Propositional and Predicate Logic - II

Petr Gregor

KTIML MFF UK

ZS 2015/2016

Language

Propositional logic is a "logic of propositional connectives". We start from a (nonempty) set \mathbb{P} of propositional letters (variables), e.g.

$$\mathbb{P} = \{p, p_1, p_2, \dots, q, q_1, q_2, \dots\}$$

We usually assume that \mathbb{P} is countable.

The *language* of propositional logic (over ℙ) consists of symbols

- ullet propositional letters from ${\mathbb P}$
- propositional connectives ¬, ∧, ∨, →, ↔
- parentheses (,)

Thus the language is given by the set \mathbb{P} . We say that connectives and parentheses are *symbols of logic*.

We also use symbols for constants \top (true), \bot (false) which are introduced as shortcuts for $p \lor \neg p$, resp. $p \land \neg p$ where p is any fixed variable from \mathbb{P} .

Formula

Propositional formulae (*propositions*) (over \mathbb{P}) are given inductively by

- (i) every propositional letter from \mathbb{P} is a proposition,
- (ii) if φ , ψ are propositions, then also

$$(\neg \varphi)$$
, $(\varphi \land \psi)$, $(\varphi \lor \psi)$, $(\varphi \to \psi)$, $(\varphi \leftrightarrow \psi)$

are propositions,

- (iii) every proposition is formed by a finite number of steps (i), (ii).
- Thus propositions are (well-formed) finite sequences of symbols from the given language (strings).
- A proposition that is a part of another proposition φ as a substring is called a *subformula* (*subproposition*) of φ .
- The set of all propositions over P is denoted by VFp.
- The set of all letters (variables) that occur in φ is denoted by $\operatorname{var}(\varphi)$.

Conventions

After introducing (standard) *priorities* for connectives we are allowed in a concise form to omit parentheses that are around a subformula formed by a connective of a higher priority.

- $(1) \rightarrow, \leftrightarrow$
- $(2) \wedge, \vee$
- (3)

The outer parentheses can be omitted as well, e.g.

$$(((\neg p) \land q) \to (\neg (p \lor (\neg q)))) \quad \text{is shortly} \quad \neg p \land q \to \neg (p \lor \neg q)$$

Note If we do not respect the priorities, we can obtain an ambiguous form or even a concise form of a non-equivalent proposition.

Further possibilities to omit parentheses follow from semantical properties of connectives (associativity of \vee , \wedge).

Formation trees

A formation tree is a finite ordered tree whose nodes are labeled with propositions according to the following rules

- leaves (and only leaves) are labeled with propositional letters,
- if a node has label $(\neg \varphi)$, then it has a single son labeled with φ ,
- if a node has label $(\varphi \wedge \psi)$, $(\varphi \vee \psi)$, $(\varphi \to \psi)$, or $(\varphi \leftrightarrow \psi)$, then it has two sons, the left son labeled with φ , and the right son labeled with ψ .

A formation tree of a proposition φ is a formation tree with the root labeled with φ .

Proposition Every proposition is associated with a unique formation tree.

Proof By induction on the number of nested parentheses.

Note Such proofs are called proofs by the structure of the formula or by the depth of the formation tree.

Semantics

- We consider only two-valued logic.
- Propositional letters represent (atomic) statements whose 'meaning' is given by an assignment of truth values 0 (false) or 1 (true).
- Semantics of propositional connectives is given by their truth tables.

p	q	$\neg p$	$p \wedge q$	$p \lor q$	$p \rightarrow q$	$p \leftrightarrow q$
0	0	1	0	0	1	1
0	1	1	0	1	1	0
1	0	0	0	1	0	0
1	1	0	1	1	1	1

This determines the truth value of every proposition based on the values assigned to its propositional letters.

- Thus we may assign "truth tables" also to all propositions. We say that
 propositions represent Boolean functions (up to the order of variables).
- A *Boolean function* is an *n*-ary operation on $2 = \{0, 1\}$.

