < .

Proof Replace each subformula R(f,,...,t,) in o with ¢/ (x1 /61, ..., X0/ 1),
where ¢’ is a suitable variant of ) allowing all substitutions. [

For example, the symbol < can be defined in arithmetics by the axiom
x<y + (F)(x+z=y)
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Extensions of theories Extensions by definitions

Extensions by definition of a function symbol

Let T be a theory of a language L and (x, ..., Xx,,y) be a formula of Lin
free variables x, ..., x,, y such that

TE@vx,...,xnY) (existence)
TEYVX,. ..., XnY) N Y(x,...,Xn,2) — Yy=2 (uniqueness)
Let L’ denote the language L with a new n-ary function symbol f.

The extension of T by definition of f with the formula ¢ is the theory T’ of L’
obtained from T by adding the axiom

fx,....x0) =y < Y(x1,...,%n,Y)

Remark In particular, if is t(x,,...,x,) =y where t is aterm and xi, ..., X,
are the variables in t, both the conditions of existence and uniqueness hold.

For example binary — can be defined using + and unary — by the axiom
X—y=2z < x+(-y)=2
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Extensions by definition of a function symbol (cont.)

Observation Every model of T can be uniquely expanded to a model of T'.

Corollary T’ is a conservative extension of T.

Proposition For every formula ' of L' thereis p of L s.t. T' |= ¢’ <> .

Proof It suffices to consider ¢’ with a single occurrence of f. If ¢’ has more,

we may proceed inductively. Let o* denote the formula obtained from ¢’ by

replacing the term f(#, ..., ;) with a new variable z. Let ¢ be the formula

F=) (¢ A Y (a/h, ... Xn/tn, ¥/7)),

where ¢’ is a suitable variant of ) allowing all substitutions.

Let A be a model of T, e be an assignment, and a = (1, ..., t,)[e]. By the

two conditions, A = ¢/(x1 /4, ..., X,/ 1y, ¥/2)|e€] if and only if e(z) = a. Thus
AEyle & AEyle(z/a) & AR

for every assignmente,ie. AE ¢ & pandso T = ¢ < . O
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Extensions by definitions

A theory T’ of L' is called an extension of a theory T of L by definitions if it is
obtained from T by successive definitions of relation and function symbols.
Corollary Let T’ be an extension of a theory T by definitions. Then

@ every model of T can be uniquely expanded to a model of T’,

@ T’ is a conservative extension of T,

@ for every formula o' of L' there is a formula ¢ of L such that T' = ¢’ <> .
Forexample, in T = {(3y)(x+y=0),(x+y=0)A(x+2=0) - y=2z} of
L = (+,0, <) with equality we can define < and unary — by the axioms

—X=) < x+y=0
X<y < x<yA-(x=Y)
Then the formula —x < y is equivalent in this extension to a formula
(F2)((z<y A =(z=Yy)) AN x+2=0).

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - X WS 2014/2015 6/21



Equisatisfiability
We will see that the problem of satisfiability can be reduced to open theories.
@ Theories T, T’ are equisatisfiable if T has a model < T’ has a model.

@ Aformula ¢ is in the prenex (normal) form (PNF) if it is written as
(Qix1) ... (ann)’vo/-,
where Q; denotes V or 3, variables xi, . .., x, are all distinct and ¢’ is an
open formula, called the matrix. (Q1x1) ... (Qnxy) is called the prefix.

@ In particular, if all quantifiers are Vv, then ¢ is a universal formula.

To find an open theory equisatisfiable with T we proceed as follows.
(1) We replace axioms of T by equivalent formulas in the prenex form.

(2) We transform them, using new function symbols, to equisatisfiable
universal formulas, so called Skolem variants.

