Predicate and Propositional Logic - Seminar 5

Nov 3, 2014

- 1. Applying tableau method prove the following propositions or find counterexamples
 - (a) $\{\neg q, p \lor q\} \models p$,
 - (b) $\{q \to p, r \to q, (r \to p) \to s\} \models s$,
 - (c) $\{p \to r, p \lor q, \neg s \to \neg q\} \models r \to s.$
- 2. Applying tableau method determine all models of the following theories.
 - (a) $\{(\neg p \lor q) \to (\neg q \land r)\}$
 - (b) $\{\neg q \rightarrow (\neg p \lor q), \neg p \rightarrow q, r \rightarrow q\}$
 - (c) $\{q \to p, r \to q, (r \to p) \to s\}$
- 3. Prove directly (by tableau tranformations) the deduction theorem, i.e. for every theory T and propositions φ , ψ ,

 $T \vdash \varphi \rightarrow \psi$ if and only if $T, \varphi \vdash \psi$.

- 4. Show that every atomic tableau τ is *sound*, i.e. if an assignment v agrees with the root entry of τ , then it agrees with some branch in τ .
- 5. In the proof of the lemma on completeness during the lecture we verified that if an assignment v agrees with every entry on a finished branch V up to the depth i of formation trees, then it agrees also with every entry in the form $T(\varphi \wedge \psi)$ or $F(\varphi \wedge \psi)$ on V where $\varphi \wedge \psi$ has depth i + 1. Show that the same holds also for entries for other logical connectives.
- 6. Let S be a countable nonempty family of nonempty finite sets. We say that S has a selector if there exists an injective $f: S \to \bigcup S$ such that $f(S) \in S$ for every $S \in S$. Prove that S has a selector if and only if every nonempty finite part of S has a selector.
- 7. Let φ be the proposition $\neg(p \lor q) \to (\neg p \land \neg q)$.
 - (a) Transform $\neg \varphi$ into CNF and into set representation (clausal form).
 - (b) Find a resolution refutation of $\neg \varphi$; that is, a proof of φ .
- 8. Find resolution closures $\mathcal{R}(S)$ of the following formulas S.
 - (a) $\{\{p,q\},\{\neg p,\neg q\},\{\neg p,q\}\}$
 - (b) $\{\{p,q\},\{p,\neg q\},\{p,\neg q\}\}$
 - (c) $\{\{p, \neg q, r\}, \{q, r\}, \{\neg p, r\}, \{q, \neg r\}, \{\neg q\}\}$
- 9. Find resolution refutations of the following propositions.
 - (a) $(p \leftrightarrow (q \rightarrow r)) \land ((p \leftrightarrow q) \land (p \leftrightarrow \neg r))$
 - (b) $\neg(((p \rightarrow q) \rightarrow \neg q) \rightarrow \neg q)$
- 10. Prove by resolution that s is valid in a theory $T = \{\neg p \rightarrow \neg q, \neg q \rightarrow \neg r, (r \rightarrow p) \rightarrow s\}$.
- 11. Show that if $S = \{C_1, C_2\}$ is satisfiable and C is a resolvent of C_1 and C_2 , then C is satisfiable as well.
- 12. Find the tree of reductions of a formula $S = \{\{p, r\}, \{q, \neg r\}, \{\neg q\}, \{\neg p, t\}, \{\neg s\}, \{s, \neg t\}\}$.

13. Assume that we have available MgO, H_2 , O_2 , C and we can perform the following chemical reactions.

- (a) Represent the state of affairs as a proposition in a suitable language and transform it into a set representation.
- (b) Prove by (linear input) resolution that we can produce H_2CO_3 .