Truth valuations

- A *truth assignment* is a function $v \colon \mathbb{P} \to \{0,1\}$, i.e. $v \in \mathbb{P}2$.
- A *truth value* $\overline{v}(\varphi)$ of a proposition φ for a truth assignment v is given by

$$\begin{split} \overline{v}(p) &= v(p) \ \text{ if } \ p \in \mathbb{P} \\ \overline{v}(\varphi \wedge \psi) &= \wedge_1(\overline{v}(\varphi), \overline{v}(\psi)) \\ \overline{v}(\varphi \rightarrow \psi) &= \rightarrow_1(\overline{v}(\varphi), \overline{v}(\psi)) \end{split} \qquad \overline{v}(\varphi \vee \psi) &= \vee_1(\overline{v}(\varphi), \overline{v}(\psi)) \\ \overline{v}(\varphi \rightarrow \psi) &= \rightarrow_1(\overline{v}(\varphi), \overline{v}(\psi)) \end{split}$$

where -1, \wedge_1 , \vee_1 , \rightarrow_1 , \leftrightarrow_1 are the Boolean functions given by the tables.

Proposition The truth value of a proposition φ depends only on the truth assignment of $var(\varphi)$.

Proof Easily by induction on the structure of the formula.

Note Since the function $\overline{v} \colon VF_{\mathbb{P}} \to 2$ is a unique extension of the function v, we can (unambiguously) write v instead of \overline{v} .

Semantic notions

A proposition φ over $\mathbb P$ is

- is true in (satisfied by) an assignment $v \in \mathbb{P}2$, if $\overline{v}(\varphi) = 1$. Then v is a satisfying assignment for φ , denoted by $v \models \varphi$.
- *valid* (*a tautology*), if $\overline{v}(\varphi) = 1$ for every $v \in {}^{\mathbb{P}}2$, i.e. φ is satisfied by every assignment, denoted by $\models \varphi$.
- unsatisfiable (a contradiction), if $\overline{v}(\varphi) = 0$ for every $v \in \mathbb{P}^2$, i.e. $\neg \varphi$ is valid.
- independent (a contingency), if $\overline{v_1}(\varphi) = 0$ and $\overline{v_2}(\varphi) = 1$ for some $v_1, v_2 \in {}^{\mathbb{P}}2$, i.e. φ is neither a tautology nor a contradiction.
- *satisfiable*, if $\overline{v}(\varphi) = 1$ for some $v \in \mathbb{P}^2$, i.e. φ is not a contradiction.

Propositions φ and ψ are (logically) *equivalent*, denoted by $\varphi \sim \psi$, if $\overline{\nu}(\varphi) = \overline{\nu}(\psi)$ for every $\nu \in \mathbb{P}^2$, i.e. the proposition $\varphi \leftrightarrow \psi$ is valid.

Models

We reformulate these semantic notions in the terminology of models.

A *model of a language* $\mathbb P$ is a truth assignment of $\mathbb P$. The class of all models of $\mathbb P$ is denoted by $M(\mathbb P)$, so $M(\mathbb P) = \mathbb P2$. A proposition φ over $\mathbb P$ is

- true in a model $v \in M(\mathbb{P})$, if $\overline{v}(\varphi) = 1$. Then v is a model of φ , denoted by $v \models \varphi$ and $M^{\mathbb{P}}(\varphi) = \{v \in M(\mathbb{P}) \mid v \models \varphi\}$ is the class of all models of φ .
- valid (a tautology) if it is true in every model of the language, denoted by |= φ.
- unsatisfiable (a contradiction) if it does not have a model.
- independent (a contingency) if it is true in some model and false in other.
- satisfiable if it has a model.

Propositions φ and ψ are (logically) *equivalent*, denoted by $\varphi \sim \psi$, if they have same models.

