Predicate and Propositional Logic - Seminar 6

Nov 10, 2014

- 1. Let φ be the proposition $\neg(p \lor q) \to (\neg p \land \neg q)$.
 - (a) Transform $\neg \varphi$ into CNF and into set representation (clausal form).
 - (b) Find a resolution refutation of $\neg \varphi$; that is, a proof of φ .
- 2. Find resolution closures $\mathcal{R}(S)$ of the following formulas S.
 - (a) $\{\{p,q\},\{\neg p,\neg q\},\{\neg p,q\}\}$
 - (b) $\{\{p,q\},\{p,\neg q\},\{p,\neg q\}\}$
 - (c) $\{\{p, \neg q, r\}, \{q, r\}, \{\neg p, r\}, \{q, \neg r\}, \{\neg q\}\}$
- 3. Find resolution refutations of the following propositions.
 - (a) $(p \leftrightarrow (q \rightarrow r)) \land ((p \leftrightarrow q) \land (p \leftrightarrow \neg r))$
 - (b) $\neg(((p \rightarrow q) \rightarrow \neg q) \rightarrow \neg q)$
- 4. Prove by resolution that s is valid in a theory $T = \{\neg p \rightarrow \neg q, \neg q \rightarrow \neg r, (r \rightarrow p) \rightarrow s\}$.
- 5. Show that if $S = \{C_1, C_2\}$ is satisfiable and C is a resolvent of C_1 and C_2 , then C is satisfiable as well.
- 6. Find the tree of reductions of a formula $S = \{\{p, r\}, \{q, \neg r\}, \{\neg q\}, \{\neg p, t\}, \{\neg s\}, \{s, \neg t\}\}.$
- 7. Assume that we have available MgO, H₂, O₂, C and we can perform the following chemical reactions.

- (a) Represent the state of affairs as a proposition in a suitable language and transform it into a set representation.
- (b) Prove by (linear input) resolution that we can produce H_2CO_3 .
- 8. Show that in Hilbert's calculus the following is provable for every formulas φ , ψ , χ .
 - (a) $\vdash_H \varphi \to \varphi$
 - (b) $T \vdash_H \varphi \to \chi$ where $T = \{\varphi \to \psi, \psi \to \chi\}$
 - (c) $T \vdash_H \psi \to \chi$ where $T = \{\varphi, \psi \to (\varphi \to \chi)\}$