Predicate and Propositional Logic - Seminar 8

Dec 1, 2014

- 1. Prove (semantically) the following claims. For every structure \mathcal{A} , formula φ , and sentence ψ ,
 - (a) $\mathcal{A} \models (\psi \to (\exists x)\varphi) \Leftrightarrow \mathcal{A} \models (\exists x)(\psi \to \varphi)$
 - (b) $\mathcal{A} \models (\psi \to (\forall x)\varphi) \Leftrightarrow \mathcal{A} \models (\forall x)(\psi \to \varphi)$
 - (c) $\mathcal{A} \models ((\exists x)\varphi \to \psi) \Leftrightarrow \mathcal{A} \models (\forall x)(\varphi \to \psi)$
 - (d) $\mathcal{A} \models (\psi \to (\forall x)\varphi) \Leftrightarrow \mathcal{A} \models (\exists x)(\psi \to \varphi)$

Does this hold also for every formula ψ with a free variable x? And for every formula ψ in which x is not free?

- 2. Determine whether the following holds for every formula φ .
 - (a) $\varphi \models (\forall x)\varphi$ (b) $\models \varphi \rightarrow (\forall x)\varphi$
 - (c) $\varphi \models (\exists x)\varphi$
 - (d) $\models \varphi \rightarrow (\exists x)\varphi$
- 3. The theory of groups T is of language $L = \langle +, -, 0 \rangle$ with equality where + is a binary function symbol, is a unary function symbol, 0 is a constant symbol, and has it axioms

$$x + (y + z) = (x + y) + z$$

0 + x = x = x + 0
x + (-x) = 0 = (-x) + x

Are the following formulas valid / contradictory / independent in T?

- (a) x + y = y + x
- (b) $x + y = x \rightarrow y = 0$
- (c) $x + y = 0 \rightarrow y = -x$
- (d) -(x+y) = (-y) + (-x)
- 4. Consider a structure $\underline{\mathbb{Z}}_4 = \langle \{0, 1, 2, 3\}, +, -, 0 \rangle$ where + is the binary addition modulo 4 and is the unary function for the *inverse* element of + with respect to the *neutral* element 0.
 - (a) Is $\underline{\mathbb{Z}}_4$ a model of the theory T from the previous example (i.e. is it a group)?
 - (b) Determine all substructures $\underline{\mathbb{Z}}_4\langle a \rangle$ generated by some $a \in \mathbb{Z}_4$.
 - (c) Does $\underline{\mathbb{Z}}_4$ contain also other substructures?
 - (d) Is every substructure of $\underline{\mathbb{Z}}_4$ a model of T?
 - (e) Is every substructure of $\underline{\mathbb{Z}}_4$ elementary equivalent to $\underline{\mathbb{Z}}_4$?
 - (f) Is every substructure of a *commutative* group (i.e. a group that satisfies also 9(a)) again a commutative group?
- 5. Let $\underline{\mathbb{Q}} = \langle \mathbb{Q}, +, -, \cdot, 0, 1 \rangle$ be the structure of rational numbers with standard operations (thus forming a *field*).
 - (a) Is there a reduct of \mathbb{Q} that is a model of T from the previous exercises?
 - (b) Can we expand the reduct $\langle \mathbb{Q}, \cdot, 1 \rangle$ to a model of T?
 - (c) Does \mathbb{Q} contain a substructure that is not elementary equivalent to \mathbb{Q} ?

- (d) Let $Th(\underline{\mathbb{Q}})$ denote the set of all sentences that are valid in $\underline{\mathbb{Q}}$. Is $Th(\underline{\mathbb{Q}})$ a complete theory?
- 6. Let $T = \{x = c_1 \lor x = c_2 \lor x = c_3\}$ be a theory of $L = \langle c_1, c_2, c_3 \rangle$ with equality.
 - (a) Is T (semantically) consistent?
 - (b) Are all models of T elementary equivalent? That is, is T (semantically) complete?
 - (c) Find all simple complete extensions of T.
 - (d) Is a theory $T' = T \cup \{x = c_1 \lor x = c_4\}$ of the language $L = \langle c_1, c_2, c_3, c_4 \rangle$ an extension of T? Is T' a simple extension of T? Is T' a conservative extension of T?