Propositional and Predicate Logic - IV

Petr Gregor

KTIML MFF UK

ZS 2015/2016

Petr Gregor (KTIML MFF UK)

Propositional and Predicate Logic - IV

ZS 2015/2016 1 / 19

イロト イヨト イヨト

Introductory examples

(E) E つへへ ZS 2015/2016 2/19

Tableaux

Atomic tableaux

An *atomic tableau* is one of the following trees (labeled by entries), where p is any propositional letter and φ , ψ are any propositions.

Tp	Fp	$\begin{array}{c} T(\varphi \land \psi) \\ \\ T\varphi \\ \\ T\psi \end{array}$	$\begin{array}{c} F(\varphi \wedge \psi) \\ \swarrow \\ F\varphi \\ F\psi \end{array}$	$\begin{array}{c} T(\varphi \lor \psi) \\ \swarrow \\ T\varphi \\ T\psi \end{array}$	$\begin{array}{c}F(\varphi \lor \psi)\\ \\F\varphi\\ \\F\psi\\F\psi\end{array}$
$\begin{array}{c} T(\neg \varphi) \\ \\ F\varphi \end{array}$	$F(\neg \varphi) \\ \\ T\varphi$	$\begin{array}{c} T(\varphi \rightarrow \psi) \\ \swarrow \\ F\varphi \\ T\psi \end{array}$	$F(\varphi \to \psi)$ $ $ $T\varphi$ $ $ $F\psi$	$\begin{array}{c c} T(\varphi \leftrightarrow \psi) \\ \swarrow \\ T\varphi & F\varphi \\ & \\ T\psi & F\psi \end{array}$	$ \begin{array}{c c} F(\varphi \leftrightarrow \psi) \\ \swarrow \\ T\varphi & F\varphi \\ & \\ F\psi & T\psi \end{array} $

Tableaux

A *finite tableau* is a binary tree labeled with entries described (inductively) by

- (*i*) every atomic tableau is a finite tableau,
- (*ii*) if P is an entry on a branch V in a finite tableau τ and τ' is obtained from τ by adjoining the atomic tableaux for P at the end of branch V, then τ' is also a finite tableau.
- (*iii*) every finite tableau is formed by a finite number of steps (*i*), (*ii*).

A *tableau* is a sequence $\tau_0, \tau_1, \ldots, \tau_n, \ldots$ (finite or infinite) of finite tableaux such that τ_{n+1} is formed from τ_n by an application of (*ii*), formally $\tau = \cup \tau_n$.

Remark It is not specified how to choose the entry P and the branch V for expansion. This will be specified in systematic tableaux.

Proof

Tableau proofs

Let *P* be an entry on a branch *V* in a tableau τ . We say that

- the entry P is reduced on V if it occurs on V as a root of an atomic tableau, i.e. it was already expanded on V during the construction of τ,
- the branch V is *contradictory* if it contains entries Tφ and Fφ for some proposition φ, otherwise V is *noncontradictory*. The branch V is *finished* if it is contradictory or every entry on V is already reduced on V,
- the tableau τ is *finished* if every branch in τ is finished, and τ is *contradictory* if every branch in τ is contradictory.

A tableau proof (proof by tableau) of φ is a contradictory tableau with the root entry $F\varphi$. φ is (tableau) provable, denoted by $\vdash \varphi$, if it has a tableau proof. Similarly, a *refutation* of φ by *tableau* is a contradictory tableau with the root entry $T\varphi$. φ is (tableau) refutable if it has a refutation by tableau, i.e. $\vdash \neg \varphi$.

Examples

a) F(¬p∧¬q) not reduced on V₁, V₁ contradictory, V₂ finished, V₃ unfinished,
b) a (tableau) refutation of φ: (p → q) ↔ (p ∧ ¬q), i.e. ⊢ ¬φ.

Tableau from a theory

How to add axioms of a given theory into a proof?

A *finite tableau from a theory* T is generalized tableau with an additional rule (*ii*)' if V is a branch of a finite tableau (from T) and $\varphi \in T$, then by adjoining $T\varphi$ at the end of V we obtain (again) a finite tableau from T.

We generalize other definitions by appending "from T".

