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Tableau method (from the previous lecture) Tableaux

Atomic tableaux

An atomic tableau is one of the following trees (labeled by entries), where p is
any propositional letter and ¢, v are any propositions.
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Tableau method (from the previous lecture) Tableaux

A finite tableau is a binary tree labeled with entries described (inductively) by

(i) every atomic tableau is a finite tableau,

(ii) if Pis an entry on a branch V in a finite tableau = and 7’ is obtained
from 7 by adjoining the atomic tableaux for P at the end of branch V,
then 7’ is also a finite tableau,

(i1i) every finite tableau is formed by a finite number of steps (i), (ii).

A tableau is a sequence 1y, 11, ..., Ty, - - . (finite or infinite) of finite tableaux
such that 7,4, is formed from 7,, by an application of (ii), formally 7 = Ur,,.

Remark It is not specified how to choose the entry P and the branch V for
expansion. This will be specified in systematic tableaux.
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Tableau proofs

Let P be an entry on a branch V in a tableau 7. We say that
@ the entry P is reduced on V if it occurs on V as a root of an atomic
tableau, i.e. it was already expanded on V during the construction of ,

@ the branch V is contradictory if it contains entries Ty and Fy for some
proposition ¢, otherwise V' is noncontradictory. The branch V is finished
if it is contradictory or every entry on V is already reduced on V,

@ the tableau 7 is finished if every branch in 7 is finished, and 7 is
contradictory if every branch in 7 is contradictory.

A tableau proof (proof by tableau) of ¢ is a contradictory tableau with the root
entry Fo. ¢ is (tableau) provable, denoted by + ¢, if it has a tableau proof.

Similarly, a refutation of ¢ by tableau is a contradictory tableau with the root
entry Ty. ¢ is (tableau) refutable if it has a refutation by tableau, i.e. - —.
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Tableau method (from the previous lecture) Proof

Examples
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a) F(=pA—q) not reduced on V;, V; contradictory, V, finished, V3 unfinished,
b) a (tableau) refutation of p: (p — q) <> (p A —q),i.e. F —p.
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Tableau method Proof in a theory

Tableau from a theory

How to add axioms of a given theory into a proof?

A finite tableau from a theory T is generalized tableau with an additional rule

(i)’ if V'is a branch of a finite tableau (from T) and ¢ € T, then by adjoining
Ty at the end of V we obtain (again) a finite tableau from T.

We generalize other definitions by appending “from T".
@ a tableau from T is a sequence 19, 71, - .., T, ... Of finite tableaux from T
such that 7,4 is formed from 7,, applying (ii) or (ii)’, formally 7 = Uy,
@ a tableau proof of ¢ from T is a contradictory tableaux from T with Fy
in the root. T+ ¢ denotes that ¢ is (tableau) provable from T.
@ a refutation of ¢ by a tableau from T is a contradictory tableau from T
with the root entry Tp.

Unlike in previous definitions, a branch V of a tableau from T is finished,
if it is contradictory, or every entry on V is already reduced on V and,
moreover, V contains T for every ¢ € T.
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Examples of tableaux from theories

Fap Fpo
\ \
T(p — 1) T(p1 = po)
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: \
®
a) b)

a) A tableau proof of ¢ from T = {p, o — ¢}, 50 T F 4.

b) A finished tableau with the root Fp, from T'= {p,.1 — p, | n € N}.
All branches are finished, the leftmost branch is noncontradictory and

infinite. It provides us with the (only one) model of T in which p; is false.
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Systematic tableaux

We describe a systematic construction that leads to a finished tableau.
Let Rbe anentry and T = {yy, ¢1,. .. } be a (possibly infinite) theory.
(1) We take the atomic tableau for R as . Till possible, proceed as follows.

(2) Let P be the leftmost entry in the smallest level as possible of the tableau
Tn S.t. P is not reduced on some noncontradictory branch through P.

(3) Let 7}, be the tableau obtained from 7, by adjoining the atomic tableau for
P to every noncontradictory branch through P. (If P does not exists, we
take 7, = 1,.)

(4) Let 75,41 be the tableau obtained from 7, by adjoining T, to every
noncontradictory branch that does not contain Ty, yet. (If ¢, does not
exists, we take 7,41 = 77,.)

