Predicate and Propositional Logic - Seminar 11

Jan 5, 2015

- 1. Convert the following formulas into the prenex normal form.
 - (a) $(\forall y)((\exists x)P(x,y) \to Q(y,z)) \land (\exists y)((\forall x)R(x,y) \lor Q(x,y))$
 - (b) $(\exists x)R(x,y) \leftrightarrow (\forall y)P(x,y)$
 - (c) $\neg((\forall x)(\exists y)P(x,y) \rightarrow (\exists x)(\exists y)R(x,y)) \land (\forall x)\neg(\exists y)Q(x,y)$
- 2. Find Skolem variants of the formulas in PNF from the previous problem.
- 3. Verify that (thus, a Skolem variant does not have to be equivalent to the original formula)
 - (a) $\models (\forall x) P(x, f(x)) \rightarrow (\forall x) (\exists y) P(x, y)$
 - (b) $\not\models (\forall x)(\exists y)P(x,y) \to (\forall x)P(x,f(x))$
- 4. Let T' be the extension of $T = \{(\exists y)(x + y = 0), (x + y = 0) \land (x + z = 0) \rightarrow y = z\}$ in $L = \langle +, 0, \leq \rangle$ with equality by definitions of \langle and unary with axioms

$$\begin{array}{rcl} -x = y & \leftrightarrow & x + y = 0 \\ x < y & \leftrightarrow & x \le y \ \land \ \neg (x = y) \end{array}$$

Find formulas of L that are equivalent in T' to the following formulas.

- (a) x + (-x) = 0
- (b) x + (-y) < x
- (c) -(x+y) < -x
- 5. The theory T of fields in $L = \langle +, -, \cdot, 0, 1 \rangle$ contains one axiom φ that is not open:

$$x \neq 0 \rightarrow (\exists y)(x \cdot y = 1).$$

We know that $T \models 0 \cdot y = 0$ and $T \models (x \neq 0 \land x \cdot y = 1 \land x \cdot z = 1) \rightarrow y = z$.

- (a) Find a Skolem variant φ_S of φ with a new function symbol f.
- (b) Let T' be the theory obtained from T by replacing φ with φ_S . Is $T' \models \varphi$?
- (c) Can every model of T be uniquely expanded to a model of T'?
- 6. Let T denote the (previous) theory of fields. Let ψ be the formula $x \cdot y = 1 \lor (x = 0 \land y = 0)$.
 - (a) Do the conditions of existence and uniqueness hold in T for $\psi(x,y)$ and the variable y?
 - (b) Find an extension T^* of T by definition of a function symbol f with the formula ψ .
 - (c) Is T^* equivalent to the theory T' from the previous problem?
 - (d) Find a formula of the original language L that is equivalent in T^* to the formula

$$f(x \cdot y) = f(x) \cdot f(y)$$

- 7. Find Herbrand universe and an example of a Herbrand structure for the following languages.
 - (a) $L = \langle P, Q, f, a, b \rangle$ where P, Q are unary resp. binary relation symbols, f is a unary function symbol, a, b are constant symbols.
 - (b) $L = \langle P, f, g, a \rangle$ where P is a binary relation s., f, g unary function s., a constant symbol.
- 8. Find Herbrand models for the following theories or find unsatisfiable conjunctions of ground instances of their axioms. Assume that the language has constant symbols a, b.

- (a) $T = \{\neg P(x) \lor Q(f(x), y), \neg Q(x, b), P(a)\}$
- (b) $T = \{\neg P(x) \lor Q(f(x), y), Q(x, b), P(a)\}$
- (c) $T = \{P(x, f(x)), \neg P(x, g(x))\}$
- (d) $T = \{P(x, f(x)), \neg P(x, g(x)), P(g(x), f(y)) \rightarrow P(x, y)\}$
- 9. Transform the following formulas to equisatisfiable formulas in clausal form.
 - (a) $(\forall y)(\exists x)P(x,y)$
 - (b) $\neg(\forall y)(\exists x)P(x,y)$
 - (c) $\neg(\exists x)((P(x) \to P(a)) \land (P(x) \to P(b)))$
 - (d) $(\exists x)(\forall y)(\exists z)(P(x,z) \land P(z,y) \to R(x,y))$
- 10. We know that
 - (a) If a brick is on (another) brick, then it is not on the ground.
 - (b) Every brick is on (another) brick or on the ground.
 - (c) No brick is on a brick that is on (another) brick.

Express these facts in a first-order language and prove by resolution (via grounding) that if a brick is on another brick, the lower brick is on the ground.

- 11. We know that
 - (a) Every barber shaves all who do not shave themselves.
 - (b) No barber shaves someone who shaves himself.

Express these facts in a first-order language and prove by resolution (via grounding) that no barber exists.

- 12. Let $L = \langle U \rangle$ be with equality, where U is a unary relation symbol.
 - (a) For a given $n \in \mathbb{N}^+$ find a formula φ that says "U(x) holds for exactly n elements x".
 - (b) Is the theory $T = \{\varphi\}$ complete?
 - (c) Is $T \omega$ -categorical?
 - (d) Determine the isomorphism spectrum of T (up to countable cardinality).
 - (e) Find some simple complete extension of T.
 - (f) Find all (up to equivalence) simple complete extensions of T.
- 13. Let T be an extension of the theory DeLO (i.e. of dense linear orders without ends) by a new constant symbol c (and no additional axioms).
 - (a) Is $T \omega$ -categorical?
 - (b) Is T complete?
 - (c) Does the same hold for theory $DeLO^+$ (of dense linear orders with maximal element and without minimal element) instead of DeLO?