- a *tableau from* T is a sequence $\tau_0, \tau_1, \ldots, \tau_n, \ldots$ of finite tableaux from T such that τ_{n+1} is formed from τ_n applying (*ii*) or (*ii*)', formally $\tau = \cup \tau_n$,
- a *tableau proof* of φ *from T* is a contradictory tableaux from T with Fφ in the root. T ⊢ φ denotes that φ is (*tableau*) *provable from T*.
- a *refutation* of φ by a *tableau from T* is a contradictory tableau from T with the root entry $T\varphi$.

Unlike in previous definitions, a branch *V* of a tableau from *T* is *finished*, if it is contradictory, or every entry on *V* is already reduced on *V* and, moreover, *V* contains $T\varphi$ for every $\varphi \in T$.

Examples of tableaux from theories

- a) A tableau proof of ψ from $T = \{\varphi, \varphi \to \psi\}$, so $T \vdash \psi$.
- b) A finished tableau with the root Fp_0 from $T = \{p_{n+1} \rightarrow p_n \mid n \in \mathbb{N}\}$. All branches are finished, the leftmost branch is noncontradictory and infinite. It provides us with the (only one) model of T in which p_0 is false.

Systematic tableaux

We describe a systematic construction that leads to a finished tableau.

Let *R* be an entry and $T = \{\varphi_0, \varphi_1, \dots\}$ be a (possibly infinite) theory.

- (1) We take the atomic tableau for R as τ_0 . Till possible, proceed as follows.
- (2) Let *P* be the leftmost entry in the smallest level as possible of the tableau τ_n s.t. *P* is not reduced on some noncontradictory branch through *P*.
- (3) Let τ'_n be the tableau obtained from τ_n by adjoining the atomic tableau for *P* to every noncontradictory branch through *P*. (If *P* does not exists, we take $\tau'_n = \tau_n$.)
- (4) Let τ_{n+1} be the tableau obtained from τ'_n by adjoining $T\varphi_n$ to every noncontradictory branch that does not contain $T\varphi_n$ yet. (If φ_n does not exists, we take $\tau_{n+1} = \tau'_n$.)

The *systematic tableau* from *T* for the entry *R* is the result of the above construction, i.e. $\tau = \cup \tau_n$.

Systematic tableau - being finished

Proposition Every systematic tableau is finished.

Proof Let $\tau = \bigcup \tau_n$ be a systematic tableau from $T = \{\varphi_0, \varphi_1, \dots\}$ with root *R*.

- If a branch is noncontradictory in *τ*, its prefix in every *τ_n* is noncontradictory as well.
- If an entry *P* in unreduced on some branch in *τ*, it is unreduced on its prefix in every *τ_n* as well (assuming *P* occurs on this prefix).
- There are only finitely many entries in τ in levels up to the level of *P*.
- Thus, if *P* was unreduced on some noncontradictory branch in *τ*, it would be considered in some step (2) and reduced by step (3).
- By step (4) every $\varphi_n \in T$ will be (no later than) in τ_{n+1} on every noncontradictory branch.
- Hence the systematic tableau au has all branches finished. \Box

Finiteness of proofs

Proposition For every contradictory tableau $\tau = \bigcup \tau_n$ there is some *n* such that τ_n is a contradictory finite tableau.

- *Proof* Let *S* be the set of nodes in τ that have no pair of contradictory entries $T\varphi$, $F\varphi$ amongst their predecessors.
- If S was infinite, then by König's lemma, the subtree of τ induced by S would contain an infinite brach, and thus τ would not be contradictory.
- Since *S* is finite, for some *m* all nodes of *S* belong to levels up to *m*.
- Thus every node in level m + 1 has a pair of contradictory entries amongst its predecessors.
- Let *n* be such that τ_n agrees with τ at least up to the level m + 1.
- Then every branch in τ_n is contradictory.

Corollary If a systematic tableau (from a theory) is a proof, it is finite.

Proof In its construction, only noncontradictory branches are extended.

Petr Gregor (KTIML MFF UK)

Propositional and Predicate Logic - IV

ZS 2015/2016 11 / 19

Soundness

We say the an entry *P* agrees with an assignment v, if *P* is $T\varphi$ and $\overline{v}(\varphi) = 1$, or if *P* is $F\varphi$ and $\overline{v}(\varphi) = 0$. A branch *V* agrees with v, if every entry on *V* agrees with v.