(3) We take their matrices as axioms of a new theory.
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Conversion rules for quantifiers

Let Q denote V or 3 and let Q denote the complementary quantifier.
For every formulas ¢, ¥ such that x in not free in the formula «,

= ~(Qx)p < (Qx)=yp
<~

<~

=
=
= (Qx)p =7
= (W= (Qre
The above equivalences can be verified semantically or proved by the tableau
method (by taking the universal closure if it is not a sentence).

<

<~

Remark The assumption that x is not free in 1) is necessary in each rule
above (except the first one) for some quantifier Q. For example,

7 ((Ex)P(x) A P(x)) < (3x)(P(x) A P(x))
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Skolemization Prenex normal form

Conversion to the prenex normal form

Proposition Let ¢’ be the formula obtained from ¢ by replacing some
occurrences of a subformula ) with'. If T =1 < ¢/, then T |= ¢ <> ¢'.

Proof Easily by induction on the structure of the formula . O

Proposition For every formula ¢ there is an equivalent formula ¢’ in the
prenex normal form, i.e. = ¢ + ¢'.

Proof By induction on the structure of ¢ applying the conversion rules for
quantifiers, replacing subformulas with their variants if needed, and applying
the above proposition on equivalent transformations. [

For example, ((V2)P(x,2) AN P(y,2)) — —(3x)P(x,y)
(Vu)P(x,u) NP(y,2)) — (Vx)=P(x,y)
(Vu)(P(x,u) N P(y,2)) — (Yv)=P(v,y)
(Fu)((P(x,u) A P(y,z)) — (Vv)=P(v,y))
(Fu)(Vv)((P(x, u) A P(y,z)) = —P(v,y))
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Skolem variants

Let © be a sentence of a language L in the prenex normal form, let y1, ..., y,
be the existentially quantified variables in ¢ (in this order), and for every i < n
let xi, ..., x,, be the variables that are universally quantified in ¢ before y;.
Let L’ be an extension of L with new n;-ary function symbols f; for all i < n.

Let s denote the formula of L’ obtained from ¢ by removing all (3y;)’s from
the prefix and by replacing each occurrence of y; with the term fi(xi,. .., x,,).
Then g is called a Skolem variant of .

For example, for the formula ¢
(Fy1) (V1) (Vxz) (Fy2) (Vs ) R(y1, X1, Xz, Yo, X3)
the following formula s is a Skolem variant of ¢
(V1) (Vx2) (VX3) R(fi, X1, Xz, fo (X1, X2), %3),
where f is a new constant symbol and f> is a new binary function symbol.
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Properties of Skolem variants

Lemma Let ¢ be a sentence (Vx;) ... (Vx,)(3y)w of L and ¢’ be a sentence
(Vxy) ... (Vxu)0(y/f(x1,...,x,)) where f is a new function symbol. Then

(1) the reduct A of every model A’ of ¢’ to the language L is a model of ¢,
(2) every model A of ¢ can be expanded into a model A’ of ¢'.

Remark Compared to extensions by definition of a function symbol, the
expansion in (2) does not need to be unique now.

Proof (1) Let A’ = ¢ and A be the reduct of A’ to L. Since A = v[e(y/a)
for every assignment e where a = (f(x1,. ..., x,))" [e], we have also A = .
(2) Let A = . There exists a function f4: A" — A such that for every
assignment e it holds A = 1[e(y/a)] where a = f4(e(x), ..., e(x,)), and thus
the expansion A’ of A by the function f4 is a model of ¢'. [J

Corollary If ¢’ is a Skolem variant of , then both statements (1) and (2)
hold for ¢, ¢’ as well. Hence ¢, ¢’ are equisatisfiable.
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Skolem’s theorem

Theorem Every theory T has an open conservative extension T*.
Proof We may assume that T is in a closed form. Let L be its language.
@ By replacing each axiom of T with an equivalent formula in the prenex
normal form we obtain an equivalent theory T°.

@ By replacing each axiom of T° with its Skolem variant we obtain a theory
T’ in an extended language L' O L.

@ Since the reduct of every model of T’ to the language L is a model of T,
the theory T’ is an extension of T.

