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Introduction

Conception of the course

logic for computer science
+ resolution in predicate logic, unification, “background” of Prolog
- less of model theory, ...

tableau method instead of Hilbert-style calculi
+ algorithmically more intuitive, (sometimes) more elegant proofs
- uncovered (much) in usual textbooks, restriction to countable languages

propositional logic entirely before predicate logic
+ ideal “playground” for comprehension of foundational concepts
- slower pace of lectures at the beginning

undecidability and incompleteness less formally
+ emphasis on principles
- a risk of inaccuracy
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Introduction

Plan of the lectures 1/2

Introduction
1. Historical overview, “paradoxes”, logic as a language of mathematics,

relation of syntax and semantics, preliminaries.

Propositional logic
2. Basic syntax and semantics, universality of logical connectives, normal

forms, 2-SAT and Horn-SAT.

3. Semantics with respect to theories, properties of theories, algebra of
propositions, analysis of theories over finite languages. Tableau method in
propositional logic.

4. Tableau method: systematic tableau, soundness, completeness,
compactness.

5. Resolution method, soundness and completeness, linear resolution,
resolution in Prolog. Hilbert-style calculus.
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Introduction

Plan of the lectures 2/2
Predicate logic

6. Basic syntax and semantics, instances and variants. Structures and models.

7. Properties of theories. Substructures, open theories. Expansion and reduct.
Boolean algebras. Tableau method in predicate logic.

8. Tableau method: systematic tableau, soundness, completeness,
compactness. Treatment of equality.

9. Extensions by definitions. Prenex normal form, skolemisation, Herbrand’s
theorem.

10. Resolution method: soundness and completeness. Linear resolution and
LI-resolution. Hilbert-style calculus.

Model theory, decidability, incompleteness
11. Elementary equivalence, completeness. Isomorphisms of structures. Finite

and open axiomatizations. Basic mathematical theories.

12. Decidable theories, recursive axiomatizations. Undecidability of predicate
logic. Incompleteness theorem - introduction.

13. Arithmetization of syntax, self-reference principle, fixed-point theorem,
undefinability of truth. Incompleteness theorems, corollaries.
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Introduction

Recommended reading

Books

I A. Nerode, R. A. Shore, Logic for Applications, Springer, 2nd edition, 1997.
I P. Pudlák, Logical Foundations of Mathematics and Computational

Complexity - A Gentle Introduction, Springer, 2013.
I J. R. Shoenfield, Mathematical Logic, A. K. Peters, 2001.
I W. Hodges, Shorter Model Theory, Cambridge University Press, 1997.

Online resources

I lecture slides
I ...
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Introduction History

Historical overview

Aristotle (384-322 B.C.E.) - theory of syllogistic, e.g.

from ‘no Q is R’ and ‘every P is Q’ infer ‘no P is R’.

Euclid: Elements (about 330 B.C.E.) - axiomatic approach to geometry

“There is at most one line that can be drawn parallel to another
given one through an external point.” (5th postulate)

Descartes: Geometry (1637) - algebraic approach to geometry

Leibniz - dream of “lingua characteristica, calculus ratiocinator” (1679-90)

De Morgan - introduction of propositional connectives (1847)

¬(p ∨ q)↔ ¬p ∧ ¬q

¬(p ∧ q)↔ ¬p ∨ ¬q

Boole - propositional functions, algebra of logic (1847)

Schröder - semantics of predicate logic, concept of a model (1890-1905)
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Introduction History

Historical overview - set theory

Cantor - intuitive set theory (1878), e.g. the comprehension principle

“For every property ϕ(x) there exists a set {x | ϕ(x)}.”

Frege - first formal system with quantifiers and relations, concept of
proofs based on inference, axiomatic set theory (1879, 1884)

Russel - Frege’s set theory is contradictory (1903)

For a set a = {x | ¬(x ∈ x)} is a ∈ a ?

Russel, Whitehead - theory of types (1910-13)

Zermelo (1908), Fraenkel (1922) - standard set theory ZFC , e.g.

“For every property ϕ(x) and a set y there is a set {x ∈ y | ϕ(x)}.”

Bernays (1937), Gödel (1940) - set theory based on classes, e.g.