Adequacy

The language of propositional logic has *basic* connectives \neg , \wedge , \vee , \rightarrow , \leftrightarrow . In general, we can introduce *n*-ary connective for any Boolean function, e.g.

$$p\downarrow q$$
 "neither p nor q " (NOR, Peirce arrow) $p\uparrow q$ "not both p and q " (NAND, Sheffer stroke)

A set of connectives is *adequate* if they can express any Boolean function by some (well) formed proposition from them.

Proposition $\{\neg, \land, \lor\}$ *is adequate.*

Proof Any
$$f \colon {}^n 2 \to 2$$
 is expressed by the proposition $\bigvee_{v \in f^{-1}[1]} \bigwedge_{i=0}^{n-1} p_i^{v(i)}$

where
$$p_i^{\nu(i)}$$
 stands for the proposition p_i if $\nu(i)=1$; and for $\neg p_i$ if $\nu(i)=0$.

For
$$f^{-1}[1] = \emptyset$$
 we take the proposition \bot . \Box

Proposition $\{\neg, \rightarrow\}$ *is adequate.*

Proof
$$(p \land q) \sim \neg (p \rightarrow \neg q), \ (p \lor q) \sim (\neg p \rightarrow q).$$

CNF and DNF

- A *literal* is a propositional letter or its negation. For a propositional letter plet p^0 denote the literal $\neg p$ and let p^1 denote the literal p. For a literal llet *l* denote the *complementary* literal of *l*.
- A *clause* is a disjunction of literals, by the empty clause we mean \perp .
- A proposition is in conjunctive normal form (CNF) if it is a conjunction of clauses. By the empty proposition in CNF we mean \top .
- An elementary conjunction is a conjunction of literals, by the empty conjunction we mean \top .
- A proposition is in <u>disjunctive normal form</u> (<u>DNF</u>) if it is a disjunction of elementary conjunctions. By the empty proposition in DNF we mean \perp .

Note A clause or an elementary conjunction is both in CNF and DNF.

Observation A proposition in CNF is valid if and only if each of its clauses contains a pair of complementary literals. A proposition in DNF is satisfiable if and only if at least one of its elementary conjunctions does not contain a pair of complementary literals.

Transformations by tables

Proposition Let $K \subseteq \mathbb{P}2$ where \mathbb{P} is finite. Denote $\overline{K} = \mathbb{P}2 \setminus K$. Then

$$M^{\mathbb{P}}\Big(\bigvee_{v\in K}\bigwedge_{p\in\mathbb{P}}p^{v(p)}\Big)=K=M^{\mathbb{P}}\Big(\bigwedge_{v\in\overline{K}}\bigvee_{p\in\mathbb{P}}\overline{p^{v(p)}}\Big)$$

Proof The first equality follows from $\overline{w}(\bigwedge_{p\in\mathbb{P}}p^{v(p)})=1$ whenever w=v,

for every $w\in {}^{\mathbb{P}}2$. Similarly, the second one follows from $\overline{w}(\bigvee_{p\in \mathbb{P}}\overline{p^{\nu(p)}})=1$ whenever $w\neq v$. \square

For example, $K = \{(1,0,0), (1,1,0), (0,1,0), (1,1,1)\}$ can be modeled by $(p \land \neg q \land \neg r) \lor (p \land q \land \neg r) \lor (\neg p \land q \land \neg r) \lor (p \land q \land r) \sim$

$$(p \lor q \lor r) \land (p \lor q \lor \neg r) \land (p \lor \neg q \lor \neg r) \land (\neg p \lor q \lor \neg r)$$

Corollary Every proposition has CNF and DNF equivalents.

Proof The value of a proposition φ depends only on the assignment of $var(\varphi)$ which is finite. Hence we can apply the above proposition for $K = M^{\mathbb{P}}(\varphi)$ and $\mathbb{P} = var(\varphi)$. \square

Transformations by rules

Proposition Let φ' be the proposition obtained from φ by replacing some occurrences of a subformula ψ with ψ' . If $\psi \sim \psi'$, then $\varphi \sim \varphi'$.