The systematic tableau from T for the entry R is the result of the above
construction, i.e. 7 = Uy,
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Systematic tableau - being finished

Proposition Every systematic tableau is finished.
Proof Let 7 = Ur, be a systematic tableau from 7' = {yo, ¢1, ... } with root R.

@ If a branch is noncontradictory in 7, its prefix in every 7, is
noncontradictory as well.

@ If an entry P in unreduced on some branch in 7, it is unreduced on its
prefix in every 7, as well (assuming P occurs on this prefix).

@ There are only finitely many entries in 7 in levels up to the level of P.

@ Thus, if P was unreduced on some noncontradictory branch in r, it would
be considered in some step (2) and reduced by step (3).

@ By step (4) every ¢, € T will be (no later than) in 7., on every
noncontradictory branch.

@ Hence the systematic tableau 7 has all branches finished. [
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Tableau method Systematic tableaux

Finiteness of proofs
Proposition For every contradictory tableau = U, there is some n such
that ,, is a contradictory finite tableau.
@ Proof Let S be the set of nodes in 7 that have no pair of contradictory
entries Ty, Fyp amongst their predecessors.

@ If S was infinite, then by Kénig’s lemma, the subtree of 7 induced by S
would contain an infinite brach, and thus = would not be contradictory.

@ Since S is finite, for some m all nodes of S belong to levels up to m.

@ Thus every node in level m + 1 has a pair of contradictory entries
amongst its predecessors.

@ Let n be such that ,, agrees with 7 at least up to the level m + 1.
@ Then every branch in 7, is contradictory. [
Corollary If a systematic tableau (from a theory) is a proof, it is finite.

Proof In its construction, only noncontradictory branches are extended. [
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Soundness and completeness Soundness

Soundness

We say the an entry P agrees with an assignment v, if Pis Ty and 7(y) = 1,
orif Pis Fy and () = 0. A branch V agrees with v, if every entry on V
agrees with v.

Lemma Letv be a model of a theory T that agrees with the root entry
of a tableau T = Ur,, from T. Then T contains a branch that agrees with v.

Proof By induction we find a sequence Vy, V1, ... so that for every n,
V, is a branch in 7, agreeing with v and V,, is contained in V,, ;.
@ By considering all atomic tableaux we verify that base of induction holds.
@ If 7,1, is obtained from 7, without extending V,,, we put V,,; = V.
@ If 7,4, is obtained from 7, by adjoining Ty to V;,, for some ¢ € T, then let
V.11 be this branch. Since v is a model of ¢, V1 agrees with v.
@ Otherwise 7,4, is obtained from 7, by adjoining the atomic tableau for
some entry P on V,, to the end of V,,. Since P agrees with v and atomic
tableaux are verified, V,, can be extended to V;,;, as required. [
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Theorem on soundness

We will show that the tableau method in propositional logic is sound.

Theorem For every theory T and proposition , if ¢ is tableau provable
from T, thenypisvalidinT,ie. TFy = T .
Proof
@ Let ¢ be tableau provable from a theory T, i.e. there is a contradictory
tableau 7 from T with the root entry F.
@ Suppose for a contradiction that ¢ is not valid in T, i.e. there exists
a model v of the theory T if which ¢ is false (a counterexample).
@ Since the root entry Fy agrees with v, by the previous lemma, there is
a branch in the tableau 7 that agrees with v.
@ But this is impossible, since every branch of 7 is contradictory, i.e.
it contains a pair of entries Ty, Fiy for some ¢. [
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Soundness and completeness Completeness

Completeness

A noncontradictory branch in a finished tableau gives us a counterexample.
Lemma Let V be a noncontradictory branch of a finished tableau .
Then V agrees with the following assignment v.

v(p) = 1 if Tp occurson V
] 0 otherwise

Proof By induction on the structure of formulas in entries occurring on V.

@ Foranentry Tp on V, where pis a letter, we have 7(p) = 1 by definition.
@ Foranentry Fpon V, Tpin noton V since V is noncontradictory, thus
7(p) = 0 by definition of v.

@ Foranentry T(¢ Av) on V, we have Ty and Ty on V since 7 is finished.
By induction, we have v(y) = 7(¢) = 1, and thus 7(¢ A ¢) = 1.