@ Furthermore, since every model of T can be expanded to a model of T7,
it is a conservative extension.

@ Since every axiom of T’ is a universal sentence, by replacing them
with their matrices we obtain an open theory T* equivalentto 77. [

Corollary For every theory there is an equisatisfiable open theory.
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Reduction of unsatisfiability to propositional logic

If an open theory is unsatisfiable, we can demonstrate it “via ground terms”.
For example, in the language L = (P, R, f, c) the theory
T ={P(x,y)VR(x,y), =P(c,y), ~R(x,f(x))}

is unsatisfiable, and this can be demonstrated by an unsatisfiable conjunction
of finitely many instances of (some) axioms of T in ground terms

(P(c,f(c)) V R(c.f(c))) A =P(c,f(c)) A =R(c.f(c)),
which may be seen as an unsatisfiable propositional formula

(pvr) A=p A T

Aninstance p(x;/t, ..., x,/t,) of an open formula ¢ in free variables
X1,...,Xp s @ ground instance if all terms 11, ..., t, are ground terms (i.e.
terms without variables).
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Herbrand model

Let L = (R, F) be a language with at least one constant symbol. (/f needed,
we add a new constant symbol to L.)

@ The Herbrand universe for L is the set of all ground terms of L.
For example, for L = (P, f, c) with f binary function sym., ¢ constant sym.

A= {c.fle,¢). f(f(c,¢), ). f(e.f(e. ). f(flc, ). f(c, ).}

@ An L-structure A is a Herbrand structure if its domain A is the Herbrand
universe for L and for each n-ary function symbol f € F, t;,...,t, € A,

A, ... t)=f(t,..., t)
(including n = 0, i.e. ¢ = ¢ for every constant symbol c).
Remark Compared to a canonical model, the relations are not specified.
E.g. A= (A PA fA ¢t with PA =0, ¢! = ¢, fA(c,c) = f(c,c0), ...
@ A Herbrand model of a theory T is a Herbrand structure that models T.
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Herbrand’s theorem

Theorem Let T be an open theory of a language L without equality and with
at least one constant symbol. Then
(a) either T has a Herbrand model, or

(b) there are finitely many ground instances of axioms of T whose
conjunction is unsatisfiable, and thus T has no model.

Proof Let T’ be the set of all ground instances of axioms of T. Consider a
finished (e.g. systematic) tableau  from T’ in the language L (without adding
new constant symbols) with the root entry F1.

@ If the tableau 7 contains a noncontradictory branch V, the canonical
model from V is a Herbrand model of T.

@ Else, 7 is contradictory, i.e. T’ - L. Moreover, 7 is finite, so L is provable
from finitely many formulas of 7", i.e. their conjunction is unsatisfiable. [

Remark If the language L is with equality, we extend T to T* by axioms of
equality for L and if T* has a Herbrand model A, we take its quotient by =4.
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Corollaries of Herbrand’s theorem

Let L be a language containing at least one constant symbol.

Corollary For every open o(x1,...,x,) of L, the formula (3x,) ... (3x,)p is
valid if and only if there exist mn ground terms t;; of L for some m such that

is a (propositional) tautology.

Proof (3x1)...(3x,)pis valid < (Vx;) ... (Vx,)— is unsatisfiable < —p is
unsatisfiable. The rest follows from Herbrand’s theorem for {—¢}. O

Corollary An open theory T of L is satisfiable if and only if the theory T’
of all ground instances of axioms of T is satisfiable.

Proof If T has a model A, every instance of each axiom of T is valid in A,
thus A is a model of T". If T is unsatisfiable, by H. theorem there are (finitely)
formulas of T” whose conjunction is unsatisfiable, thus T’ is unsatisfiable. [
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Resolution method in predicate logic - introduction

@ A refutation procedure - its aim is to show that a given formula (or theory)
is unsatisfiable.