Lemma Let v be a model of a theory T that agrees with the root entry of a tableau $\tau = \bigcup \tau_n$ from T. Then τ contains a branch that agrees with v. *Proof* By induction we find a sequence V_0, V_1, \ldots so that for every n, V_n is a branch in τ_n agreeing with v and V_n is contained in V_{n+1} .

- By considering all atomic tableaux we verify that base of induction holds.
- If τ_{n+1} is obtained from τ_n without extending V_n , we put $V_{n+1} = V_n$.
- If τ_{n+1} is obtained from τ_n by adjoining $T\varphi$ to V_n for some $\varphi \in T$, then let V_{n+1} be this branch. Since v is a model of φ , V_{n+1} agrees with v.
- Otherwise *τ_{n+1}* is obtained from *τ_n* by adjoining the atomic tableau for some entry *P* on *V_n* to the end of *V_n*. Since *P* agrees with *v* and atomic tableaux are verified, *V_n* can be extended to *V_{n+1}* as required. □

Theorem on soundness

We will show that the tableau method in propositional logic is sound.

Theorem For every theory T and proposition φ , if φ is tableau provable from T, then φ is valid in T, i.e. $T \vdash \varphi \Rightarrow T \models \varphi$.

Proof

- Let φ be tableau provable from a theory T, i.e. there is a contradictory tableau τ from T with the root entry $F\varphi$.
- Suppose for a contradiction that φ is not valid in T, i.e. there exists a model v of the theory T if which φ is false (a counterexample).
- Since the root entry $F\varphi$ agrees with v, by the previous lemma, there is a branch in the tableau τ that agrees with v.
- But this is impossible, since every branch of τ is contradictory, i.e. it contains a pair of entries $T\psi$, $F\psi$ for some ψ .

・ロット (母) ・ ヨ) ・ ヨ)

Completeness

A noncontradictory branch in a finished tableau gives us a counterexample. **Lemma** Let *V* be a noncontradictory branch of a finished tableau τ . Then *V* agrees with the following assignment *v*.

 $v(p) = \begin{cases} 1 & \text{if } Tp \text{ occurs on } V \\ 0 & \text{otherwise} \end{cases}$

Proof By induction on the structure of formulas in entries occurring on V.

- For an entry Tp on V, where p is a letter, we have $\overline{v}(p) = 1$ by definition.
- For an entry Fp on V, Tp in not on V since V is noncontradictory, thus $\overline{v}(p) = 0$ by definition of v.
- For an entry $T(\varphi \wedge \psi)$ on *V*, we have $T\varphi$ and $T\psi$ on *V* since τ is finished. By induction, we have $\overline{\nu}(\varphi) = \overline{\nu}(\psi) = 1$, and thus $\overline{\nu}(\varphi \wedge \psi) = 1$.
- For an entry *F*(φ ∧ ψ) on *V*, we have *F*φ or *F*ψ on *V* since τ is finished. By induction, we have *v*(φ) = 0 or *v*(ψ) = 0, and thus *v*(φ ∧ ψ) = 0.
- For other entries similarly as in previous two cases.

Theorem on completeness

We will show that the tableau method in propositional logic is complete.

Theorem For every theory *T* and proposition φ , if φ is valid in *T*, then φ is tableau provable from *T*, i.e. $T \models \varphi \Rightarrow T \vdash \varphi$.

Proof Let φ be valid in *T*. We will show that an arbitrary finished tableau (e.g. *systematic*) τ from theory *T* with the root entry $F\varphi$ is contradictory.

- If not, let V be some noncontradictory branch in τ .
- By the previous lemma, there exists an assignment v such that V agrees with v, in particular in the root entry $F\varphi$, i.e. $\overline{v}(\varphi) = 0$.
- Since V is finished, it contains $T\psi$ for every $\psi \in T$.
- Thus v is a model of theory T (since V agrees with v).
- But this contradicts the assumption that φ is valid in *T*.

Hence the tableau τ is a proof of φ from *T*.

Properties of theories

We introduce syntactic variants of previous semantically defined notions.