@ For anentry F(¢ A1) on V, we have Fy or Fip on V since 7 is finished.
By induction, we have 7(p) = 0 or 7(¢)) = 0, and thus v(p A ) = 0.

@ For other entries similarly as in previous two cases. [
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Theorem on completeness

We will show that the tableau method in propositional logic is complete.

Theorem For every theory T and proposition ¢, if ¢ is valid in T, then
v is tableau provable from T, ie. T = ¢ = TF .

Proof Let ¢ be valid in T. We will show that an arbitrary finished tableau
(e.g. systematic) T from theory T with the root entry Fy is contradictory.
@ If not, let V be some noncontradictory branch in .

@ By the previous lemma, there exists an assignment v such that
V agrees with v, in particular in the root entry Fo, i.e. T(p) = 0.

@ Since V is finished, it contains T for every ¢) € T.
@ Thus v is a model of theory T (since V agrees with v).

@ But this contradicts the assumption that ¢ is valid in T.

Hence the tableau 7 is a proof of ¢ from T. [J
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Properties of theories

We introduce syntactic variants of previous semantically defined notions.

Let T be a theory over P. If ¢ is provable from T, we say that o is a theorem
of T. The set of theorems of T is denoted by

Thm" (T) = {¢ € VFp | T+ ¢}.
We say that a theory T is
@ inconsistentif T + 1, otherwise T is consistent,

@ complete if it is consistent and every proposition is provable or refutable
from T,i.e. T+ g or T+ —p for every ¢ € VFp,

e extension of a theory T’ over P’ if P’ C P and Thm® (T’) € Thm"(T);
we say that an extension T of a theory T’ is simple if P = P’; and
conservative if Thm® (T") = Thm®(T) N VFs,

@ equivalent with a theory T' if T is an extension of T” and vice-versa.
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Corollaries

From the soundness and completeness of the tableau method it follows that

these syntactic definitions agree with their semantic variants.

Corollary For every theory T and propositions o, ) overP,
@ THyifandonlyifT = ¢,
e Thm'(T) = ¢¥(T),
@ T isinconsistent if and only if T is unsatisfiable, i.e. it has no model,

@ T is complete if and only if T is semantically complete, i.e. it has
a single model,

@ T,ptifandonlyif T+ ¢ — + (Deduction theorem).

Remark Deduction theorem can be proved directly by transformations of
tableaux.
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Theorem on compactness

Theorem A theory T has a model iff every finite subset of T has a model.

Proof 1 The implication from left to right is obvious. If T has no model, then
it is inconsistent, i.e. | is provable by a systematic tableau = from T. Since 7
is finite, L is provable from some finite 7/ C T, i.e. T has no model. [

Remark This proof is based on finiteness of proofs, soundness and
completeness. We present an alternative proof (applying Kénig’s lemma).

Proof2 Let T = {p; | i € N}. Consider a tree S on (certain) finite binary
strings o ordered by being a prefix. We put o € S if and only if there exists
an assignment v with prefix o such that v |= ¢; for every i < lth(o).

Observation S has an infinite branch if and only if T has a model.

Since {y; | i € n} C T has a model for every n € N, every level in S is
nonempty. Thus S is infinite and moreover binary, hence by Kdénig’s lemma,
S contains an infinite branch. [
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Application of compactness

A graf (V, E) is k-colorable if there exists ¢: V — k such that c(u) # c(v)
for every edge {u, v} € E.

Theorem A countably infinite graph G = (V, E) is k-colorable if and only if
every finite subgraph of G is k-colorable.

Proof The implication = is obvious. Assume that every finite subgraph of G
is k-colorable. Consider P = {p,.; | u € V,i € k} and a theory T with axioms

Puo V-V Puk-1 forevery u e V,
~(Pu,i N Puj) forevery ue V,i<j<k,
=(Pu,i N Po,i) for every {u,v} € E,i < k.

Then G is k-colorable if and only if T has a model. By compactness, it
suffices to show that every finite 7" C T has a model. Let G’ be the subgraph
of G induced by vertices u such that p,, ; appears in T’ for some i. Since G’ is
k-colorable by the assumption, the theory T/ has a model. [
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