“For every property of sets ϕ(x) there exists a class {x | ϕ(x)}.”
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Introduction History

Historical overview - algorithmization
Hilbert - complete axiomatizaton of Euclidean geometry (1899),

formalism - strict divorce from the intended meanings

“It could be shown that all of mathematics follows from a correctly
chosen finite system of axioms.”

Brouwer - intuitionism, emphasis on explicit constructive proofs

“A mathematical statement corresponds to a mental construction,
and its validity is verified by intuition.”

Post - completeness of propositional (and Gödel - predicate) logic

Gödel - incompleteness theorems (1931)

Kleene, Post, Church, Turing - formalizations of the notion of algorithm,
an existence of algorithmically undecidable problems (1936)

Robinson - resolution method (1965)

Kowalski; Colmerauer, Roussel - Prolog (1972)
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Introduction

Levels of language
We will formalize the notion of proof and validity of mathematical statements.

We distinguish different levels of logic according to the means of language,
in particular to which level of quantification is admitted.

propositional connectives propositional logic
This allows to form combined propositions from the basic ones.
variables for objects, symbols for relations and functions, quantifiers

first-order logic
This allows to form statements on objects, their properties and relations.
The (standard) set theory is also described by a first-order language.

In higher-order languages we have, in addition,
variables for sets of objects (also relations, functions) second-order logic
variables for sets of sets of objects, etc. third-order logic
· · ·
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Introduction

Examples of statements of various orders

“If it will not rain, we will not get wet. And if it will rain, we will get wet,
but then we will get dry on the sun.” proposition

(¬r → ¬w) ∧ (r → (w ∧ d))

“There exists the smallest element.” first-order

∃x ∀y (x ≤ y)

The axiom of induction. second-order

∀X ((X (0) ∧ ∀y(X (y)→ X (y + 1)))→ ∀y X (y))

“Every union of open sets is an open set.” third-order

∀X∀Y ((∀X (X (X )→ O(X )) ∧ ∀z(Y (z)↔ ∃X (X (X ) ∧ X (z))))→ O(Y ))
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Introduction

Syntax and semantics

We will consider relations between syntax and semantics:
syntax: language, rules for formation of formulas, interference rules,
formal proof system, proof, provability,
semantics: interpreted meaning, structures, models, satisfiability, validity.

We will introduce the notion of proof as a well-defined syntactical object.

A formal proof system is
sound, if every provable formula is valid,
complete, if every valid formula is provable.

We will show that predicate logic (first-order logic) has formal proof systems
that are both sound and complete. This does not hold for higher order logics.
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Introduction

Paradoxes

“Paradoxes” show us the need of precise definitions of foundational concepts.

Cretan paradox
Cretan said: “All Cretans are liars.”

Barber paradox
There is a barber in a town who shaves all that do not shave themselves.
Does he shave himself?

Liar paradox
This sentence is false.

Berry paradox
The expression “The smallest positive integer not definable in under
eleven words” defines it in ten words.
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Preliminaries Basic definitions

Set-theoretical notions
All notions are introduced within a set theory using only the membership
predicate and equality (and means of logic).

A property of sets ϕ(x) defines a class {x | ϕ(x)}. A class that is not a set
is called a proper class, eg. {x | x = x},
x /∈ y, x 6= y are shortcuts for ¬(x ∈ y), ¬(x = y),
{x0, . . . , xn−1} denotes the set containing exactly x0, . . . , xn−1, {x} is
called a singleton, {x, y} is called an unordered pair,
∅, ∪, ∩, \, 4 stand for empty set, union, intersection, difference,
symmetric difference of sets, e.g.

x 4 y = (x \ y) ∪ (y \ x) = {z | (z ∈ x ∧ z /∈ y) ∨ (z /∈ x ∧ z ∈ y)}
x, y are disjoint if x ∩ y = ∅, we denote by x ⊆ y that x is a subset of y,
the power set of x is P(x) = {y | y ⊆ x},
the union of x is

⋃
x = {z | ∃y(z ∈ y ∧ y ∈ x)},

a cover of a set x is a set y ⊆ P(x) \ {∅} with
⋃

y = x. If, moreover, all
sets in y are mutually disjoint, then y is a partition of x.
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Preliminaries Basic definitions

