Predicate and Propositional Logic - Seminar 9

Dec 8, 2014

- 1. Let $\underline{\mathbb{Q}} = \langle \mathbb{Q}, +, -, \cdot, 0, 1 \rangle$ be the structure of rational numbers with standard operations (thus forming a *field*).
 - (a) Is there a reduct of \mathbb{Q} that is a model of theory T of groups (from the previous seminar)?
 - (b) Can we expand the reduct $(\mathbb{Q}, \cdot, 1)$ to a model of T?
 - (c) Does \mathbb{Q} contain a substructure that is not elementarily equivalent to \mathbb{Q} ?
 - (d) Let $Th(\underline{\mathbb{Q}})$ denote the set of all sentences that are valid in $\underline{\mathbb{Q}}$. Is $Th(\underline{\mathbb{Q}})$ a complete theory?
- 2. Let $T = \{x = c_1 \lor x = c_2 \lor x = c_3\}$ be a theory of $L = \langle c_1, c_2, c_3 \rangle$ with equality.
 - (a) Is T (semantically) consistent?
 - (b) Are all models of T elementarily equivalent? That is, is T (semantically) complete?
 - (c) Find all simple complete extensions of T.
 - (d) Is a theory $T' = T \cup \{x = c_1 \lor x = c_4\}$ of the language $L = \langle c_1, c_2, c_3, c_4 \rangle$ an extension of T? Is T' a simple extension of T? Is T' a conservative extension of T?
- 3. Assume that
 - (a) all guilty persons are liars,
 - (b) at least one of the accused is also a witness,
 - (c) no witness lies.

Prove by tableau method that not all accused are guilty.

- 4. Let L(x, y) represent that "there is a flight from x to y" and let S(x, y) represent that "there is a connection from x to y". Assume that
 - (a) From Prague you can flight to Bratislava, London and New York, and from New York to Paris,
 - (b) $(\forall x)(\forall y)(L(x,y) \to L(y,x)),$
 - (c) $(\forall x)(\forall y)(L(x,y) \to S(x,y)),$
 - (d) $(\forall x)(\forall y)(\forall z)(S(x,y) \land L(y,z) \rightarrow S(x,z)).$

Prove by tableau method that there is a connection from Bratislava to Paris.

- 5. Let φ , ψ be sentences or formulas in a free variable x, denoted by $\varphi(x)$, $\psi(x)$. Find tableau proofs of the following formulas.
 - (a) $(\exists x)(\varphi(x) \lor \psi(x)) \leftrightarrow (\exists x)\varphi(x) \lor (\exists x)\psi(x)$,
 - (b) $(\forall x)(\varphi(x) \land \psi(x)) \leftrightarrow (\forall x)\varphi(x) \land (\forall x)\psi(x)$,
 - (c) $(\varphi \vee (\forall x)\psi(x)) \rightarrow (\forall x)(\varphi \vee \psi(x))$ where x is not free in φ ,
 - (d) $(\varphi \wedge (\exists x)\psi(x)) \rightarrow (\exists x)(\varphi \wedge \psi(x))$ where x is not free in φ .
 - (e) $(\exists x)(\varphi \to \psi(x)) \to (\varphi \to (\exists x)\psi(x))$ where x is not free in φ ,
 - (f) $(\exists x)(\varphi \wedge \psi(x)) \rightarrow (\varphi \wedge (\exists x)\psi(x))$ where x is not free in φ ,
 - (g) $(\exists x)(\varphi(x) \to \psi) \to ((\forall x)\varphi(x) \to \psi)$ where x is not free in ψ ,
 - (h) $((\exists x)\varphi(x) \to \psi) \to (\forall x)(\varphi(x) \to \psi)$ where x is not free in ψ .

- 6. Let T^* be a theory with axioms of equality. Prove by tableau method that
 - (a) $T^* \models x = y \rightarrow y = x$ (symmetry of =)

(b)
$$T^* \models (x = y \land y = z) \rightarrow x = z$$
 (transitivity of =)

Hint: To show (a) apply the axiom of equality (iii) for $x_1 = x$, $x_2 = x$, $y_1 = y$ a $y_2 = x$, to show (b) apply (iii) for $x_1 = x$, $x_2 = y$, $y_1 = x$ a $y_2 = z$.

7. Prove the theorem on constants syntactically by transformations of tableaux.

Věta 1. Let φ be a formula of a language L with free variables x_1, \ldots, x_n and let T be a theory in L. Let L' denote the extension of L with new constant symbols c_1, \ldots, c_n and let T' denote the theory T in L'. Then

$$T \vdash (\forall x_1) \dots (\forall x_n) \varphi$$
 if and only if $T' \vdash \varphi(x_1/c_1, \dots, x_n/c_n)$.

- 8. Prove the deduction theorem syntactically by transformations of tableaux.
 - **Věta 2.** For every theory T (in a closed form) and sentences φ , ψ ,

$$T \vdash \varphi \rightarrow \psi$$
 if and only if $T, \varphi \vdash \psi$.

9. Let L be a language with equality containing a binary relation symbol \leq and let T be a theory of L such that T has an infinite model and the axioms of linear ordering are valid in T. Applying the compactness theorem show that T has a model A with an *infinite decreasing* chain; that is, there are elements c_i for every $i \in \mathbb{N}$ in A such that

$$\cdots < c_{n+1} < c_n < \cdots < c_0.$$

(This show that the notion of well-ordering is not definable in a first-order language.)