Exam from logic - the test

February 4th, 2015

1. Let $C_n = \langle V, E \rangle$ be an undirected cycle of length $n \ge 2$; that is, the graph with the vertex set $V = \{1, 2, ..., n\}$ and the edge set $E = \{\{i, i+1\} \mid 1 \le i < n\} \cup \{\{n, 1\}\}\}$. We say that a set $A \subseteq E$ is a *perfect matching* if every vertex is incident with exactly one edge of A.

We want to show (by resolution in propositional logic) that the cycle C_n has no perfect matching for an odd n (in particular for n = 3). Let $\mathbb{P}_n = \{p_{\{i,j\}} \mid \{i,j\} \in E\}$ be a set of propositional letters, where $p_{\{i,j\}}$ represents that "the edge $\{i,j\}$ is in the set A".

- (a) Write a proposition φ_i , where $1 \leq i \leq n$, over \mathbb{P}_n expressing that "the vertex *i* is incident with exactly one edge of A". With use of propositions φ_i , write a theory T_n expressing that "the set A is a perfect matching." (2 pts)
- (b) Now let us fix n = 3. Transform the theory T_3 into the clausal form. (2 pts)
- (c) Show by resolution that T_3 is unsatisfiable. (4 pts)
- (d) Is $T_3 \vdash_{LI} \square$? Give an explanation. (2 pts)
- 2. We consider the following two statements:
 - (i) There is a student such that if he passes the exam from logic then all students pass the exam from logic.
 - (ii) There is a student such that if he passes the exam from logic then all students pass the exam from algebra.
 - (a) Write the statements (i), (ii) formally as <u>sentences</u> φ , ψ (respectively) in the language $L = \langle P, R \rangle$ without equality where P, R are unary relation symbols and P(x), R(x) represent that "the student x passes the exam from logic", resp. "the student x passes the exam from algebra". (2 pts)
 - (b) Determine by the tableaux method which of the formulas φ , ψ are logically valid. Provide the associated finished tableaux. (4 pts)
 - (c) Choose any noncontradictory branch V in one of the tableaux from (b) and construct a canonical model \mathcal{A} from the branch V. (2 pts)
 - (d) Is the theory $\{\psi\}$ of the language L a conservative extension of the theory $\{\varphi\}$ of the language $L' = \langle P \rangle$? Give an explanation. (2 pts)
- 3. Let $T = \{(\forall x)(\exists y)f(y) = x, f(x) = f(y) \rightarrow x = y\}$ be a theory of the language $L = \langle f \rangle$ with equality, where f is a unary function symbol.
 - (a) Find an extension T' of the theory T by definition of a new unary function symbol g such that $T' \models f(g(x)) = x$. (2 pts)
 - (b) Write a formula $\varphi(x, y)$ in the language L such that $T' \models \varphi(x, y) \leftrightarrow g(g(x)) = y$. (2 pts)
 - (c) Is the sentence $(\forall x)(\exists y)g(y) = x$ valid / contradictory / independent in T'? Give an explanation. (2 pts)
 - (d) Let $\mathcal{A} = \langle \mathbb{Z}, f^A \rangle$, where $f^A(m) = m + 2$ for every $m \in \mathbb{Z}$. How many mutually nonisomorphic substructures the structure \mathcal{A} has? (2 pts)