Relations
An ordered pair is (x, y) = {x, {x, y}}, so (x, x) = {x, {x}},
an ordered n-tuple is (x0, . . . , xn−1) = ((x0, . . . , xn−2), xn−1) for n > 2,
the Cartesian product of a and b is a × b = {(x, y) | x ∈ a, y ∈ b},
the Cartesian power of x is x0 = {∅}, x1 = x, xn = xn−1 × x for n > 1,
the disjoint union of x and y is x ] y = ({∅} × x) ∪ ({{∅}} × y),
a relation is a set R of ordered pairs, instead of (x, y) ∈ R we usually

write R(x, y) or x R y,
the domain of R is dom(R) = {x | ∃y (x, y) ∈ R},
the range of R is rng(R) = {y | ∃x (x, y) ∈ R},
the extension of x in R is R[x] = {y | (x, y) ∈ R},
the inverse relation to R is R−1 = {(y, x) | (x, y) ∈ R},
the restriction of R to the set z is R � z = {(x, y) ∈ R | x ∈ z},
the composition of relations R and S is the relation

R ◦ S = {(x, z) | ∃y ((x, y) ∈ R ∧ (y, z) ∈ S)},
the identity on a set z is the relation Idz = {(x, x) | x ∈ z}.
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Preliminaries Basic definitions

Equivalences

A relation R on X is an equivalence if for every x, y, z ∈ X

R(x, x) (reflexivity)
R(x, y)→ R(y, x) (symmetry)
R(x, y) ∧ R(y, z)→ R(x, z) (transitivity)

R[x] is called the equivalence class of x in R, denoted also [x]R.

X/R = {R[x] | x ∈ X} is the quotient set of X by R.

It holds that X/R is a partition of X since the equivalence classes
are mutually disjoint and cover X .

On the other hand, a partition S of X determines the equivalence (on X )

{(x, y) | x ∈ z, y ∈ z for some z ∈ S}.
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Preliminaries Basic definitions

Orders
Let ≤ be a relation on a set X . We say that ≤ is

a partial order (of the set X ) if for every x, y, z ∈ X

x ≤ x (reflexivity)
x ≤ y ∧ y ≤ x → x = y (antisymmetry)
x ≤ y ∧ y ≤ z → x ≤ z (transitivity)

a linear (total) order if, moreover, for every x, y ∈ X

x ≤ y ∨ y ≤ x (dichotomy)

a well-order if, moreover, every non-empty subset of X has
a least element.

Let us write ‘x < y ’ for ‘x ≤ y ∧ x 6= y ’. A linear order ≤ on X is

a dense order if X is not a singleton and for every x, y ∈ X

x < y → ∃z (x < z ∧ z < y) (density)
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Preliminaries Basic definitions

Functions

A relation f is a function if every x ∈ dom(f ) has exactly one y with (x, y) ∈ f .

We say that y is the value of the function f at x, denoted by f (x) = y,
f : X → Y denotes that f is a function with dom(f ) = X and rng(f ) ⊆ Y ,
a function f is a surjection (onto Y ) if rng(f ) = Y ,
a function f is injection (one-to-one) if for every x, y ∈ dom(f )

x 6= y → f (x) 6= f (y)

f : X → Y is bijection from X to Y if it is both injection and surjection,
if f : X → Y is injective, then f −1 = {(y, x) | (x, y) ∈ f } is its inverse,
the image of the set A under f is f [A] = {y | (x, y) ∈ f for some x ∈ A},
if f : X → Y and g : Y → Z , their composition (f ◦ g) : X → Z satisfies

(f ◦ g)(x) = g(f (x))

X Y denotes the set of all functions from X to Y .
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Preliminaries Basic definitions

Numbers
We give examples of standard formal constructions.