@ It assumes open formulas in CNF (and in clausal form).
A literal is (now) an atomic formula or its negation.
A clause is a finite set of literals, (J denotes the empty clause.
A formula (in clausal form) is a (possibly infinite) set of clauses.

Remark Every formula (theory) can be converted to an equisatisfiable
open formula (theory) in CNF, and then to a formula in clausal form.

@ The resolution rule is more general - it allows to resolve through literals
that are unifiable.

@ Resolution in predicate logic is based on resolution in propositional logic
and unification.
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Reduction to propositional level (grounding)

Herbrand'’s theorem gives us the following (inefficient) method.
@ Let S be the (input) formula in clausal form.
@ We can assume that the language contains at least one constant symbol.
@ Let S’ be the set of all ground instances of all clauses from S.

@ By introducing propositional letters representing atomic sentences we
may view S’ as a (possibly infinite) propositional formula in clausal form.

@ We may verify that it is unsatisfiable by resolution on propositional level.

For example, for S = {{P(x,y),R(x,y)},{—-P(c,y)},{-R(x, f(x))}} the set

§" = {{P(c,c),R(c, o)}, {P(c, f(c)), R(c, f(e)}, {P(f(c), f(c), R(f(c). f(e))} -,
{=P(c, )}, {=P(c, f(c)},- .. {~R(c, f(e)}, {-R(f(e), f(f(c))}- - }

is unsatisfiable since on propositional level

8" 2 {{P(c.f(c), R(c. f(e)} {~P(c, f(e)}, {=R(c. f(¢)}} Fr O
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Resolution in predicate logic - an example

But we do not know which ground instances to use. Instead, we proceed on
a higher level applying substitutions that unify literals to be resolved.

Consider T = {—=P(x,x), P(x,y) = P(y,x), P(x,y) NP(y,z) = P(x,2)}.
Is T = (3x)-P(x,f(x)) ? Equivalently, is the following T’ unsatisfiable?
T = {{_‘P(xv X)}, {—\P(x, y) P(y X)}, {_‘P(x7 J/)/ _‘P(yv Z)'/ P(xv Z)}7 {P(Xf(X))}}

0
T bpOl /x’/x \

{P(x,2)} {=P(',2")}

f@), 2}

(P
R @

{=P(z,y), =Py, 2), P(x,2)} AP, (@)}  {=P(zy), Ply,x)}  {P( f(=)}
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Hilbert’s calculus in predicate logic

@ basic connectives and quantifier: -, —, (Vx) (others are derived)
@ allows to prove any formula (not just sentences)
@ logical axioms (schemes of axioms):

(1) o= =9
(i) (p—=> W —=x) = (e—=9) = (p—x)
(iii) (= ) = (Y = )
(iv) (Vx)p = p(x/1) if ¢ is substitutable for x to ¢

(v) (Vx)(p = ) = (p — (Vx)y) if xis notfreein ¢
where ¢, 1, x are any formulas (of a given language), ¢ is any term,
and x is any variable

@ in a language with equality we include also the axioms of equality
@ rules of inference
W (modus ponens), v (generalization)

(Vx)ep
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Hilbert-style proofs

A proof (in Hilbert-style) of a formula ¢ from a theory T is a finite sequence
©o, - - -, pn =  of formulas such that for every i < n

@ ¢; is alogical axiom or ¢; € T (an axiom of the theory), or

@ ¢; can be inferred from the previous formulas applying a rule of inference.

A formula ¢ is provable from T if it has a proof from T, denoted by T g .

Theorem (soundness) Forevery theory T and formula o, Tty ¢ = T |E .
Proof
@ If pis an axiom (logical or from T), then T = ¢ (l. axioms are tautologies),
oifTEypand T = ¢ — ¢, then T =1, i.e. modus ponens is sound,
o if T |= ¢, then T |= (Vx)y, i.e. generalization is sound,
@ thus every formula in a proof from T isvalidin T. [

Remark The completeness holds as well, i.e. T = ¢ = T by .
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