Proof Easily by induction on the structure of the formula.

(1)
$$(\varphi \to \psi) \sim (\neg \varphi \lor \psi)$$
, $(\varphi \leftrightarrow \psi) \sim ((\neg \varphi \lor \psi) \land (\neg \psi \lor \varphi))$

(2)
$$\neg\neg\varphi\sim\varphi$$
, $\neg(\varphi\wedge\psi)\sim(\neg\varphi\vee\neg\psi)$, $\neg(\varphi\vee\psi)\sim(\neg\varphi\wedge\neg\psi)$

(3)
$$(\varphi \lor (\psi \land \chi)) \sim ((\psi \land \chi) \lor \varphi) \sim ((\varphi \lor \psi) \land (\varphi \lor \chi))$$

(3)'
$$(\varphi \land (\psi \lor \chi)) \sim ((\psi \lor \chi) \land \varphi) \sim ((\varphi \land \psi) \lor (\varphi \land \chi))$$

Proposition Every proposition can be transformed into CNF / DNF applying the transformation rules (1), (2), (3)/(3)'.

Proof Easily by induction on the structure of the formula.

Proposition Assume that φ contains only \neg , \wedge , \vee and φ^* is obtained from φ by interchanging \wedge and \vee , and by complementing all literals. Then $\neg \varphi \sim \varphi^*$.

Proof Easily by induction on the structure of the formula.

2-SAT

- A proposition in CNF is in k-CNF if every its clause has at most k literals.
- k-SAT is the following problem (for fixed k > 0)
 INSTANCE: A proposition φ in k-CNF.

QUESTION: Is φ satisfiable?

Although for k=3 it is an NP-complete problem, we show that 2-SAT can be solved in *linear* time (with respect to the length of φ).

We neglect implementation details (computational model, representation in memory) and we use the following fact, see [ADS I].

Proposition A partition of a directed graph (V, E) to strongly connected components can be found in time $\mathcal{O}(|V| + |E|)$.

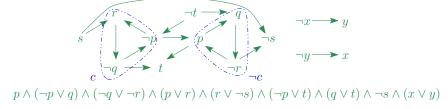
- A directed graph G is strongly connected if for every two vertices u and v
 there are directed paths in G both from u to v and from v to u.
- A strongly connected *component* of a graph G is a maximal strongly connected subgraph of G.

イロト イ刷ト イラト イラト 一戸

Implication graphs

An *implication graph* of a proposition φ in 2-CNF is a directed graph G_{φ} s.t.

- ullet vertices are all the propositional letters in arphi and their negations,
- a clause $l_1 \lor l_2$ in φ is represented by a pair of edges $\overline{l_1} \to l_2$, $\overline{l_2} \to l_1$,
- a clause l_1 in φ is represented by an edge $\overline{l_1} \to l_1$.



Proposition φ is satisfiable if and only if no strongly connected component of G_{φ} contains a pair of complementary literals.

Proof Every satisfying assignment assigns the same value to all the literals in a same component. Thus the implication from left to right holds (necessity).

Satisfying assignment

For the implication from right to left (sufficiency), let G_{φ}^* be the graph obtained from G_{φ} by contracting strongly connected components to single vertices.

Observation G^*_{α} is acyclic, and therefore has a topological ordering <.

- A directed graph is acyclic if it is has no directed cycles.
- A linear ordering < of vertices of a directed graph is topological
 if p < q for every edge from p to q.

Now for every unassigned component in an increasing order by <, assign 0 to all its literals and 1 to all literals in the complementary component.

It remains to show that such assignment ν satisfies φ . If not, then G_{φ}^* contains edges $p \to q$ and $\overline{q} \to \overline{p}$ with $\nu(p) = 1$ and $\nu(q) = 0$. But this contradicts the order of assigning values to components since p < q and $\overline{q} < \overline{p}$.

Corollary 2-SAT can be solved in a linear time.