The natural numbers are defined inductively by n = {0, . . . ,n − 1}, thus

0 = ∅, 1 = {0} = {∅}, 2 = {0, 1} = {∅, {∅}}, . . .

the sef of natural numbers N is defined as the smallest set containing ∅
which is closed under S(x) := x ∪ {x} (successor),

the set of integers is Z = (N× N)/ ∼, where ∼ is the equivalence

(a,b) ∼ (c,d) if and only if a + d = b + c

the set of rational numbers is Q = (Z× (Z \ {0}))/ ≈, where ≈ is given by

(a,b) ≈ (c,d) if and only if a.d = b.c

the set of real numbers R is the set of cuts of rational numbers, that is
non-trivial downwards closed subsets of Q with no greatest element.
(A ⊂ Q is downwards closed if y < x ∈ A implies y ∈ A.)
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Preliminaries Basic definitions

Cardinalities

x has cardinality smaller or equal to the cardinality of y if there is
an injective function f : x → y, (x 4 y)
x has same cardinality as y if there is a bijection f : x → y, (x ≈ y)
x has cardinality strictly smaller than y if x 4 y but not x ≈ y, (x ≺ y)

Theorem (Cantor) x ≺ P(x) for every set x.
Proof f (y) = {y} for y ∈ x is an injective function f : x → P(x), so x 4 P(x).
Suppose for a contradiction that there is an injective g : P(x)→ x. Define

y = {g(z) | z ⊆ x ∧ g(z) /∈ z}
By definition, g(y) ∈ y if and only if g(y) /∈ y, a contradiction.

for every x there is cardinal number κ with x ≈ κ, denoted by |x| = κ,
x is finite if |x| = n for some n ∈ N; otherwise, x is infinite,
x is countable if x is finite or |x| = |N| = ω; otherwise, x is uncountable,
x has cardinality of the continuum if |x| = |P(N)| = c.
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Preliminaries Basic definitions

n-ary relations and functions

A relation of arity n ∈ N on X is any set R ⊆ X n, so for n = 0 we have
either R = ∅ = 0 or R = {∅} = 1, and for n = 1 we have R ⊆ X ,

A (partial) function of arity n ∈ N from X to Y is any function f ⊆ X n × Y .
We say that f is total on X n if dom(f ) = X n, denoted by f : X n → Y .
If, moreover, Y = X , we say that f is an operation on X .

A function f : X n → Y is constant if rng(f ) = {y} for some y ∈ Y ,
for n = 0 we have f = {(∅, y)} and we identify f with the constant y.

The arity of a relation or function is denoted by ar(R) or ar(f ) and we
speak about nullary, unary, binary, etc. relations and functions.
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Preliminaries Trees

Trees

leafbranch

node x

father

son successors

predecessors

brother

root level 0

level 4

←−

←−

subtree

A tree is a set T with a partial order <T in which there is a unique
least element, called the root, and the set of predecessors of any
element is well ordered by <T ,
a branch of a tree T is a maximal linearly ordered subset of T ,

we adopt standard terminology on trees from the graph theory, e.g.

a branch in a finite tree is a path from the root to a leaf.
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Preliminaries Trees

König’s lemma

We will consider (for simplicity) usually finitely branching trees in which
every node except the root has an immediate predecessor (father).

n-th level of a tree T for n ∈ N is given by induction, it is the set of sons
of nodes from the (n − 1)-th level, 0-th level containing exactly the root,
the depth of T is the maximal n ∈ N of non-empty level;
if T has infinite branch, then it has infinite depth ω.
a tree T is n-ary for n ∈ N if every node has at most n sons.
It is finitely branching, if every node has only finitely many sons.

Lemma (König) Every infinite, finitely branching tree contains an infinite
branch.
Proof We start in the root. Since it has only finitely many sons, there exists
a son with infinitely many successors. We choose him and continue in
his subtree. In this way we construct an infinite branch.
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Preliminaries Trees

Ordered trees

An ordered tree is a tree T with a linear order of sons at each node.
These orders are called left-right orders and are denoted by <L.
In comparison with <L, the order <T is called the tree order.
A labeled tree is a tree T with an arbitrary function (a labeling function),
that assigns to each node some object (a label).
Labeled ordered trees represent, for example, structure of formulas.

(p ∨ q)→ r

p ∨ q r

p q
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Epilogue

Epilogue

Can all the mathematics be translated into logical formulas?
programming, AI, theorem proving, Peano: Formulario (1895-1908)

Why people (usually) do not do it?

Example Is it possible to perfectly cover the chessboard without two
diagonally removed corners using the domino tiles?

We can easily form a propositional formula that is satisfiable, if and only if
the answer is yes. Then we can test its satisfiability e.g. by resolution.

How can we solve it more elegantly? What is our approach based on?
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