Let *T* be a theory over \mathbb{P} . If φ is provable from *T*, we say that φ is a *theorem* of *T*. The set of theorems of *T* is denoted by

$$\operatorname{Thm}^{\mathbb{P}}(T) = \{ \varphi \in \operatorname{VF}_{\mathbb{P}} \mid T \vdash \varphi \}.$$

We say that a theory T is

- *inconsistent* if $T \vdash \bot$, otherwise T is *consistent*,
- *complete* if it is consistent and every proposition is provable or refutable from *T*, i.e. *T* ⊢ φ or *T* ⊢ ¬φ for every φ ∈ VF_ℙ,
- *extension* of a theory T' over \mathbb{P}' if $\mathbb{P}' \subseteq \mathbb{P}$ and $\operatorname{Thm}^{\mathbb{P}'}(T') \subseteq \operatorname{Thm}^{\mathbb{P}}(T)$; we say that an extension T of a theory T' is *simple* if $\mathbb{P} = \mathbb{P}'$; and *conservative* if $\operatorname{Thm}^{\mathbb{P}'}(T') = \operatorname{Thm}^{\mathbb{P}}(T) \cap \operatorname{VF}_{\mathbb{P}'}$,
- *equivalent* with a theory T' if T is an extension of T' and vice-versa.

Corollaries

From the soundness and completeness of the tableau method it follows that these syntactic definitions agree with their semantic variants.

Corollary For every theory *T* and propositions φ , ψ over \mathbb{P} ,

•
$$T \vdash \varphi$$
 if and only if $T \models \varphi$,

• Thm^{$$\mathbb{P}$$} $(T) = \theta^{\mathbb{P}}(T)$,

- T is inconsistent if and only if T is unsatisfiable, i.e. it has no model,
- *T* is complete if and only if *T* is semantically complete, i.e. it has a single model,
- $T, \varphi \vdash \psi$ if and only if $T \vdash \varphi \rightarrow \psi$ (Deduction theorem).

Remark Deduction theorem can be proved directly by transformations of tableaux.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem on compactness

Theorem A theory T has a model iff every finite subset of T has a model.

Proof 1 The implication from left to right is obvious. If T has no model, then it is inconsistent, i.e. \perp is provable by a systematic tableau τ from T. Since τ is finite, \perp is provable from some finite $T' \subseteq T$, i.e. T' has no model.

Remark This proof is based on finiteness of proofs, soundness and completeness. We present an alternative proof (applying König's lemma).

Proof 2 Let $T = \{\varphi_i \mid i \in \mathbb{N}\}$. Consider a tree S on (certain) finite binary strings σ ordered by being a prefix. We put $\sigma \in S$ if and only if there exists an assignment v with prefix σ such that $v \models \varphi_i$ for every $i \leq \text{lth}(\sigma)$.

Observation S has an infinite branch if and only if T has a model.

Since $\{\varphi_i \mid i \in n\} \subseteq T$ has a model for every $n \in \mathbb{N}$, every level in S is nonempty. Thus S is infinite and moreover binary, hence by König's lemma, S contains an infinite branch.

Application of compactness

A graf (V, E) is *k*-colorable if there exists $c: V \to k$ such that $c(u) \neq c(v)$ for every edge $\{u, v\} \in E$.

Theorem A countably infinite graph G = (V, E) is k-colorable if and only if every finite subgraph of G is k-colorable.

Proof The implication \Rightarrow is obvious. Assume that every finite subgraph of *G* is *k*-colorable. Consider $\mathbb{P} = \{p_{u,i} \mid u \in V, i \in k\}$ and a theory *T* with axioms

$p_{u,0} \lor \cdots \lor p_{u,k-1}$	for every $u \in V$,
$ eg(p_{u,i} \wedge p_{u,j})$	for every $u \in V, i < j < k,$
$ eg(p_{u,i} \wedge p_{v,i})$	for every $\{u, v\} \in E, i < k$.

Then *G* is *k*-colorable if and only if *T* has a model. By compactness, it suffices to show that every finite $T' \subseteq T$ has a model. Let *G'* be the subgraph of *G* induced by vertices *u* such that $p_{u,i}$ appears in *T'* for some *i*. Since *G'* is *k*-colorable by the assumption, the theory *T'* has a model. \Box

Petr Gregor (KTIML MFF UK)